GIS超高频局部放电典型图谱
- 格式:docx
- 大小:595.04 KB
- 文档页数:13
电缆线路局部放电缺陷检测典型案例(第一版)案例1:高频局放检测发现10kV电缆终端局部放电(1)案例经过2010年5月6日,利用大尺径钳形高频电流传感器配Techimp公司PDchenk 局放仪,在某分界小室内的10kV电缆终端进行了普测,发现1-1路电缆终端存在局部放电信号,随后对不同检测位置所得结果进行对比分析,初步判断不同位置所得信号属于同一处放电产生的局放信号,判断为电缆终端存在局放信号。
2010年6月1日通过与相关部门协调对其电缆终端进行更换,更换后复测异常局放信号消失。
更换下来的电缆终端经解体分析发现其制作工艺不良,是造成局放的主要原因。
(2)检测分析方法测试系统主机和软件采用局放在线检测系统,采用电磁耦合方法作为大尺径高频传感器的后台。
信号采集单元主要有高频检测通道、同步输入及通信接口。
高频检测通道共有3个,同时接收三相接地线或交叉互联线上采集的局部放电信号,采样频率为100 MHz,带宽为16 kHz~30 MHz,满足局部放电测试要求。
同步输入端口接收从电缆本体上采集的参考相位信号,通过光纤、光电转换器与电脑的RS232串口通信,将主机中的数据传送至电脑中,从而对信号进行分离、分类及放电模式识别。
利用局部放电测试系统,在实验电缆中心导体处注入图1-1的脉冲信号,此传感器可直接套在电缆屏蔽层外提取泄漏出来的电磁波信号,在电缆中心导体处注入脉冲信号,耦合到的信号如图1-2所示。
图1-1 输入5 ns脉冲信号图1-2输入5 ns脉冲信号响应信号将传感器放置不同距离时耦合的脉冲信号如图1-3所示。
距电缆终端不同距离耦合的脉冲信号随其距离的增长而减小(见图1-4),这样就可以判断放电是来自开关柜内还是线路侧。
a)距电缆终端0.1 m b)距电缆终端1.5 m图1-3 局部放电系统的耦合信号图1-4 不同位置耦合的脉冲信号2010年5月6日,在某分界小室内的10kV电缆终端进行了普测,在距离1-1路进线电缆0.5 m和1.0 m处分别发现局放信号,测试结果如图1-5及图1-6所示。
局部放电标准图谱附录一高频局部放电检测标准高频局部放电测试结果图谱特征放电幅值说明缺陷具有典型局部放电的检测图谱且放电幅值较大放电相位图谱具有明显180度特征,且幅值正负分明大于500mV,并参考放电频率。
缺陷应密切监视,观察其发展情况,必要时停电检修。
通常频率越低,缺陷越严重。
异常具有局部放电特征且放电幅值较小放电相位图谱180度分布特征不明显,幅值正负模糊小于500mV大于100mV,并参考放电频率。
异常情况缩短检测周期。
正常无典型放电图谱没有放电特征没有放电波形按正常周期进行附录二高频局部放电检测典型图谱放电类型图谱类型图谱特征电晕放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形内部放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形沿面放电相位图谱分类图谱附录三GIS超高频局部放电检测典型图谱定义:1、单周期检测数据:检测一个50Hz周期局部放电的峰值与相位角。
2、峰值检测数据:检测50Hz周期的相位角与局部放电信号的峰值和放电速率的关系。
3、PRPD检测数据获取局部放电信号峰值时,数据显示不同大小峰值的局部放电信号个数与50Hz周期相位角的关系。
GIS超高频局部放电典型图谱:电晕放电单周期检测图谱峰值检测图谱PRPD检测图谱自由金属颗粒放电单周期检测图谱峰值检测图谱PRPD检测图谱空隙(空穴、气隙)放电单周期检测图谱峰值检测图谱PRPD检测图谱移动电极局部放电(悬浮放电)单周期检测图谱峰值检测图谱PRPD检测图谱GIS超高频典型干扰图谱:雷达噪音单周期检测图谱峰值检测图谱PRPD检测图谱横轴是幅值,纵轴是相位马达噪音单周期检测图谱峰值检测图谱PRPD检测图谱闪光噪音单周期检测图谱峰值检测图谱PRPD检测图谱移动电话噪音单周期检测图谱峰值检测图谱PRPD检测图谱附录四高压电缆局部放电典型图谱及检测标准序号项目周期标准说明高压电缆局部放电电缆本体及接头局部放电试验1)2年2)必要时正常:无典型放电图谱。
