2013届中考数学基础题强化复习题7
- 格式:doc
- 大小:271.50 KB
- 文档页数:8
专题02 中考折叠问题的归类解析【专题综述】折叠问题在近年来各地的中考试卷中频频出现,解决这一类问题主要抓住两点:折叠前后重合的角相等,重合的边也相等.【方法解读】一、折叠与平行例1:如图,在四边形ABCD中,∠A=100°,∠C=70°.将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=___.【来源】2013-2014学年江苏省宜兴市和桥学区七年级下学期期中考试数学试卷(带解析)【答案】95°在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.考点:1.平行线的性质;2.三角形内角和定理;3.翻折变换(折叠问题).【解读】根据两直线平行,同位角相等求出∠BMF,∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【举一反三】如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E.(1)求证:EDB EBD∠=∠;(2)判断AF与BD是否平行,并说明理由.【来源】2015中考真题分项汇编第1期专题4 图形的变换【答案】【解析】试题解析:(1)由折叠可知:∠CDB =∠EDB∵四边形ABCD是平行四边形∴DC∥AB∴∠CDB =∠EBD∴∠EDB=∠EBD(2) ∵∠EDB=∠EBD∴DE=BE由折叠可知:DC=DF∵四边形ABCD是平行四边形∴DC=AB∴AE=EF∴∠EAF=∠EFA△BED中, ∠EDB+∠EBD+∠DEB=180°即2∠EDB+∠DEB=180°同理△AEF中,2∠EFA+∠AEF=180°∵∠DEB=∠AEF∴∠EDB= ∠EFA∴AF∥BD考点:折叠变换,平行四边形的性质,等腰三角形的性质与判定,三角形的内角和二、折叠与全等例2:如图,在□ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在点B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G。
2013年中考数学专题复习第七讲:二元一次方程(组)【基础知识回顾】一、 等式的概念及性1、等式:用“=”连接表示 关系的式子叫做等式2、等式的性质:1、性质①等式两边都加(减) 所得结果仍是等式即:若a=b,那么a ±c=2、性质2:等式两边都乘以或除以 (除数不为0)所得结果仍是等式 若:a=b,那么a c= 若a=b (c ≠o )那么a c = 【名师提醒:①用等式性质进行等式变形,必须注意“都”不被漏项 ②等式两边都除以一个数式时必须保证它的值 】二、方程的有关概念:1、含有未知数的 叫做方程2、使方程左右两边相等的 的值,叫做方程的解3、 叫做解方程4、方程两边都是关于未知数的 这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是 的 方程叫做一元一次方程,一元一次方程一般可以化成 的形式2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【名师提醒:1、一元一次方程的解法的多步骤的一句分别是等式的性质和合并同类法则要注意灵活准确运用 2、去分母时应注意不要漏乘项,移项时要注意。
】四、二元一次方程组及解法:二元一次方程的一般形式:ax+by+c=0(a.b.c 是常数,a ≠o,b ≠o)1、 由几个含有相同未知数的 合在一起,叫做二元一次方程组2、 二元一次方程组中两个方程的 叫做二元一次方程组的解3、 解二元一次方程组的基本思路是:4、 二元一次方程组的解法:① ②【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知点和未知点2、设:直接或间接设未知数3、列:根据题意寻找等关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出(单位)【名师提醒:1、列方程(组)解应用题的关键是:2、几个常用的等量关系:①路程= X ②工作效率= 】【重点考点例析】x=a y=b 的形式】考点一:等式性质及一元一次方程的解法例1 (2012•漳州)方程2x-4=0的解是.思路分析:根据一元一次方程的解法,移项,系数化为1即可得解.解:移项得,2x=4,系数化为1得,x=2.故答案为:x=2.点评:本题考查了移项解一元一次方程,是基础题,注意移项要变号.对应训练1.(2012•郴州)一元一次方程3x-6=0的解是.考点二:二元一次方程组的解法(巧解)例2 (2012•厦门)解方程组:34 21x yx y+=⎧⎨-=⎩.思路分析:先用加减消元法求出x的值,再用代入消元法求出y的值即可.解:3421x yx y+=⎧⎨-=⎩①②,①+②得,5x=5,解得x=1;把x=1代入②得,2-y=1,解得y=1,故此方程组的解为:11 xy=⎧⎨=⎩.点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.对应训练2.(2012•南京)解方程组31 328 x yx y+=-⎧⎨-=⎩.考点三:一次方程(组)的应用例3 (2012•温州)楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是()A.2035701225x yx y+=⎧⎨+=⎩B.2070351225x yx y+=⎧⎨+=⎩C.1225703520x yx y+=⎧⎨+=⎩D.1225357020x yx y+=⎧⎨+=⎩330思路分析:(1)首先设掷到A 区和B 区的得分分别为x 、y 分,根据图示可得等量关系:①掷到A 区5个的得分+掷到B 区3个的得分=77分;②掷到A 区3个的得分+掷到B 区5个的得分=75分,根据等量关系列出方程组,解方程组即可得到掷中A 区、B 区一次各得多少分;(2)由图示可得求的是掷到A 区4个的得分+掷到B 区4个的得分,根据(1)中解出的数代入计算即可. 解:(1)设掷到A 区和B 区的得分分别为x 、y 分,依题意得:53773575x y x y +=⎧⎨+=⎩,解得:109x y =⎧⎨=⎩,答:求掷中A 区、B 区一次各得10,9分. (2)由(1)可知:4x+4y=76,答:依此方法计算小明的得分为76分.点评:此题主要考查了二元一次方程组的应用,关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.对应训练3.(2012•宁夏)小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( )A .35120016x y x y +=⎧⎨+=⎩B .35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C .35 1.216x y x y +=⎧⎨+=⎩D .351200606016x y x y ⎧+=⎪⎨⎪+=⎩元,则小华家该月用电量属于第几档?【聚焦中考】1.(2012•滨州)李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程是( )A .14250802900x y x y ⎧+=⎪⎨⎪+=⎩B .158********x y x y +=⎧⎨+=⎩C . 14802502900x y x y ⎧+=⎪⎨⎪+=⎩ D .152********x y x y +=⎧⎨+=⎩ 3.(2012•菏泽)已知是二元一次方程组的解,则2m ﹣n 的算术平方根为( ) A .±2 B . C . 2 D . 44.(2012•临沂)关于x、y的方程组的解是,则|m﹣n|的值是()A.5 B.3 C.2 D.1 5.(2012•聊城)儿童节期间,文具商店搞促销活动,同时购买一个书包和一个文具盒可以打8折优惠,能比标价省13.2元.已知书包标价比文具盒标价3倍少6元,那么书包和文具盒的标价各是多少元?6.(2012•东营)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨•千米),铁路运价为1.2元/(吨•千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?【备考过关】一、选择题1.(2012•漳州)二元一次方程组221x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.11xy=⎧⎨=⎩C.11xy=-⎧⎨=⎩D.2xy=⎧⎨=⎩2.