实验四 数字基带通信系统实验
- 格式:doc
- 大小:240.50 KB
- 文档页数:6
实验3 数字基带传输系统一、实验目的1、掌握数字基带传输系统的误码率计算;2、熟悉升余弦传输特性的时域响应特征,观察不同信噪比下的眼图。
二、实验内容1、误码率的计算:画出A/σ和误码率之间的性能曲线;2、眼图的生成①基带信号采用矩形脉冲波形(选做)②基带信号采用滚降频谱特性的波形(必做)3、仿真码间干扰对误码率的影响(选做)三、实验步骤及结果1、误码率的计算10个二进制信息数据,采用双极性码,映射为±A。
随机产生高斯噪声(要求A/σ为0~12dB),随机产生6叠加在发送信号上,直接按判决规则进行判决,然后与原始数据进行比较,统计出错的数据量,与发送数据量相除得到误码率。
画出A/σ和误码率之间的性能曲线,并与理论误码率曲线相比较。
(保存为图3-1) 注意:信噪比单位为dB,计算噪声功率时需要换算。
Snr_A_sigma = 10.^(Snr_A_sigma_dB/20);1代码:clear all; clc;close all;A = 1;%定义信号幅度N = 10 ^ 6;%数据点数;a=A*sign(randn(1,N));Snr_A_sigma_dB = 0:12;Snr_A_sigma = 10 .^ (Snr_A_sigma_dB/20);sigma = A./Snr_A_sigma;ber = zeros(size(sigma));for n = 1 : length(sigma)rk = a + sigma(n) * randn(1, N);dec_a = sign(rk);ber(n) = length(find(dec_a~=a)) / N;endber_Theory = 1/2* erfc(sqrt(Snr_A_sigma.^2/2));semilogy(Snr_A_sigma_dB, ber, 'b-', Snr_A_sigma_dB, ber_Theory, 'k-*'); grid on;xlabel('A/\sigma'); ylabel('ber');legend('ber', 'ber\_Theory');title(' A/σ和误码率之间的性能曲线');2.绘制的图2、绘制眼图①设二进制数字基带信号{}1,1n a ∈-,波形()1,00,s t T g t ≤<⎧=⎨⎩其他,分别通过带宽为()15/4s B T =和()11/2s B T =两个低通滤波器,画出输出信号的眼图(保存为图3-2),并画出两个滤波器的频率响应。
数字基带仿真实验通信系统综合实验报告目录实验一数字基带仿真实验 (1)一.实验目的 (1)二.实验设备与软件环境 (1)三.实验内容 (1)四.实验要求 (2)五.实验原理 (2)1.差错控制编码的基本原理 (2)2)CRC码编码的基本原理 (3)2. 跳频的基本原理 (4)六.实验结果 (7)1.基带包的差错控制技术 (7)2.跳频扩频实验 (10)3.加密解密实验 (18)七.思考题 (20)实验二通信传输有效性和可靠性分析实验 (22)一.实验目的 (22)二.实验设备与软件环境 (22)三.实验内容 (22)1.性能仿真 (22)2.数据速率 (23)3.文件传输 (23)四.实验要求 (24)五.实验原理 (25)1. 停止等待协议基本原理 (25)2. 连续ARQ协议基本原理 (25)3. 检错重发ARQ协议基本原理 (26)六.实验结果 (26)1. 性能仿真 (26)2.数据传输速率的分析(点对点通信): (30)七.思考题 (36)实验三无线多点组网实验 (38)一.实验目的 (38)二.实验设备与软件环境 (38)三.实验内容 (38)四.实验要求 (39)五.实验原理 (40)1. 计算机通信网的相关知识 (40)2. Ad hoc网络 (41)3. 路由选择 (42)六.实验结果 (43)七.思考题 (45)实验四语音传输实验 (48)一.实验目的 (48)二.实验设备与软件环境 (48)三.实验内容 (48)四.实验要求 (49)五.实验原理 (49)1. 基带信号编码的基本原理 (49)2. SCO链路和ACL链路的异同 (50)3. 随机错误和突发错误 (51)六.实验结果 (52)2.蓝牙语音链路建立和断开的过程 (59)七.思考题 (61)实验一数字基带仿真实验一.实验目的1. 了解汉明码、CRC码的基本原理。