附录一高频局部放电检测标准附录二高频局部放电检测典型图谱放电类型图谱类型图谱特征电晕放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形内部放电相位图谱分类图谱单个脉冲时域波形单个脉冲频域波形相位图谱沿面放电分类图谱附录三GIS超高频局部放电检测典型图谱定义:1、单周期检测数据:检测一个50Hz周期局部放电的峰值与相位角。
2、峰值检测数据:检测50Hz周期的相位角与局部放电信号的峰值和放电速率的关系。
3、PRPD检测数据获取局部放电信号峰值时,数据显示不同大小峰值的局部放电信号个数与50Hz周期相位角的关系。
GIS超高频局部放电典型图谱:电晕放电单周期检测图谱峰值检测图谱PRPD检测图谱自由金属颗粒放电单周期检测图谱峰值检测图谱PRPD检测图谱空隙(空穴、气隙)放电单周期检测图谱峰值检测图谱PRPD检测图谱移动电极局部放电(悬浮放电)单周期检测图谱峰值检测图谱PRPD检测图谱GIS超高频典型干扰图谱:雷达噪音单周期检测图谱峰值检测图谱PRPD检测图谱横轴是幅值,纵轴是相位马达噪音单周期检测图谱峰值检测图谱PRPD检测图谱闪光噪音单周期检测图谱峰值检测图谱PRPD检测图谱移动电话噪音单周期检测图谱峰值检测图谱PRPD检测图谱附录四高压电缆局部放电典型图谱及检测标准序号项目周期标准说明高压电缆局部放电电缆本体及接头局部放电试验1)2年2)必要时正常:无典型放电图谱。
正常35kV Q<20pC110kV Q<10pC220kV Q<10pC异常:具有局部放电特征但放电量较小。
异常(I,II)35kV20pC<Q<100pCQ>100pC110kV10pC<Q<40pC40pC<Q<80pC1)曾经发生事故的电缆线路应密切关注,并适当缩短监测周期。
2)与标准图谱(附录B 高频局部放电检测典型图谱)比较,确定局部放电及类型。
3)异常及缺陷应根据处理标准进行处理。
电缆线路局部放电缺陷检测典型案例(第一版)案例1:高频局放检测发现10kV电缆终端局部放电(1)案例经过2010年5月6日,利用大尺径钳形高频电流传感器配Techimp公司PDchenk 局放仪,在某分界小室内的10kV电缆终端进行了普测,发现1-1路电缆终端存在局部放电信号,随后对不同检测位置所得结果进行对比分析,初步判断不同位置所得信号属于同一处放电产生的局放信号,判断为电缆终端存在局放信号。
2010年6月1日通过与相关部门协调对其电缆终端进行更换,更换后复测异常局放信号消失。
更换下来的电缆终端经解体分析发现其制作工艺不良,是造成局放的主要原因。
(2)检测分析方法测试系统主机和软件采用局放在线检测系统,采用电磁耦合方法作为大尺径高频传感器的后台。
信号采集单元主要有高频检测通道、同步输入及通信接口。
高频检测通道共有3个,同时接收三相接地线或交叉互联线上采集的局部放电信号,采样频率为100 MHz,带宽为16 kHz~30 MHz,满足局部放电测试要求。
同步输入端口接收从电缆本体上采集的参考相位信号,通过光纤、光电转换器与电脑的RS232串口通信,将主机中的数据传送至电脑中,从而对信号进行分离、分类及放电模式识别。
利用局部放电测试系统,在实验电缆中心导体处注入图1-1的脉冲信号,此传感器可直接套在电缆屏蔽层外提取泄漏出来的电磁波信号,在电缆中心导体处注入脉冲信号,耦合到的信号如图1-2所示。
图1-1 输入5 ns脉冲信号图1-2输入5 ns脉冲信号响应信号将传感器放置不同距离时耦合的脉冲信号如图1-3所示。