(2012•铜仁地区)铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21-1)=6(x-1) B.5(x+21)=6(x-1)C.5(x+21-1)=6x D.5(x+21)=6x3.(2012•台湾)如图为制作果冻的食谱,傅妈妈想依此食谱内容制作六人份的果冻.若她加入50克砂糖后,不足砂糖可依比例换成糖浆,则她需再加几小匙糖浆?()A.15 B.18 C.21 D.244.(2012•凉山州)雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车和一辆 客车同时从西昌、成都两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x 千米/小时和y 千米/小时,则下列方程组正确的是( )A .702.5 2.5420x y x y +=⎧⎨+=⎩B .702.5 2.5420x y x y -=⎧⎨+=⎩C .702.5 2.5420x y x y +=⎧⎨-=⎩D . 2.5 2.5702.5 2.5420x y x y -=⎧⎨+=⎩ 5.(2012•桂林)二元一次方程组的解是( )A .B .C .D .6.(2012•杭州)已知关于x ,y 的方程组,其中﹣3≤a≤1,给出下列结论: ①是方程组的解;②当a=﹣2时,x ,y 的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a 的解;④若x≤1,则1≤y≤4.其中正确的是( )A .①② B .②③ C .②③④ D .①③④7.(2012•黑龙江)某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( )8.(2012•衡阳)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A .B .C .D .9.(2012•鸡西)为庆祝“六•一”国际儿童节,鸡冠区某小学组织师生共360人参加公园游园活动,有A 、B 两种型号客车可供租用,两种客车载客量分别为45人、30人,要求每辆车必须满载,则师生一次性全部到达公园的租车方案有( )A .3种B . 4种C . 5种D . 6种二、填空题10.(2012•怀化)方程组257213x y x y +=-⎧⎨-=⎩的解是 .11.(2012•连云港)方程组的解为 . 12.(2012•达州)若关于x 、y 的二元一次方程组23122x y k x y +=-⎧⎨+=-⎩的解满足x+y >1,则k 的取值范围是 .13.(2012•湘潭)湖南省2011年赴台旅游人数达7.6万人.我市某九年级一学生家长准备中考后全家3人去台湾旅游,计划花费20000元.设每人向旅行社缴纳x元费用后,共剩15、某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需元.16.(2012•天门)学校举行“大家唱大家跳”文艺汇演,设置了歌唱与舞蹈两类节目,全校师生一共表演了30个节目,其中歌唱类节目比舞蹈类节目的3倍少2个,则全校师生表演的歌唱类节目有个.17.(2012•阜新)如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图2.这个拼成的长方形的长为30,宽为20.则图2中Ⅱ部分的面积是.三、解答题18.(2012•湖州)解方程组281x yx y+=⎧⎨-=⎩.2•苏州)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资23.(2012•广西)有甲、乙两种车辆参加来宾市“桂中水城”建设工程挖渠运土,已知5辆甲种车和4辆乙种车一次可运土共140立方米,3辆甲种车和2辆乙种车一次可运土共76立方米.求甲、乙两种车每辆一次可分别运土多少立方米?23.(2012•吉林)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28cm,演员踩在高跷上时,头顶距离地面的高度为224cm.设演员的身高为xcm,高跷的长度为ycm,求x,y的值.24.(2012•海南)为了进一步推进海南国际旅游岛建设,海口市自2012年4月1日起实施《海口市奖励旅行社开发客源市场暂行办法》,第八条规定:“旅行社引进会议规模达到200人以上,入住本市A类旅游饭店,每次会议奖励2万元;入住本市B类旅游饭店,每次会议奖励1万元.”某旅行社5月份引进符合奖励规定的会议共18次,得到28万元奖金,求此旅行社引进符合奖励规定的入住A类和B类旅游饭店的会议各多少次?25.(2012•江西)小华写信给老家的爷爷,问候“八一”建军节.折叠长方形信纸、装入标准信封时发现:若将信纸如图①连续两次对折后,沿着信封口边线装入时,宽绰有3.8cm;若将信纸如图②三等分折叠后,同样方法装入时,宽绰1.4cm.试求信纸的纸长与信封的口宽.26.(2012•龙岩)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A 型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.。
2013年数学中考复习试卷——基础题(六)(时间:40分钟 满分:79 编辑人:丁济亮)1. 给出四个数0,2,一21,0.3其中最小的是( ) A .0 B .2 C .一21 D .0.3 2.函数12-=x y 中自变量x 的取值范围是 ( ) A.21≥x B.21-≥x C.21>x D.21->x 3.不等式组⎩⎨⎧>+<-31,31x x 的解集表示在数轴上正确的是 ( )4.二次根式2)2(-的值是 ( )A. 2B.-2C.2或-2D.4 5.一元二次方程01562=--x x 的两根之和是( )A. -15B. 15C.-6D. 66.图1是一空心圆柱,其主视图正确的是( )8.从只装有4个白球的袋中随机摸出一球,若摸到红球的概率是1p ,摸到白球的概率是2p ,则( )A.11=p ,12=p B. 01=p ,412=p C.4121==p p D.01=p ,12=p 11.计算sin45°=______12.黄陂区泡桐街“信义兄弟”孙水林、孙东林接力将336000元的薪水抢在2010年的新年前送到了农民工的手中,他们俩是时代的楷模,美德的丰碑.将336000用科学计数法表示应为13.当五个整数从小到大排列后,中位数为4,如果这组数据的唯一众数是6,那么这五个数可能的最大的和是 .17.(6分)解方程:45424--=--x x x x图1 A B C D C A B18.(6分)如图,直线y kx b =+经过A (-1,3)、B (3,-1)两点,求不等式133x kx b -<+≤的解集.19.(6分)如图, 点B 、C 、D 在一条直线上, AB ⊥BC , ED ⊥CD , ∠1+∠2=90°.求证:△ABC ∽△CDE .20.(7分) 有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,第二次从余下..的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b .(1)写出k 为负数的概率;(2)求一次函数y kx b =+的图象经过三、四、一象限的概率.(用树状图或列表法求解)2 1 E D CA (第19题)背面1 正面 -2 321.(7分)如图,△ABC 中, A (1,-1)、B (1,-3)、C (4,-3).⑴111C B A ∆是ABC ∆关于y 轴的对称图形, 则点A 的对称点1A 的坐标是 ; ⑵将ABC ∆绕点(0 , 1)逆时针旋转90°得到222C B A ∆,则B 点的对应点2B 的坐标是 ⑶111C B A ∆与222C B A ∆是否关于某条直线成轴对称?若成轴对称,则对称轴的解析式是23、要修建一个圆形喷水池,在池中心竖直安装一根2.25m 的水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m 处达到最高,高度为3m .(1)建立适当的平面直角坐标系.,使水管顶端的坐标为(0,2.25),水柱的最高点的坐标为(1,3),求出此坐标系中抛物形水柱对应的函数关系式(不要求写取值范围);(2)如图;在水池底面上有一些同心圆轨道,每条轨道上安装排水地漏,相邻轨道之间的宽度为0.3 m ,最内轨道的半径为r m ,其上每0.3 m 的弧长上安装一个地漏,其它轨道上的地漏个数与最内轨道上的个数相同,水柱落地处为最外轨道,其上不安装地漏,求当r 为多少时池中安装的地漏的个数最多?(第21题)25、如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;。