2. 了解跳频、扩频的基本原理。
3. 了解常规和公开密钥密码体制的工作原理。
实验一数字基带信号一、 实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。
2、掌握AMI、HDB3码的编码规则。
3、掌握从HDB3码信号中提取位同步信号的方法。
4、掌握集中插入帧同步码时分复用信号的帧结构特点。
5、了解HDB3(AMI)编译码集成电路CD22103。
二、 实验内容1、用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2、用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3、用示波器观察HDB3、AMI译码输出波形。
三、 基本原理1.简述AMI码的编码规律。
2.简述HDB3码的编码规律。
3.设信息码为0000 0110 0001 0000 0011,绘制NRZ码、AMI码、HDB3码波形。
4.分析AMI码和HDB3码的功率谱,说明如何得到位同步信号。
四、 实验说明本实验使用数字信源模块和HDB3编译码模块。
1、数字信源本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。
本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。
帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。
发光二极管亮状态表示1码,熄状态表示0码。
本模块有以下测试点及输入输出点:• CLK 晶振信号测试点•BS-OUT 信源位同步信号输出点/测试点(2个)• FS 信源帧同步信号输出点/测试点NRZ信号(绝对码)输出点/测试点(4个)•NRZ-OUT(AK)图1-1中各单元与电路板上元器件对应关系如下:•晶振CRY:晶体;U1:反相器7404•分频器U2:计数器74161;U3:计数器74193;U4:计数器40160•并行码产生器 K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管:左起分别与一帧中的24位代码相对应•八选一U5、U6、U7:8位数据选择器4512•三选一U8:8位数据选择器4512•倒相器U20:非门74HC04•抽样U9:D触发器74HC74图1-1 数字信源方框图图1-2 帧结构下面对分频器,八选一及三选一等单元作进一步说明。
数字基带传输系统实验报告数字基带传输系统实验报告引言:数字基带传输系统是现代通信领域中的重要组成部分,它在各个领域中起到了至关重要的作用。
本实验旨在通过搭建一个基带传输系统的模型,来研究数字信号的传输特性和误码率等参数。
通过实验,我们可以更好地理解数字基带传输系统的原理和应用。
一、实验目的本实验的主要目的是搭建一个数字基带传输系统的模型,并通过实验研究以下几个方面:1. 了解数字基带传输系统的基本原理和结构;2. 研究数字信号的传输特性,如传输速率、带宽等;3. 分析误码率与信噪比之间的关系;4. 探究不同调制方式对传输性能的影响。
二、实验原理数字基带传输系统由发送端、信道和接收端组成。
发送端将模拟信号转换为数字信号,并通过信道传输到接收端,接收端将数字信号转换为模拟信号。
在传输过程中,信号会受到噪声的干扰,从而引起误码率的增加。
三、实验步骤1. 搭建数字基带传输系统的模型,包括发送端、信道和接收端;2. 设计不同的调制方式,如ASK、FSK和PSK,并设置不同的传输速率和带宽;3. 测试不同调制方式下的误码率,并记录实验数据;4. 分析误码率与信噪比之间的关系,探究不同调制方式对传输性能的影响。
四、实验结果与分析通过实验,我们得到了一系列的数据,并进行了分析。
我们发现,随着信噪比的增加,误码率逐渐减小,传输性能逐渐提高。