距电缆终端不同距离耦合的脉冲信号随其距离的增长而减小(见图1-4),这样就可以判断放电是来自开关柜内还是线路侧。
a)距电缆终端0.1 m b)距电缆终端1.5 m图1-3 局部放电系统的耦合信号图1-4 不同位置耦合的脉冲信号2010年5月6日,在某分界小室内的10kV电缆终端进行了普测,在距离1-1路进线电缆0.5 m和1.0 m处分别发现局放信号,测试结果如图1-5及图1-6所示。
GIS超高频局部放电典型图谱:电晕放电单周期检测图谱峰值检测图谱PRPD检测图谱金属颗粒放电单周期检测图谱峰值检测图谱PRPD检测图谱空隙放电单周期检测图谱峰值检测图谱PRPD检测图谱移动电极局部放电单周期检测图谱峰值检测图谱PRPD检测图谱GIS超高频典型干扰图谱:雷达噪音单周期检测图谱峰值检测图谱PRPD检测图谱马达噪音单周期检测图谱峰值检测图谱PRPD检测图谱闪光噪音单周期检测图谱峰值检测图谱PRPD检测图谱移动电话噪音单周期检测图谱峰值检测图谱PRPD检测图谱1毛刺放电1. 1 基本特征接地体和带电体部分上的突起(毛刺放电)的特征表现为:•局部场强增加•由于电晕球的保护作用,工频耐压水平不受影响•雷电冲击电压水平会大幅度下降•毛刺如果大于1-2 mm 就认为是有害的导体上的毛刺与壳体上的毛刺放电图谱是一样的,但导体上的毛刺位于气室中心,其产生的压力波会呈扇形在整个气室传递,在壳体外能在较广的范围内接收到信号,而壳体上的毛刺信号较集中,在放电处信号最强。
也可以根据SF6气体对高频信号的衰减特性,调整带通滤波器的上限频率,如果信号明显降低,表明是壳体上的毛刺放电,如果信号变化不大,表明是导体上的毛刺放电。
一般导体上的毛刺放电更具危险性。
1.2 典型图谱毛刺放电的典型图谱如下:毛刺放电故障连续模式下有效值和峰值都会增大,信号稳定,而50HZ相关性明显,100HZ相关性较弱。
在相位模式下,一个周期内会有一簇较集中的信号聚集点。
1.3经验判据根据现有经验,毛刺一般在壳体上,但导体上的毛刺更危险。
如果毛刺放电发生在母线壳体上,信号的峰值Vpeak < 2mV, 认为不是很危险,可继续运行。
如果毛刺放电发生在导体上,信号的峰值Vpeak > 3 mV, 建议停电处理或密切监测。
对于不同的电压等级,如110KV/220KV, 可参照上述标准执行。
对于330KV/500KV/750KV,由于母线筒直径大,信号有衰减,并且设备重要性提高,应更严格要求,建议标准提高一些。
GIS局部放电检测及故障处理气体绝缘金属封闭开关设备(以下简称GIS)是一种集联络、掌握、测量和爱护于一体的高度集成化开关电器。
GIS 具有设备占地面积小、防火性能良好,运行过程中平安性、牢靠性高、日常维护的工作量少等优势。
近几年来,随着社会的进展,对电能质量的要求也越来越高,同时对GIS 设备平安运行的要求也相应提高。
GIS 中绝缘老化的一个重要因素是由于局部放电,而通过对设备进行局部放电检测成为评定绝缘状态的重要手段。
下面就GIS 设备局部放电检测技术及故障进行分析。
1 GIS 局部放电检测的方法概述目前,有关局部放电检测的方法有:电测法、非电测法。
电测法又包括:超声波检测方法、脉冲电流检测方法(ERA)、高频检测方法(HF)、甚高频检测方法(VHF)、超高频检测方法(UHF)。
而非电测法有:光测法、声测法、化学法,在这些非电测法中,声测法由于检测时所用声学传感器不同被分为超声波法及震惊法。
在电测法中,超声波检测方法、脉冲电流检测方法及超高频检测方法是目前最常用的检测方法。
1.1 超声波检测方法超声波检测方法可以在GIS 外壳上直接安装传感器,不必在GIS 内提前装置,同时还可以沿着GIS 移动手持传感器,逐点查找消失故障的部位。
这种检测方法和超高频检测方法比较,对传感器要求明显降低,便利了工作人员进行设备管理维护。