中考数学基础题强化提高测试8总分70分 时间35分钟一、选择题(本题共12个小题,每小题3分,满分36分)每小题给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的. 1.|3|-的相反数是( )A .3B .3-C .13D .13-2.视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E ”之间的变换是( ) A .平移 B .旋转 C .对称 D .位似 3.学完分式运算后,老师出了一道题“化简:23224x x x x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-;小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++.其中正确的是( )A .小明B .小亮C .小芳D .没有正确的 4.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A .2006B .2007C .2008D .2009 5.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为( )A .6B .8C .12D .242左视俯视(第5题标准对数视0. 4.0.1 4.1 0.14.2 (第2题6.如图,数轴上A B ,两点表示的数分别为1-,点B 关于点A 的对称点为C ,则点C所表示的数为( )A.2-- B .1-- C .2-+D .1+7.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( ) A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩D .这六个平均成绩的众数不可能是全年级学生的平均成绩 8.如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为(A .2x <- B .21x -<<- C .20x -<< D .10x -<<9.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A .2种B .3种C .4种D .5种 10.如图,等边A B C △的边长为3,P 为B C 上一点,且1BP =,D 为A C 上一点,若60A P D∠=°,则C D的长为( )C A O B(第6题x(第8题ADC P(第10题60A .32B .23C .12D .3411.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac=+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A .73cmB .74cmC .75cmD .76cm二、填空题(本题共6个小题,每小题4分,满分24分)13.若523m x y +与3n x y 的和是单项式,则m n =. 14.设a b >>,2260a b ab +-=,则a b b a+-的值等于 .15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .①②(第12题x(第11题xxB .C .xA .xD .(第15题16.如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .17.观察下表,回答问题:第 个图形中“△”的个数是“○”的个数的5倍. 18.如图,A B C △与A E F △中,AB AE BC EF B E AB==∠=∠,,,交E F 于D.给出下列结论:①A F C C∠=∠;②D FC F=;③A D E F D B △∽△; ④BFDC AF∠=∠.其中正确的结论是 (填写所有正确结论的序号). 三、解答题(本大题共2个小题,满分10分) 19.(本题满分4分)2)-++AED B F C(第18题20.(本题满分6分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.(第20题参考答案一、选择题(本题共12个小题,每小题3分,满分36分)案二、填空题(本题共6个小题,每小题3分,满分18分)14..17 16.1 17.20 18.①,13.14③,④三、解答题(本题共2个小题,满分10分)19.(本题满分4分)-++2)=-+++-.··············2分(11|1=--+.···············3分1111=························ 4分20.(本题满分8分)解:(1)12 ······················ 1分(2)13························ 2分(3)根据题意,画树状图: ··············· 4分(第20题图)由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44. 所以,P (4的倍数)41164==. ·············· 6分或根据题意,画表格: ················· 4分1 2 3 1第一第二 1 2 3 21 2 3 31 2 34开始由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P(4的倍数)41164==.················6分。
中考数学复习一元一次方程及分式方程【基础演练】1.(2013·滨州)把方程12x=1变形为x=2,其依据是() A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质1解析把方程12x=1变形为x=2,其依据是等式的性质2.答案B2.(2013·泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产了一半后,由于要尽快投入市场,乙车间也加入该电子元件的生产,若乙车间每天生产的电子元件是甲车间的1.3倍,结果用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为()A.2300x+23001.3x=33 B.2300x+2300x+1.3x=33C.2300x+4600x+1.3x=33 D.4600x+2300x+1.3x=33解析设甲车间每天能加工x个,则乙车间每天能加工1.3x个,根据题意可得:2300 x+2300x+1.3x=33.答案B3.(2013·丽水)分式方程1x-2=0的解是________.解析方程两边同乘以x,得1-2x=0,解得x=12.检验:当x=12时,x=12≠0,所以,原方程的解为x =12.答案x =124.(2012·宁波)分式方程x -2x +4=12的解是________.解析方程的两边同乘2(x +4),得2(x -2)=x +4,2x -4=x +4,解得x =8.检验:把x =8代入x +4=12≠0.故原方程的解为x =8.答案x =85.(2013·绍兴)分式方程2xx -1=3的解是________.解析方程两边同乘以x -1,得2x =3(x -1),解得x =3.检验:当x =3时,x -1=3-1=2≠0,所以,原方程的解为x =3.答案x =36.(2013·滨州)解方程:3x +52=2x -13.解去分母得:3(3x +5)=2(2x -1),去括号得:9x +15=4x -2,移项合并得:5x =-17,解得:x =-175.7.(2010·台州)解方程:3x =2x -1.解方程两边同乘以x (x -1),得3(x -1)=2x ,解得x =3.经检验:x =3是原方程的解,所以原方程的解是x =3.8.(2010·义乌市)解分式方程:2x2+1x+2=2x.解方程的两边同乘x+2,得2x2+1=2x2+4x,∴4x=1,∴x=1 4 .经检验,x=14是原方程的解.9.(2012·北京)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.