同时,不同调制方式对传输性能也有一定的影响。
例如,ASK调制方式在低信噪比下误码率较高,而PSK调制方式在高信噪比下误码率较低。
五、实验总结通过本次实验,我们对数字基带传输系统有了更深入的了解。
我们了解了数字基带传输系统的基本原理和结构,研究了数字信号的传输特性和误码率与信噪比之间的关系。
同时,我们也探究了不同调制方式对传输性能的影响。
通过实验,我们对数字基带传输系统的应用和优化提供了一定的参考。
六、实验存在的问题与改进方向在本次实验中,我们发现了一些问题,如实验数据的采集和分析方法可以进一步改进,实验中的噪声模型也可以更加精确。
实验注意事项一、进入实验室必须遵守实验室相关规章制度。
二、特别要注意爱护和维护好实验室卫生,个人产生的任何垃圾(如碎纸屑、饮料瓶等),自行带出。
三、实验时间有限,每次实验必须在实验前到实验室签到,并检查预习报告,不允许迟到。
四、所有实验均为设计性实验。
五、每次实验前提交上一次实验报告。
模拟通信实验要求一、模拟通信的实验项目:1、AM调幅通信系统实验2、FM调频通信系统实验二、预习及实验和报告要求:(分三步完成)预习阶段:(分析信号的处理和传输、还原过程)实验开始前检查预习报告。
实验一、AM调幅通信系统实验的预习及实验要求;AM信号的实现原理;分析基带信号的频谱结构、AM信号的波形、AM信号的频谱结构;传输(信道);接收端解调原理(两种解调方式分析一种即可);解调器的结构;抗噪声性能。
(完成系统的systemview中各信号的实现和系统结构的初步方案,实验室作一定修改,调整参数才可能完成实验),写出预习报告。
实验阶段:完成系统的构成及参数设置,并在报告中对系统机构作出必要的分析说明。
输出结果到word文档。
该实验要求输出的有系统结构图、发送端的基带信号波形及其频谱、AM的波形及频谱(分析清楚线形搬移的特点);接收端要求输出解调后的信号波形及其频谱结构(接收端还可观察多径传播的频率弥散现象,有余力的同学可以作)。
完成报告阶段:将输出的系统结构图,发送端的基带信号的波形图及频谱图,AM信号的波形图及频谱图,接收端输出解调后的信号波形及其频谱结构图打印后(实验室无打印条件,自行解决)粘贴在实验报告上,粘贴时一定要注意波形的对应关系及频谱的对应关系(对应关系出错说明对AM通信系统没有掌握,将视作实验未按要求完成,结果是该实验不及格)。
完成该步骤后,试验结果将会与预期有差异,必须对实验结果的差异性进行分析(分析差异性的成因)。
完成一份完整的实验报告。
实验二、FM调频(必须是宽带调频)通信系统实验预习及实验要求;FM信号的实现原理;分析基带信号的频谱结构、FM信号的波形;传输(信道);接收端解调原理;解调器的结构;抗噪声性能。
通信原理实验数字基带传输仿真实验本文记录的是一次通信原理实验,具体实验内容是数字基带传输仿真实验。
这个实验旨在让学生了解并掌握数字基带传输的基本原理、信号调制和调制解调的方法,并通过仿真实验加深对数字基带传输的理解。
实验步骤:第一步:实现数字基带信号的产生。
我们采用MATLAB编写代码来产生数字基带信号。
具体而言,我们可以选择产生脉冲振幅调制(PAM)、脉冲宽度调制(PWM)、脉冲频率调制(PFM)等各种调制方式。
第二步:实现数字基带信号的传输。
我们可以通过MATLAB编写代码,将数字基带信号在传输媒介中进行仿真。
具体而言,我们可以选择传输介质为AWGN信道、多径信道等,通过加入信噪比、码元传输速率、波特率等参数来模拟不同的传输环境。
第三步:实现数字基带信号的调制。
我们采用调制器进行数字信号的调制。
常见的数字调制方式有AM调制、FM调制、PM调制等。
此处我们选择了二进制相移键控(BPSK)调制来进行数字基带信号的调制。
第四步:实现数字基带信号的解调。
我们采用解调器来实现数字基带信号的解调。
常见的数字解调方式有包络检测法、抑制互调法等。
此处我们选择了直接判决法来进行数字基带信号的解调。
第五步:实现数字基带信号的重构。
我们通过将数字基带信号解调后还原成原始信号进行数字信号的重构。
此处我们需要通过MATLAB代码将解调后的数字信号还原成原始信号,并绘制出波形图进行对比分析。
实验结果:通过对仿真实验的分析,我们得出了一些结论。