另外,超声波检测法预防外部干扰的力量较强,直接通过触发方式、触发阈值、信号频带的设置进行性能提升。
1.2 脉冲电流检测方法脉冲电流检测方法作为IEC270 中推举的一种传统检测方法,虽然可以对局部的放电水平进行定量性检测,但却没有局部放电现场的抗干扰力量,所以这种检测方法通常适用于局部放电测量的试验室检测中。
1.3 超高频检测方法超高频检测方法中系统频率掌握在为0.3 ~ 3GHz 以内,而通常外部电晕频率小于200MHz,因此应用超高频检测方法对局部放电进行测量,不会受到电晕放电的影响。
局部放电缺陷检测典型案例和图谱库电缆线路局部放电缺陷检测典型案例(第一版)案例1:高频局放检测发现10kV电缆终端局部放电(1)案例经过2010年5月6日,利用大尺径钳形高频电流传感器配Techimp公司PDchenk局放仪,在某分界小室内的10kV电缆终端进行了普测,发现1-1路电缆终端存在局部放电信号,随后对不同检测位置所得结果进行对比分析,初步判断不同位置所得信号属于同一处放电产生的局放信号,判断为电缆终端存在局放信号。
2010年6月1日通过与相关部门协调对其电缆终端进行更换,更换后复测异常局放信号消失。
更换下来的电缆终端经解体分析发现其制作工艺不良,是造成局放的主要原因。
(2)检测分析方法测试系统主机和软件采用局放在线检测系统,采用电磁耦合方法作为大尺径高频传感器的后台。
信号采集单元主要有高频检测通道、同步输入及通信接口。
高频检测通道共有3个,同时接收三相接地线或交叉互联线上采集的局部放电信号,采样频率为100 MHz,带宽为16 kHz~30 MHz,满足局部放电测试要求。
同步输入端口接收从电缆本体上采集的参考相位信号,通过光纤、光电转换器与电脑的RS232串口通信,将主机中的数据传送至电脑中,从而对信号进行分离、分类及放电模式识别。
利用局部放电测试系统,在实验电缆中心导体处注入图1-1的脉冲信号,此传感器可直接套在电缆屏蔽层外提取泄漏出来的电磁波信号,在电缆中心导体处注入脉冲信号,耦合到的信号如图1-2所示。
图1-1 输入5 ns脉冲信号图1-2输入5 ns脉冲信号响应信号将传感器放置不同距离时耦合的脉冲信号如图1-3所示。
距电缆终端不同距离耦合的脉冲信号随其距离的增长而减小(见图1-4),这样就可以判断放电是来自开关柜内还是线路侧。
a)距电缆终端0.1 m b)距电缆终端1.5 m图1-3 局部放电系统的耦合信号图1-4 不同位置耦合的脉冲信号2010年5月6日,在某分界小室内的10kV电缆终端进行了普测,在距离-1路进线电缆0.5 m和1.0 m处分别发现局放信号,测试结果如图1-5及图1-61所示。
局部放电是指绝缘结构中由于电场分布不均匀、局部场强过高而导致的绝缘介质中局部范围内的放电或击穿现象,是造成绝缘劣化的主要原因,也是劣化的重要征兆和表现形式,与绝缘材料的劣化和击穿密切相关。
因此,对局部放电的有效检测对电力设备的安全稳定运行具有重要意义。
局部放电的检测是以局部放电所产生的各种现象为依据,通过能表述该现象的物理量来表征局部放电的状态及特性。
由于局部放电的过程中会产生电脉冲、电磁辐射、超声波、光以及一些化学生成物,并引起局部过热,相应地出现了脉冲电流法、超高频(UHF)法、超声波法、光测法、化学检测法、红外检测法等多种检测方法。
传统的局部放电检测方法,其测量信号的响应频率一般不超过 1 MHz,易受外界干扰的影响,很难用于电力设备的现场检测。
同传统的检测方法相比,超高频检测技术具有检测频率高、抗干扰性强和灵敏度高等优点,更适合局部放电在线监测,它通过接收电力变压器局部放电产生的超高频电磁波,实现局部放电的检测。
局部放电测量还有助于发现以SF6气体作为绝缘介质的气体绝缘金属封闭开关设备(以下简称GIS,包括HGIS和罐式断路器等)内部的多种绝缘缺陷,是诊断GIS健康状态的重要手段。