解设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x-4)毫克,由题意得:10002x-4=550x,解得:x=22.经检验:x=22是所列方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.【能力提升】10.(2013·台湾)附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000B.0.6×250x+0.8×125(200-x)=24000C.0.8×125x+0.6×250(200+x)=24000D.0.8×125x+0.6×250(200-x)=24000解析若外套卖出x 件,则衬衫和裤子卖出(200-x )件,由题意得:0.6×250x +0.8×125(200-x )=24000,答案B11.(2012·山西)图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是________cm 3.解析长方体的高为x cm ,然后表示出其宽为30-4x ,根据题意得:30-4x =2x ,解得:x =5.故长方体的宽为10cm ,长为20cm 则长方体的体积为5×10×20=1000cm 3.答案100012.(2012·攀枝花)若分式方程:2+1-kx x -2=12-x有增根,则k =________.解析∵2+1-kx x -2=12-x,去分母得:2(x -2)+1-kx =-1,整理得:(2-k )x =2,当2-k =0时,此方程无解,不符合题意.∵分式方程2+1-kx x -2=12-x 有增根,∴x -2=0,2-x =0,解得:x =2,把x =2代入(2-k )x =2得:k =1.答案113.(2010·嘉兴)解方程:x x +1+x +1x=2.解设x x +1=y ,则原方程化为y +1y =2.整理得,y 2-2y +1=0,解之得,y =1.当y =1时,xx +1=1,此方程无解.故原方程无解.14.(2010·义乌市)我市举办的“义博会”是国内第三大展会,从1995年以来已成功举办了15届.(1)1995年“义博会”成交金额为1.01亿元,1999年“义博会”成交金额为35.2亿元,求1999年的成交金额比1995年的增加了几倍?(结果精确到整数)(2)2000年“义博会”的成交金额与2009年的成交金额的总和是153.99亿元,且2009年的成交金额是2000年的3倍少0.25亿元,问2009年“义博会”的成交金额是否突破了百亿元大关?解(1)(35.2-1.01)÷1.01≈34.答:1999年的成交金额比1995年约增加了34倍;(2)设2000年成交金额为x 亿元,则2009年成交金额为(3x -0.25)亿元.由题意得x +3x -0.25=153.99,解得x =38.56,∴3x -0.25=115.43>100,∴2009年“义博会”的成交金额突破了百亿元大关.。
中考数学基础题加强提升测试 1总分 78分 时间 35分钟一、选择题(此题共 32 分,每题 4 分)下边各题均有四个选项,此中只有一个 是切合题意的...1.7 的相反数是( )A . 1B .7C .1. 7 77D2.改革开放以来,我国国内生产总值由1978 年的 3 645 亿元增加到 2008 年的 300 670 亿元, 主 视左 视将 300 670 用科学记数法表示应为( )A . 0.300 67 106 B. 3.006 7 105俯 视DC . 3.006 7 104 104. 30.0673.若右图是某几何体的三视图,则这个几何体是()A .圆柱B .正方体C .球D .圆锥4.若一个正多边形的一个外角是 40°,则这个正多边形的边数是()A .10B .9C .8D .65.某班共有 41 名同学,此中有 2 名同学习习用左手写字,其他同学都习习用右手写字,老师随机请 1 名同学解答问题,习习用左手写字的同学被选中的概率是( )A .0B .1C .2D .141 416.某班派 9 名同学参加拔河竞赛, 他们的体重分别是 (单位:千克):67,59,61,59,63,57, 70,59,65,这组数据的众数和中位1 / 7数分别是()A.59,63B.59,61C.59,59D.57,61 7.把x32x2 y xy2分解因式,结果正确的选项是()A.x(x y)( x y) B.x( x 22.x(x y)2.x(x y)2 2xy y) C D8.如图,为⊙O 直径AB上一动点,过点C的直线交⊙OCD于 D、E两点,且ACD45°, DF⊥AB 于点AF C O GBF, E G⊥ A于B点G .当点C在 AB上运动时,设A F x, D E,y以下图象中,能表示y与 x 的函数关E 系的图象大概是()y y y yO x O x O x O xA.B.C.D.二、填空题(此题共16 分,每题 4 分)9.不等式3x 2 ≥ 5 的解集是.10.如图,AB为⊙O的直径,弦CD⊥AB,E为BC上C E一点,若 CEA28°,则 ABD°.A OB 11.若把代数式x22x 3 化为 ( x m) 2k 的形式,此中D m, k 为常数,则 m k .2 / 712.如图,正方形纸片ABCD的边长为 1,M,N分别 A E M DA 是 AD、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使点 A 落在 MN 上,落点记为 A ,折痕交B N C AD 于点 E ,若 M,N 分别是 AD,BC 边的中点,则 A N;若 M,N分别是 AD,BC 边上距 DC 近来的n平分点( n ≥ 2 ,且n为整数),则 A N (用含有n式子表示).三、解答题(此题共 30 分,每题 5 分)13.计算:11x6 20090 | 2 5 | 20 .14.解分式方程1.6x 2 x215.已知:如图,在△ABC中,ACB90°,CD ⊥ AB 于点 D ,点 E 在 AC 上, CE BC ,过 E 点作 AC 的垂线,交 CD 的延伸线于E点 F .求证: AB FC . DBA E C 16.已知x25x 14 ,求 ( x 1)(2 x 1) ( x 1)2 1 的值.y6A1BO 1 6 x3 / 717.如图,A、B两点在函数y m ( x 0) 的图象上.x(1)求m的值及直线AB的解读式;(2)假如一个点的横、纵坐标均为整数,那么我们称这个点是格点,请直接写出图中暗影部分(不包含界限)所含格点的个数.18.列方程或方程组解应用题:北京市实行交通管理新举措以来,全市公共交通客运量明显增加.据统计, 2008 年 10 月 11 日至 2009 年 2 月 28 日时期,地面公交日均客运量与轨道交通日均客运量总和为1696 万人次,地面公交日均客运量比轨道交通日均客运量的4倍少 69万人次.在此时期,地面公交和轨道交通日均客运量各为多少万人次?参照答案一、选择题(此题共32 分,每题 4 分)题号12345678答案DB A B C B D A 二、填空题(此题共16 分,每题 4 分)题号9101112答案x≥128332n12n4 / 7(n≥2,且 n 为整数)三、解答题:(此题共 30 分,每题 5 分)13.(本小题满分 5 分)解 : 112009 0 2 5206=612525=5.14.(本小题满分 5 分)解:去分母,得x(x 2) 6(x 2) ( x 2)( x 2) .解得x 1 .经查验, x 1 是原方程的解.∴原方程的解是x 1 .15.(本小题满分 5 分)证明:∵ FE⊥AC于点 E,∠ACB=90°,∴∠ FEC=∠ACB=90°.∴∠ F+∠ECF=90°.又∵ CD⊥AB于点 D,∴∠ A+∠ECF=90°.∴∠ A=∠F .在△ ABC和△ FCE中,A F ,ACB FEC ,BC CE ,5 / 7∴△ ABC≌△ FCE.∴AB=FC .16.(本小题满分 5 分)解: ( x 1)(2x 1) ( x 1)212x2x 2x 1 ( x22x 1) 12x2x 2x 1 x22x 1 1 x25x 1.当 x25x14 时,原式 =(x25x) 1 14 115 .17.(本小题满分 5 分)解:( 1)由图象可知,函数 y m(x 0) 的图象经过x点 A(1,6),可得m 6.设直线 AB的解读式为y kx b .∵A(1,6),B(6,1)两点在函数y kx b 的图象上,∴k b 6, 6k b1.解得k1,b7.∴直线 AB的解读式为y x 7.(2)图中暗影部分(不包含界限)所含格点的个数是3.18.(本小题满分 5 分)解法一:设轨道交通日均客运量为x 万人次,则地面公交日均客运量为(4 x69) 万人次.依题意,得x (4 x 69) 1 696 .6 / 7解得x 353.4x 69 4 353 69 1 343.答:轨道交通日均客运量为353 万人次,地面公交日均客运量为1343 万人次.解法二:设轨道交通日均客运量为x 万人次,则地面公交日均客运量为 y 万人次.x y 1 696,依题意,得y 4x69.x 353,解得y 1 343.答:轨道交通日均客运量为353 万人次,地面公交日均客运量为1343 万人次.7 / 7。