首先,不同的数字基带信号相对应不同的调制方式,比如我们可以选择PAM调制来实现计算机通讯中的以太网传输。
其次,数字基带信号的传输受到了多种因素的影响,包括信道的噪声、信噪比、码元传输速率、波特率等。
第三,数字基带信号的解调方式有很多种,我们需要根据传输环境的不同来选择最适宜的解调方式。
最后,数字基带信号的重构是一个非常重要的环节,它能够让我们了解数字基带信号在传输过程中所带来的信息损失和失真情况。
实验四数字基带通信系统实验一、实验目的1.掌握时分复用数字基带通信系统的基本原理及数字信号传输过程。
2.掌握位同步信号抖动、帧同步信号错位对数字信号传输的影响。
3.掌握位同步信号、帧同步信号在数字分接中的作用。
二、实验内容1.用数字信源模块、数字终端模块、位同步模块及帧同步模块连成一个理想信道时分复用数字基带通信系统,使系统正常工作。
2.观察位同步信号抖动对数字信号传输的影响。
3.观察帧同步信号错位对数字信号传输的影响。
4.用示波器观察分接后的数据信号、用于数据分接的帧同步信号、位同步信号。
三、基本原理本实验使用数字信源模块、数字终端模块、位同步模块及帧同步模块。
1. 数字终端模块工作原理原理框图如图4-1所示。
它输入单极性非归零信号、位同步信号和帧同步信号,把两路数据信号从时分复用信号中分离出来,输出两路串行数据信号和两个8位的并行数据信号。
两个并行信号驱动16个发光二极管,左边8个发光二极管显示第一路数据,右边8个发光二极管显示第二路数据,二极管亮状态表示“1”,熄灭状态表示“0”。
两个串行数据信号码速率为数字源输出信号码速率的1/3。
在数字终端模块中,有以下测试点及输入输出点:• FS-IN 帧同步信号输入点• S-IN 时分复用基带信号输入点• BS-IN 位同步信号输入点• SD 抽样判后的时分复用信号测试点• BD 延迟后的位同步信号测试点• FD 整形后的帧同步信号测试点• D1 分接后的第一路数字信号测试点• B1 第一路位同步信号测试点• F1 第一路帧同步信号测试点• D2 分接后的第二路数字信号测试点• B2 第二路位同步信号测试点• F2 第二路帧同步信号测试点图4-2为数字终端电路原理图。
图4-1中各单元与图4-2中的元器件对的应关系如下:•延迟1 U30:单稳态触发器74LS123•延迟2 U32:A:D触发器74LS74•整形U31:A:单稳态触发器74LS123;U32:B:D触发器74LS74•延迟3 U50、U51、U52:六D触发器74LS174• ÷3 U33:内藏译码器的二进制寄存器4017•串/并变换U37、U38:八级移位寄存器4094•并/串变换U39、U40:八级移位寄存器4014•显示发光二极管图4-1 数字终端原理方框图延迟1、延迟2、延迟3、整形及÷3等5个单元可使串/并变换器和并/串变换器的输入信号SD、位同步信号及帧同步信号满足正确的相位关系,如图4-3所示。
数字基带传输实验报告数字基带传输实验报告1. 引言数字基带传输是现代通信系统中的重要组成部分,它负责将数字信号转换为模拟信号,以便在传输过程中进行传输。
本实验旨在通过搭建数字基带传输系统的实验平台,探索数字信号的传输特性和相关参数的测量方法。
2. 实验设备和方法实验所使用的设备包括信号发生器、示波器、传输线等。
首先,我们将信号发生器的输出连接到传输线的输入端,然后将传输线的输出端连接到示波器,以便观察信号的传输效果。
在实验过程中,我们会改变信号发生器的输出频率和幅度,以研究其对传输信号的影响。
3. 实验结果与分析通过实验观察和数据记录,我们发现信号发生器的输出频率对传输信号的带宽有着直接的影响。
当信号发生器的输出频率增加时,传输信号的带宽也随之增加。
这是因为高频信号具有更多的频率成分,需要更大的带宽来进行传输。
此外,我们还观察到信号发生器的输出幅度对传输信号的幅度衰减有着重要的影响。
当信号发生器的输出幅度增加时,传输信号的幅度衰减也随之增加。
这是因为高幅度信号在传输过程中容易受到噪声和衰减的影响。
4. 数字信号的传输特性数字信号的传输特性是指信号在传输过程中的失真情况。
在实验中,我们观察到信号的失真主要表现为幅度衰减和相位偏移。
幅度衰减是指信号在传输过程中幅度减小的现象,而相位偏移是指信号在传输过程中相位发生变化的现象。
这些失真现象会导致信号的质量下降,从而影响通信系统的性能。
5. 数字信号的传输参数测量在实验中,我们还对数字信号的传输参数进行了测量。
其中,最重要的参数是信号的带宽和信号的衰减。
带宽的测量可以通过观察传输信号在示波器上的频谱来进行,而衰减的测量可以通过比较信号发生器的输出幅度和传输信号的接收幅度来进行。
通过测量这些参数,我们可以评估数字基带传输系统的性能,并进行相应的优化。
6. 结论通过本实验,我们深入了解了数字基带传输的原理和特性。
我们发现信号的频率和幅度对传输信号的带宽和幅度衰减有着直接的影响。
湖北文理学院4G移动通信课程实验报告学院专业班级学号姓名任课教师页脚内容1页脚内容2实验一:通用软件无线电平台与QPSK无线传输系统一、实验目的1.掌握XSRP无线传输Matlab形式接口的使用方法。
2.掌握真实FM信号的解调处理方法3.掌握QPSK调制的原理及实现方法。
4.掌握QPSK解调的原理及实现方法。
二、实验内容1.掌握XSRP无线传输Matlab形式接口的使用方法。
2.掌握真实FM信号的解调处理方法3.分别采用数字键控法、模拟相乘法QPSK调制,观测QPSK调制信号波形。
4.采用相干解调法QPSK解调。
三、实验仪器1.安装有XSRP系统软件的PC机。
页脚内容32.XSRP系统软件加密狗。
3.XSRP硬件。
4.示波器。
四、实验原理FM接收机FM的原理是以载波的瞬时频率变化来表示信息,可以使用一个频率偏移来精确地模拟相位随时间的变化,而从IQ中得到相位信息是很容易的。
FM Signal = sine(carrier frequency + ∫0t message signal dt)下划线部分即为相位信息,而对于以IQ形式采集的调频电台信号,可以很方便地获得相位信息,将IQ 构成的复数转换为polar极坐标形式即可获得。
然后我们利用积分的逆过程即微分就可以获得原来的信号。
但是当相位在-180度至180 度范围内变化时,还存在一个相位不连续问题。
为了解决这个问题,我们可以把相位增加360度的倍数使得相位变化连续,即进行相位展开。
五、实验步骤首先,打开实验目录1.7.4,呈现如图30. 1界面。
页脚内容4图30. 1 FM接收机实验界面FM实验打开后,FM解码过程就开始了,但由于未配置合适的接收频率,解出的信号完全为噪声。
因此在开始实验前,需要对RF进行配置,将RF接收频率配置到目标频率,如106.4MHz,示意图如图30. 2。
确认配置成功。
图30. 2射频参数配置页脚内容5之后在界面上点击右键,选择右键菜单中的“显示后面板”,我们可以看到该实验的源程序,如图30. 3。
实验四数字基带通信系统一、实验目的1. 了解完整的数字基带通信系统的组成及各部分功能。
2. 掌握汉明码的编码规则,了解信道编码在通信系统中的作用。
1.掌握高斯白噪声、带限信道的概念,加深对信道模型的理解。
2.掌握同步信号在数字通信系统中的作用。
3.掌握眼图波形与信号传输畸变的关系。
二、实验器材1. 信号源模块2.信道模拟模块3. 终端模块4.同步信号提取模块5. 20MHz双踪示波器一台4.误码率测试仪(可选)一台5.频率计(选用)一台6.连接线若干三、实验原理、、、、、、、、、四、实验内容及步骤(一)信道模拟1. 按如下系统框图,写出实验方案和步骤,计算8KHz带限信道的无码间干扰的Nyquist速率(最高传码率)及最高频带利用率。
图4-2 信道模拟实验框图1.测试数据:①将信号源输出的NRZ码(未编码)输入无限带宽信道,调节噪声功率大小,观察信道输出信号及其误码率,画出无噪声、有噪声条件下的波形。
(二)差错控制编解码1. 按如下系统框图,写出实验方案和步骤,构建表4-1中所列(7,4)汉明码的监督关系式、求解监督矩阵、生成矩阵,判断纠错能力。
图4-3差错控制编解码实验框图2.测试数据:①将输出的NRZ码(未编码)输入信道模拟模块编码输入端,编码后再输入信道,信道输出信号经过解码后输出到终端模块显示,观察通过编解码后信号的误码率,并与同等噪声功率时未编码信号的误码率进行比较,画出波形。