第一单元数与式第1讲实数考纲要求命题趋势1.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数.2.借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.3.理解平方根、算术平方根、立方根的概念,会求一个数的算术平方根、平方根、立方根.4.理解科学记数法、近似数与有效数字的概念,能按要求用四舍五入法求一个数的近似值,能正确识别一个数的有效数字的个数,会用科学记数法表示一个数.5.熟练掌握实数的运算,会用各种方法比较两个实数的大小.实数是中学数学重要的基础知识,中考中多以选择题、填空题和简单的计算题的形式出现,主要考查基本概念、基本技能以及基本的数学思想方法.另外,命题者也会利用分析归纳、总结规律等题型考查考生发现问题、解决问题的能力.知识梳理一、实数的分类实数⎩⎪⎪⎨⎪⎪⎧⎭⎪⎬⎪⎫有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧零负整数分数⎩⎪⎨⎪⎧正分数负分数有限小数或无限循环小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫负无理数无限不循环小数二、实数的有关概念及性质1.数轴(1)规定了______、________、____________的直线叫做数轴;(2)实数与数轴上的点是一一对应的.2.相反数(1)实数a的相反数是____,零的相反数是零;(2)a与b互为相反数⇔a+b=____.3.倒数(1)实数a(a≠0)的倒数是____;(2)a与b互为倒数⇔______.4.绝对值(1)数轴上表示数a的点与原点的______,叫做数a的绝对值,记作|a|.(2)|a |=⎩⎪⎨⎪⎧(a >0), (a =0), (a <0).5.平方根、算术平方根、立方根(1)平方根①定义:如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根(也叫二次方根),数a 的平方根记作______.②一个正数有两个平方根,它们互为________;0的平方根是0;负数没有平方根. (2)算术平方根①如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根,a 的算术平方根记作____.零的算术平方根是零,即0=0.②算术平方根都是非负数,即a ≥0(a ≥0).③(a )2=a (a ≥0),a 2=|a |=⎩⎪⎨⎪⎧a (a ≥0),-a (a <0).(3)立方根①定义:如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 叫做a 的立方根(也叫三次方根),数a 的立方根记作______.②任何数都有唯一一个立方根,一个数的立方根的符号与这个数的符号相同. 6.科学记数法、近似数、有效数字 (1)科学记数法把一个数N 表示成______(1≤a <10,n 是整数)的形式叫做科学记数法.当N ≥1时,n 等于原数N 的整数位数减1;当N <1时,n 是一个负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零).(2)近似数与有效数字一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时从______第1个不为0的数字起,到末位数字止,所有的数字都叫做这个近似数的有效数字.三、非负数的性质 1.常见的三种非负数|a |≥0,a 2≥0,a ≥0(a ≥0). 2.非负数的性质(1)非负数的最小值是零;(2)任意几个非负数的和仍为非负数;(3)几个非负数的和为0,则每个非负数都等于0. 四、实数的运算 1.运算律(1)加法交换律:a +b =______.(2)加法结合律:(a +b )+c =________. (3)乘法交换律:ab =____.(4)乘法结合律:(ab )c =______.(5)乘法分配律:a (b +c )=__________. 2.运算顺序(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从____至____的顺序进行;(3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.3.零指数幂和负整数指数幂(1)零指数幂的意义为:a 0=____(a ≠0);(2)负整数指数幂的意义为:a -p =______(a ≠0,p 为正整数). 五、实数的大小比较 1.实数的大小关系在数轴上表示两个数的点,右边的点表示的数总比左边的点表示的数____.正数大于零,负数小于零,正数大于一切负数;两个负数比较,绝对值大的反而小. 2.作差比较法(1)a -b >0⇔a >b ;(2)a -b =0⇔a =b ;(3)a -b <0⇔a <b . 3.倒数比较法 若1a >1b ,a >0,b >0,则a <b . 4.平方法因为由a >b >0,可得a >b ,所以我们可以把a 与b 的大小问题转化成比较a 和b 的大小问题.(提示:本书[知识梳理]栏目答案见第122~123页) 自主测试1.-2的倒数是( )A .-12B ..12C .-2D .22.-2的绝对值等于( )A .2B .-2C .12D .-123.下列运算正确的是( )A .-|-3|=3B .⎝⎛⎭⎫13-1=-3 C .9=±3 D .3-27=-34.2012年世界水日主题是“水与粮食安全”.若每人每天浪费水0.32 L ,那么100万人每天浪费的水,用科学记数法表示为( )A .3.2×107 LB .3.2×106 LC .3.2×105 LD .3.2×104 L5.已知实数m ,n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0 6.计算:|-5|+16-32.考点一、实数的分类【例1】四个数-5,-0.1,12,3中为无理数的是( )A .-5B .-0.1C .12D . 3解析:因为-5是整数属于有理数,-0.1是有限小数属于有理数,12是分数属于有理数,3开不尽方是无理数,故选D. 答案:D方法总结 一个数是不是无理数,应先计算或者化简再判断.有理数都可以化成分数的形式.常见的无理数有四种形式:(1)含有π的式子;(2)根号内含开方开不尽的式子;(3)无限且不循环的小数;(4)某些三角函数式.触类旁通1 在实数5,37,2,4中,无理数是( )A .5B .37C . 2D . 4考点二、相反数、倒数、绝对值与数轴【例2】(1)-15的倒数是__________;(2)(-3)2的相反数是( )A .6B .-6C .9D .-9(3)实数a ,b 在数轴上的位置如图所示,化简|a +b |+(b -a )2=__________.解析:(1)-15的倒数为1-15=-5;(2)因为(-3)2=9,9的相反数是-9,故选D ;(3)本题考查了绝对值,平方根及数轴的有关知识. 由图可知,a <0,b >0,|a |>|b |,所以a +b <0,b -a >0,原式=-a -b +b -a =-2a . 答案:(1)-5 (2)D (3)-2a方法总结 1.求一个数的相反数,直接在这个数的前面加上负号,有时需要化简得出. 2.解有关绝对值和数轴的问题时常用到字母表示数的思想、分类讨论思想和数形结合思想.3.相反数是它本身的数只有0;绝对值是它本身的数是0和正数(即非负数);倒数是它本身的数是±1.触类旁通2 下列各数中,相反数等于5的数是( ) A .-5 B .5C .-15D .15考点三、平方根、算术平方根与立方根 【例3】(1)(-2)2的算术平方根是( )A .2B .±2C .-2D . 2 (2)实数27的立方根是__________.解析:(1)(-2)2的算术平方根,即(-2)2=|-2|=2; (2)27的立方根是327=3. 答案:(1)A (2)3方法总结 1.对于算术平方根,要注意:(1)一个正数只有一个算术平方根,它是一个正数;(2)0的算术平方根是0;(3)负数没有算术平方根;(4)算术平方根a 具有双重非负性:①被开方数a 是非负数,即a ≥0;②算术平方根a 本身是非负数,即a ≥0.2.(3a )3=a ,3a 3=a .触类旁通3 4的平方根是( ) A .2 B .±2 C .16 D .±16考点四、科学记数法、近似数、有效数字【例4】2012年安徽省有682 000名初中毕业生参加中考,按四舍五入保留两位有效数字,682 000用科学记数法表示为( )A .0.69×106B .6.82×105C .0.68×106D .6.8×105解析:用科学记数法表示的数必须满足a ×10n (1≤|a |<10,n 为整数)的形式;求近似数时注意看清题目要求和单位的换算;查有效数字时,要从左边第1个非零数查起,到精确到的数为止.682 000=6.82×105≈6.8×105.答案:D方法总结 1.用科学记数法表示数,当原数的绝对值大于或等于1时,n 等于原数的整数位数减1;当原数的绝对值小于1时,n 是负整数,它的绝对值等于原数中左起第一位非零数字前零的个数.2.取一个数精确到某一位的近似数时,应对“某一位”后的第一个数进行四舍五入,而之后的数不予考虑.3.用科学记数法表示的近似数,乘号前面的数(即a )的有效数字即为该近似数的有效数字;而这个近似数精确到哪一位,应将用科学记数法表示的数还原成原来的数,再看最后一个有效数字处于哪一个数位上.触类旁通4 某种细胞的直径是5×10-4毫米,这个数是( ) A .0.05毫米 B .0.005毫米 C .0.000 5毫米 D .0.000 05毫米 考点五、非负数性质的应用【例5】若实数x ,y 满足x -2+(3-y )2=0,则代数式xy -x 2的值为__________. 解析:因为x -2≥0,(3-y )2≥0,而x -2+(3-y )2=0,所以x -2=0,3-y =0,解得x =2,y =3,则xy -x 2=2×3-22=2.答案:2方法总结 常见的非负数的形式有三种:|a |,a (a ≥0),a 2,若它们的和为零,则每一个式子都为0.触类旁通5 若|m -3|+(n +2)2=0,则m +2n 的值为( ) A .-4 B .-1 C .0 D .4 考点六、实数的运算【例6】计算:(1)2-1+3cos 30°+|-5|-(π-2 011)0.(2)(-1)2 011-⎝⎛⎭⎫12-3+⎝⎛⎭⎫cos 68°+5π0+|33-8sin 60°|. (1)分析:2-1=12,cos 30°=32,|-5|=5,(π-2 011)0=1.解:原式=12+3×32+5-1=12+32+5-1=6.(2)分析:⎝⎛⎭⎫12-3=(2-1)-3=23=8,⎝⎛⎭⎫cos 68°+5π0=1,sin 60°=32. 解:原式=-1-8+1+⎪⎪⎪⎪33-8×32=-8+ 3.点拨:(1)根据负整数指数幂的意义可把负整数指数幂转化为正整数指数幂运算,即a -p =1ap (a ≠0).(2)a 0=1(a ≠0). 方法总结 提高实数的运算能力,首先要认真审题,理解有关概念;其次要正确、灵活地应用零指数、负整数指数的定义、特殊角的三角函数、绝对值、相反数、倒数等相关知识及实数的六种运算法则,根据运算律及顺序,选择合理、简捷的解题途径.要特别注意把好符号关.考点七、实数的大小比较【例7】比较2.5,-3,7的大小,正确的是( ) A .-3<2.5<7 B .2.5<-3<7 C .-3<7<2.5 D .7<2.5<-3 解析:由负数小于正数可得-3最小,故只要比较2.5和7的大小即可,由2.52<(7)2,得2.5<7,所以-3<2.5<7. 答案:A方法总结 实数的各种比较方法,要明确应用条件及适用范围.如:“差值比较法”用于比较任意两数的大小,而“商值比较法”一般适用于比较符号相同的两个数的大小,还有“平方法”、“倒数法”等.要依据数值特点确定合适的方法.触类旁通6在-6,0,3,8这四个数中,最小的数是( ) A .-6 B .0 C .3 D .81.(2012湖北黄石)-13的倒数是( )A .13B .3C .-3D .-132.(2012江苏南京)下列四个数中,负数是( )A .|-2|B .(-2)2C .- 2D .(-2)23.(2012北京)首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元.将60 110 000 000用科学记数法表示应为( )A .6.011×109B .60.11×109C .6.011×1010D .0.6011×10114.(2012四川南充)计算2-(-3)的结果是( ) A .5 B .1 C .-1 D .-55.(2012四川乐山)计算:⎪⎪⎪⎪-12=__________. 6.(2012重庆)计算:4+(π-2)0-|-5|+(-1)2 012+⎝⎛⎭⎫13-2.1.下列各数中,最小的数是( )A .0B .1C .-1D .- 2 2.若|a |=3,则a 的值是( )A .-3B .3C .13D .±33.下列计算正确的是( )A .(-8)-8=0B .⎝⎛⎭⎫-12×(-2)=1 C .-(-1)0=1 D .|-2|=-24.如图,数轴上A ,B 两点对应的实数分别为1和3,若点A 关于点B 的对称点为C ,则点C 所表示的实数是( )A .23-1B .1+ 3C .2+ 3D .23+15.(1)实数12的倒数是____.(2)写出一个比-4大的负无理数__________.6.若将三个数-3,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________.7.定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则,计算2☆3的值是__________.8.如图,物体从点A 出发,按照A →B (第1步)→C (第2步)→D →A →E →F →G →A →B →…的顺序循环运动,则第2 012步到达点________处.9.计算:|-2|+(-1)2 012-(π-4)0.参考答案导学必备知识 自主测试1.A 1-2=-12.2.A3.D A 中-|-3|=-3,B 中⎝⎛⎭⎫13-1=3,C 中9=3.4.C 0.32×100万=320 000=3.2×105.5.C 因为从数轴可知:m 小于0,n 大于0,则mn <0,m -n <0. 6.解:|-5|+16-32=5+4-9=0. 探究考点方法触类旁通1.C 因为5是整数,37是分数,4=2是整数.触类旁通2.A 因为5的相反数是-5,-15的相反数是15,15的相反数是-15.触类旁通3.B触类旁通4.C 因为0.05=5×10-2,0.005=5×10-3,0.000 5=5×10-4,0.000 05=5×10-5,故选C.触类旁通5.B 因为|m -3|≥0,且(n +2)2≥0,又因为|m -3|+(n +2)2=0,所以m -3=0且n +2=0.所以m =3,n =-2,所以m +2n =3+2×(-2)=-1.触类旁通6.A 因为根据正数大于0,0大于负数,正数大于负数,解答即可. 品鉴经典考题1.C ∵-3×⎝⎛⎭⎫-13=1,∴-13的倒数是-3. 2.C A 中,|-2|=2,是正数,故本选项错误;B 中,(-2)2=4,是正数,故本选项错误;C 中,-2<0,是负数,故本选项正确;D 中,(-2)2=4=2,是正数,故本选项错误.3.C 因为科学记数法的形式为a ×10n ,用科学记数法表示较大的数,其规律为1≤a <10,n 是比原数的整数位数小1的正整数,所以60 110 000 000=6.011×1010.4.A 原式=2+3=5.5.12根据负数的绝对值是它的相反数,得⎪⎪⎪⎪-12=12. 6.解:原式=2+1-5+1+9=8. 研习预测试题1.D 因为正数和0都大于负数,2>1,两个负数比较大小,绝对值大的反而小,所以-2最小.2.D 绝对值为3的数有+3和-3两个,且互为相反数.3.B (-8)-8=-16,⎝⎛⎭⎫-12×(-2)=1,-(-1)0=-1,|-2|=2. 4.A 因为数轴上A ,B 两点对应的实数分别为1和3, 所以OA =1,OB = 3.所以AB =OB -OA =3-1. 由题意可知,BC =AB =3-1.所以OC =OB +BC =3+(3-1)=23-1. 5.(1)2 (2)-4+2(答案不唯一)6.7 因为-3<0,11>3,1<7<3. 7.56 因为2☆3=12+13=36+26=56. 8.A 由题意知,每隔8步物体到达同一点,因为2 012÷8=251余4,所以第2 012步到达A 点.9.解:原式=2+1-1=2.。