②信道模拟模块的噪声功率调节电位器固定在噪声功率最小的位置处,用示波器观察信道输出1处的信号,观察编码后的信号是否符合表4-1的规则(注意:为将(7,4)汉明码补足为8位码,我们在每一个(7,4)汉明码前添加了一位零。
因此,1000编码将得到01000111)。
③任意将“误码”拨位开关的右七位中的一位或两位拨为高,观察编码后信号及终端显示的变化,观察纠错能力,并与理论值比较。
(三)位同步提取1. 按如下系统框图,写出实验方案和步骤,根据系统传码率,确定要提取的位同步信号的频率。
实验四数字基带通信系统实验
一、实验目的
1.掌握时分复用数字基带通信系统的基本原理及数字信号传输过程。
2.掌握位同步信号抖动、帧同步信号错位对数字信号传输的影响。
3.掌握位同步信号、帧同步信号在数字分接中的作用。
二、实验内容
1.用数字信源模块、数字终端模块、位同步模块及帧同步模块连成一个理想信道时分复用数字基带通信系统,使系统正常工作。
2.观察位同步信号抖动对数字信号传输的影响。
3.观察帧同步信号错位对数字信号传输的影响。
4.用示波器观察分接后的数据信号、用于数据分接的帧同步信号、位同步信号。
三、基本原理
本实验使用数字信源模块、数字终端模块、位同步模块及帧同步模块。
1. 数字终端模块工作原理
原理框图如图4-1所示。
它输入单极性非归零信号、位同步信号和帧同步信号,把两路数据信号从时分复用信号中分离出来,输出两路串行数据信号和两个8位的并行数据信号。
两个并行信号驱动16个发光二极管,左边8个发光二极管显示第一路数据,右边8个发光二极管显示第二路数据,二极管亮状态表示“1”,熄灭状态表示“0”。
两个串行数据信号码速率为数字源输出信号码速率的1/3。
在数字终端模块中,有以下测试点及输入输出点:
∙ FS-IN 帧同步信号输入点
∙ S-IN 时分复用基带信号输入点
∙ BS-IN 位同步信号输入点
∙ SD 抽样判后的时分复用信号测试点
∙ BD 延迟后的位同步信号测试点
∙ FD 整形后的帧同步信号测试点
∙ D1 分接后的第一路数字信号测试点
∙ B1 第一路位同步信号测试点
∙ F1 第一路帧同步信号测试点
∙ D2 分接后的第二路数字信号测试点
∙ B2 第二路位同步信号测试点
∙ F2 第二路帧同步信号测试点
图4-2为数字终端电路原理图。
图4-1中各单元与图4-2中的元器件对的应关系如下:∙延迟1 U30:单稳态触发器74LS123
∙延迟2 U32:A:D触发器74LS74
∙整形U31:A:单稳态触发器74LS123;
U32:B:D触发器74LS74
∙延迟3 U50、U51、U52:六D触发器74LS174
∙ ÷3 U33:内藏译码器的二进制寄存器4017
∙串/并变换U37、U38:八级移位寄存器4094
∙并/串变换U39、U40:八级移位寄存器4014
∙显示发光二极管
图4-1 数字终端原理方框图
延迟1、延迟2、延迟3、整形及÷3等5个单元可使串/并变换器和并/串变换器的输入信号SD、位同步信号及帧同步信号满足正确的相位关系,如图4-3所示。
D触发器74LS174把FD延迟7、8、15、16个码元周期,得到FD-7、FD-15、FD-8(即F1)和FD-16(即F2)等4个帧同步信号。
在FD-7及BD的作用下,U65(4094)将第一路串行信号变成第一路8位并行信号,在FD-15和BD作用下,U70(4094)将第二路串行信号变成第二路8位并行信号。
在F1及B1的作用下,U66(4014)将第一路并行信号变为串行信号D1,在F2及B2的作用下,U71(4014)将第二路并行信号变为串行信号D2。
B1和B2的频率为位同步信号BS频率的1/3,D1信号、D2信号的码速率为信源输出信号码速率的1/3。
U65、U70输出的并行信号送给显示单元。
根据数字信源和数字终端对应的发光二极管的亮熄状态,可以判断数据传输是否正确。
串/并变换及并/串变换电路都有需要位同步信号和帧同步信号,还要求帧同步信号的宽
度为一个码元周期且其上升沿应与第一路数据的起始时刻对齐,因而送给移位寄存器U67的帧同步信号也必须符合上述要求。