中考数学基础题强化提高测试6总分64分 时间35分钟一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.12-的倒数是( ).A.2 B .2- C .12D .12-2.1978年,我国国内生产总值是3 645亿元,2007年升至249 530亿元.将249 530亿元用科学记数表示为( ). A .1324.95310⨯元 B .1224.95310⨯元 C .132.495310⨯元 D .142.495310⨯元 3.图中圆与圆之间不同的位置关系有( ). A .2种 B .3种 C .4种 D .5种4.王老师为了了解本班学生课业负担情况,在班中随机调查了10名学生,他们每人上周平均每天完成家庭作业所用的时间分别是(单位:小时):1.5,2,2,2,2.5,2.5,2.5,2.5,3,3.5.则这10个数据的平均数和众数分别是( ).A .2.4,2.5B .2.4,2C .2.5,2.5D .2.5,2 5.若正比例函数的图象经过点(1-,2),则这个图象必经过点( ). A .(1,2) B .(1-,2-) C .(2,1-) D .(1,2-) 6.如果点(12)P m m -,在第四象限,那么m 的取值范围是( ).(第3题A .102m << B .102m -<< C .0m <D .12m>7.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ). A .1.5 B .2 C .3 D .68.化简2b aa a ab ⎛⎫- ⎪-⎝⎭的结果是( ).A .a b -B .a b +C .1a b- D .1a b+ 9.如图,9030A O B B ∠=∠=°,°,A O B ''△可以看作是由AO B △绕点O 顺时针旋转α 角度得到的.若点A '在A B 上,则旋转角α的大小可以是( ).A .30°B .45°C .60°D .90° 10.根据下表中的二次函数2y ax bx c =++的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点 二、填空题(共6小题,每小题4分,计24分) 11.031)--=__________.120(第7题A OBA 'B '(第9题AB E 1212.如图,AB C D ∥,直线E F 分别交A B C D 、于点E F 、,147∠=°,则2∠的大小是__________.13.若1122()()A x y B x y ,,,是双曲线3y x=上的两点,且120x x >>,则12_______y y {填“>”、“=”、“<”}.14.如图,在梯形A B C D 中,D C AB ∥,D A C B =.若104A B D C ==,,tan 2A =,则这个梯形的面积是__________.15.一家商店将某种商品按成本价提高50%后,标价为450元,又以8折出售,则售出这件商品可获利润__________元. 16.如图,在锐角A B C△中,245AB BA C =∠=°,B AC ∠的平分线交B C于点D M N ,、分别是A D 和A B 上的动点,则B M M N+的最小值是___________ .三、解答题(共2小题,计10分) 17.(本题满分5分)解方程:223124x x x --=+-.ABCD(第14题ABCDNM (第16题18.(本题满分5分)如图,在A B C D中,点E是A D的中点,连接C E并延长,交B A的延长线于点F.求证:FA AB.AB C DEF (第18题参考答案一、选择题(共10小题,每小题3分,计30分)二、填空题(共6小题,每小题4分,计24分)11.2 12.133° 13.< 14.42 15.60 16.4三、解答题(共2小题,计10分) 17.(本题满分5分)解:22(2)(4)3x x ---=. ··············· (2分)45x -=-. 54x =. ············· (4分)经检验,54x =是原方程的解. ············ (5分)18.(本题满分6分)证明: 四边形A B C D 是平行四边形,A B D C A B D C∴=,∥.ADEF,.·(3分)∴∠=∠∠=∠FAE D F EC D又EA ED,=∴△≌△.····(4分)AFE D C E∴=.A F D C∴=.·······(5分)AF AB。
图3中考数学基础题强化提高测试2总分70分 时间35分钟一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3(1)-等于( ) A .-1 B .1 C .-3D .32.在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <0 3.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20 B .15 C .10D .54.下列运算中,正确的是( )A .34=-m mB .()m n m n --=+C .236m m =() D .m m m =÷225.如图2,四个边长为1B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小正方形内,则∠APB 等于( ) A .30° B.45° C .60° D 6.反比例函数1y x=(x >0)的图象如图3增大,y 值( )B A CD图1A 图2A .增大B .减小C .不变D .先减小后增大7.下列事件中,属于不可能事件的是( ) A .某个数的绝对值小于0 B .某个数的相反数等于它本身C .某两个数的和小于0 D于08.图4是某商场一楼与二楼之间的手扶电梯示意图.其 中AB 、CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是( )A B .4 m C . mD .8 m9.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/sD .5 m/s10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( ) A .20 B .22 C .24D .26图5 图44=1+39=3+616=6+10 图7…11.如图6所示的计算程序中,y 与x象应为( )12.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9.从图7中可以发现,任何一个大于1 的“正方形数”都可以看作两个相邻 “三角形数”之和.下列等式中,符 合这一规律的是( ) A .13 = 3+10 B .25 = 9+16 C .36 = 15+21D .49 = 18+31 二、填空题(本大题共6个小题,每小题4分,共24分.把答案写在题中横线上)13.比较大小:-6 -8.(填“<”、“=”或“>”) 14.据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约xA DC B 图6为12 000 000千瓦.12 000 000用科学记数法表示为 .15.在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:则这些体温的中位数是16.若m 、n 互为倒数,则2(1)mn n --17.如图8,等边△ABC 的边长为1 cm ,D AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长 为 cm .18.如图9加入水后,一根露出水面的长度是它的13出水面的长度是它的15.两根铁棒长度之和为此时木桶中水的深度是 cm .三、解答题(本大题共2个小题,共10分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分4分)图9图8已知a = 2,1-=b ,求2221a b a ab--+÷1a 的值.20.(本小题满分6分)图10是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE =1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?O图10参考答案一、选择题二、填空题13.>; 14.1.2 × 107; 15.36.4; 16.1; 17.3; 18.20. 三、解答题 19.解:原式=()()1()a b a b a a a b +-+⋅-=1a b ++. 当a = 2,1-=b 时, 原式 = 2.20.解:(1)∵OE ⊥CD 于点E ,CD =24,∴ED =12CD =12.在Rt△DOE 中,∵sin∠DOE =ED OD=1213,∴OD =13(m ).(2)OE 5.∴将水排干需:5÷0.5=10(小时).。
中考数学基础题强化提高测试7
总分66分 时间35分钟
一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分.) 1.下列运算正确的是( )
A .236
·a a a =
B .1
122-⎛⎫
=- ⎪
⎝⎭
C
4=± D .|6|6-=
2.一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( )
A .1a +
B .21a + C
D
1
3.太阳内部高温核聚变反应释放的辐射能功率为33.8102⨯千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为( )千瓦.(用科学计数法表示,保留2个有效数字) A .141.910⨯ B .142.010⨯ C .157.610⨯ D .151.910⨯
4.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12x x ,,且2
2
1
2x
x +=24
,则k 的值是( )
A .8
B .7-
C .6
D .5
5.某班50名同学分别站在公路的A 、B 两点处,A 、B 两点相距1000米,A 处有30人,B 处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在( ) A .A 点处 B .线段A B 的中点处
A B
C .线段A B 上,距A 点
10003
米处
D .线段A B 上,距A 点400米处 6.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是
( )
A .6
B .7
C .8
D .9
7.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数( )的概率最大. A .3 B .4 C .5 D .6 8.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30B A D ∠=°,在
C 点测
得60B C D
∠=°,又测得50A C =米,则小岛B
到公路l 的距离为( )米. A .25 B
.C
3
D
.25+9.已知圆O 的半径为R ,AB 是圆O 的直径,D
是AB 延长线上一点,DC 是圆O 的切线,C 是切点,连结AC ,若
30C A B ∠=°,则
BD 的长为( )
A .2R B
C .R D
2
R
10.如图,已知R t ABC △
中,9030ABC
BAC AB ∠=∠==°,°,,
将A B C △绕顶点C 顺时针旋转至A B C '''△的位
B
C
A
D
l
D
置,且A C B '、、三点在同一条直线上,则点A 经过的最短路线的长度是( )cm . A .8 B
. C .32π
3
D .8π
3
11
.
如图,
在
R t ABC △中
,
908c
m A
B C A B B
C
∠===
°,,
分别以A C 、为圆心,以
2
A C 的长为半径作圆,将
R t ABC
△
截去两个扇形,则剩余(阴影)部分的面积为(
cm 2. A .2524π
4
- B .
25π4
C .524π
4
-
D
.25
24π
6-
12.在同一平面直角坐标系中,反比例函数8y x
=-与一次函数2
y x =-+交于A B 、两点,O 为坐标原点,则AO B △的面积为( ) A .2 B .6 C .10 D .8
二、填空题(本题共5小题,共20分.只要求填写最后结果,每小题填对得4分.)
13.分解因式:227183x x ++= . 14.方程
3123
x
x =
+的解是 .
15.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方
形,A B C △的三个顶点都在格点上(每个小方格的顶点叫格点).画出A B C △绕点O 逆时针旋转90°后的A B C '''△.
16.如图,正方形A B C D 的边长为10,点E 在CB 的延长线上,10E B =,
点P 在边CD 上运动(C 、D 两点除外),EP 与AB 相交于点F ,若
CP x
=,四边形F B C P 的面积为y ,则y 关于x 的函数关系式
是 .
17.已知边长为a 的正三角形ABC ,两顶点A B 、分别在平面直角坐标
系的x 轴、y 轴的正半轴上滑动,点C 在第一象限,连结OC ,则
OC 的长的最大值是 .
三、解答题(本题共2小题,共10分.解答应写出文字说明、证明过程或推演步骤.) 18.(本小题满分4分)
某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择: 方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.
(1)若需要这种规格的纸箱x 个,请分别写出从纸箱厂购买纸箱的费用1y (元)和蔬菜加工厂自己加工制作纸箱的费用2y (元)
P D C
B
F A E
关于x(个)的函数关系式;
(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
19.(本小题满分6分)
新星公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试或成果认定,三项的得分满分都为100分,三项的分数分别按5∶3∶2的比例记入每人的最后总分,有4位应聘者的得分如下表所示.
(1)写出4位应聘者的总分;
(2)就表中专业知识、英语水平、参加社会实践与社团活动等三项的得分,分别求出三项中4人所得分数的方差;
(3)由(1)和(2),你对应聘者有何建议?
参考答案
一、选择题(本题共12小题,共36分.在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个,均记0分.)
二、填空题(本题共5小题,共20
最后结果,每小题填对得3分.)
13.23(31)x + 14.9x =- 15.见右图 16.15(010)2
y x x =
<< 17.
12
a
+
三、解答题(本题共2小题,共10分.解答应写出文字说明、证明过程或推演步骤.) 18.(本小题满分8分)
解:(1)从纸箱厂定制购买纸箱费用:
14y x =
蔬菜加工厂自己加工纸箱费用:
2 2.416000
y x =+.
(2)21(2.416000)4y y x x -=+-
16000 1.6x =-,
由12y y =,得:16000 1.60x -=,
解得:10000x =. ∴当10000x <时,12y y <
,
选择方案一,从纸箱厂定制购买纸箱所需的费用低. ∴当10000x >时,12y y >
,
选择方案二,蔬菜加工厂自己加工纸箱所需的费用低. ∴当10000x =时,12y y =
,
两种方案都可以,两种方案所需的费用相同. 19.(本小题满分9分)
解:(1)应聘者A 总分为86分;应聘者B 总分为82分;应聘者C 总分为81分;应聘者D 总分为82分.
(2)4位应聘者的专业知识测试的平均分数185X =, 方差为:2
2222
1
1[(8585)(8585)(8085)(9085)]12.5
4
S
=
-+-+-+-=
4位应聘者的英语水平测试的平均分数287.5X =,
方差为:22
2
1 2.54 6.254
S
=
⨯⨯=.
4位应聘者参加社会实践与社团活动等的平均分数为370X =,
方差为:22222
3
1[(9070)(7070)(7070)(5070)]200
4
S
=
-+-+-+-=.
(3)对于应聘者的专业知识、英语水平的差距不大,但参加社会实践与社团活动等方面的差距较大,影响学生的最后成绩,将影响学生就业.学生不仅注重自己的文化知识的学习,更应注重社会实践与社团活动的开展,从而促进学生综合素质的提升.。