但帧同步模块提供的帧同步信号脉冲宽度大于两个码元的宽度,且帧同步脉冲的上升沿超前于数字信源输出的基带信号第一路数据的起始时刻约半个码元(帧同步脉冲上升沿略迟后于位同步信号的上升沿,而位同步信号上升沿位于位同步器输入信号的码元中间,由帧同步器工作原理可得到上述结论),故不能直接将帧同步器提取的帧同步信号送到移位寄存器U67的输入端。
图4-3 变换后的信号波形
SD FD
FD-7 FD-8 ( F1 ) FD-15 FD-16 ( F2 )
——
B1 B2
BD
终端模块将帧同步器提取的帧同步信号送到单稳U64的输入端,单稳U64设为上升沿触发状态,其输出脉冲宽度略小于一个码元宽度,然后用位同步信号BD 对单稳输出抽样后
4-2 数字终端电原理图
得到FD,可通过电位器R35来改变BD的相位,从而得到两种不同的FD信号FD1、FD2,如图4-3所示。
两种FD的宽度均为一个码元间隔,但FD1脉冲位于信号SD的数据1的第一位,而FD2脉冲位于信号SD的帧同步码的最后一位。
正确工作状态下,BD上升沿应处于终端模块S-IN信号的码元中间,FD应为FD1,所以用FD1能正确分接出两路数据,而FD2比FD1超前一位,用FD2分接出来的数据是错误的(此数据有何规律,请思考)。
应指出的是,当数字终端采用其它电路或分接出来的数据有其它要求时,对位同步信号及帧同步信号的要求将有所不同,但不管采用什么电路,都需要符合某种相位关系的帧同步信号和位同步信号才能正确分接出时分复用的各路信号。
SD
FD1 FD2
图4-4 SD和两种FD波形
2. 时分复用数字基带通信系统
图4-5为时分复用数字基带通信系统原理方框图。
复接器输出时分复用单极性不归零码(NRZ),码型变换器将NRZ码变为适于信道传输的传输码(如HDB3码等),发滤波器主要用来限制基带信号频带,收滤器可以滤除一部分噪声,同时与发滤波器、信道一起构成无码间串扰的基带传输特性。
复接器和分接器都需要位同步信号和帧同步信号。
图4-5 时分复用数字基带通信系统
本实验中复接路数N=2,信道是理想的、即相当于将发滤波器输出信号无失真地传输到收滤波器。
为简化实验设备,收、发滤波器也被省略掉。
本实验的主要目的是掌握位同步信号及帧同步信号在数字基带传输中的作用,故也可省略码型变换和反变换单元。
四、实验步骤
1.熟悉本次实验使用的数字信源、位同步、帧同步、数字终端这四个模块,按照图4-6将这四个模块连在一起,打开电源开关。
图4-6 数字基带系统连接图
2.用示波器CH1观察数字信源NRZ波形,判断信源单元是否工作正常。
3.用示波器CH2观察位同步模块BS-OUT,调节位同步模块上的可变电阻,使位同步信号BS-OUT相对于信源NRZ抖动最小。
4.将数字信源模块的K1置于 1110010,用示波器CH2观察帧同步模块FS-OUT波形及与NRZ相位关系,判断帧同步是否工作正常。
5.当位同步单元、帧同步单元已正确地提取出位同步信号和帧同步信号时,通过发光二极管观察两路8bit数据是否已正确地传输到收终端,若不正确,观察终端模块的SD信号和FD信号是否符合要求,可调节数字终端单元上的电位器R35使FD处于SD数据1的第一位(见图4-4)。
6.用示波器观察分接出来的两路8bit周期信号D1(对应位同步B1)和D2(对应B2)。
7.调节电位器R35,使FD为图4-4中的FD2,观察分接出来的两路信号,总结D1、D2与帧同步信号FD的关系。
8.观察位同步抖动对数据传输的影响。
调节R35,使BD上升沿应处于信源模块NRZ-OUT的码元中间,FD处于SD数据1的第一位,用示波器观察数字终端单元的D1或D2信号,然后缓慢调节位同步单元上的可变电阻(增大位同步抖动范围),观察D1或D2信号波形变化情况和发光二极管的状况(R35在某一范围变化时,D1或D2无误码,R35变化太大时出现误码)。
五、实验报告要求
1.本实验系统中,为什么位同步信号在一定范围内抖动时并不发生误码?位同步信号的这个抖动范围大概为多少?在图4-5所示的实际通信系统中是否也存在此现象?为什么。
2.帧同步信号在对复用数据进行分接时起何作用,用实验结果加以说明。
3.分析数字终端模块中串/并变换和并/串变换电路的工作原理。