在GIS制造、安装、运行和检修的各个环节,凡是具备条件的,都应该进行局部放电检测。
检测原理电气设备在使用过程中,由于某些原因逐步产生缺陷,在局部出现的微小放电的物理状况。
检测局部放电是诊断电力设备绝缘状态的重要办法。
电力变压器内的油纸绝缘,由于自身老化或生产工艺,会导致绝缘缺陷。
绝缘缺陷的存在会造成电场不均匀而产生局部放电,使绝缘介质逐步受到侵蚀和损伤,最终导致变压器出现绝缘性故障,造成巨大的经济损失以及人身伤害。
所以局部放电的检测对电力变压器有着十分重要的意义。
变压器内部的典型局部放电形式有四种,他们分别是油中气隙放电、油纸隔板结构放电、悬浮电极放电和针板电极放电这四种。
我们利用超高频法检测变压器内部的局部放电。
1毛刺放电
1. 1 基本特征
接地体和带电体部分上的突起(毛刺放电)的特征表现为:
•局部场强增加
•由于电晕球的保护作用,工频耐压水平不受影响
•雷电冲击电压水平会大幅度下降
•毛刺如果大于 1-2 mm 就认为是有害的
导体上的毛刺与壳体上的毛刺放电图谱是一样的,但导体上的毛刺位于气室中心,其产生的压力波会呈扇形在整个气室传递,在壳体外能在较广的范围内接收到信号,而壳体上的毛刺信号较集中,在放电处信号最强。
也可以根据SF6气体对高频信号的衰减特性,调整带通滤波器的上限频率,如果信号明显降低,表明是壳体上的毛刺放电,如果信号变化不大,表明是导体上的毛刺放电。
一般导体上的毛刺放电更具危险性。
1.2 典型图谱
毛刺放电的典型图谱如下:
毛刺放电故障连续模式下有效值和峰值都会增大,信号稳定,而50HZ相关性明显,100HZ 相关性较弱。
在相位模式下,一个周期内会有一簇较集中的信号聚集点。
1.3经验判据
根据现有经验,毛刺一般在壳体上,但导体上的毛刺更危险。
如果毛刺放电发生在母线壳体上,信号的峰值Vpeak < 2mV, 认为不是很危险,可继续运行。
如果毛刺放电发生在导体上,信号的峰值Vpeak > 3 mV, 建议停电处理或密切监测。
对于不同的电压等级,如110KV/220KV, 可参照上述标准执行。
对于330KV/500KV/750KV,由于母线筒直径大,信号有衰减,并且设备重要性提高,应更严格要求,建议标准提高一些。
其它气室,如开关气室,由于内部结构更复杂,绝缘间距相对短,应更严格要求,建议标准提高一些。
在耐压过程中发现毛刺放电现象,即使低于标准值,也应进行处理,使缺陷消灭在初始阶段。
注意:只要信号高于背景值,都是有害的,应根据工况酌情处理。
2 自由颗粒
2.1 基本特征
自由颗粒,其表现特征为:
•雷电冲击电压影响很小
•工频耐压会有很大的降低
•超声传感器接收到典型的机械撞击信号
•飞入高场强区非常危险
•信号表征不重复,随机性强
2.2 典型图谱
颗粒故障的连续模式图谱中,有效值和峰值会很大,往往达几百上千毫伏,其信号不稳定,表现为周期性的波动,而100HZ和50HZ相关性没有。
对信号进行危险性评估需要进入脉冲模式观察颗粒的幅值和飞行时间,通过上面的信息判断颗粒的危险性。
2.3经验判据
自由颗粒的危险性可以根据AIA内的脉冲模式图分析,可参照下图来进行评估阴影区为安全区域,颗粒的幅值Vpeak < 500m V且飞行时间 T<50ms;或50ms < T <100ms,
且峰值Vpeak<150mv 可认为是安全的。
对于新投运的GIS和大修后的GIS建议Vpeak > 100m V即应处理。
注意,只要GIS内部存在颗粒,就是有害的。
因为它的随机运动,信号可能会增大,也有可能会消失,颗粒掉进壳体陷阱中不再运动,可等同于毛刺。
在新GIS耐压试验过程中,建议发现有颗粒,即应进行擦拭。
3 悬浮屏蔽(电位悬浮)
3.1 基本特征
松动或接触不良会引起电位悬浮,有时电场屏蔽松动并开始振动,也可能是电接触松动而变为电位悬浮。
一块大的悬浮金属体将可能被充电, 并当物体与基点之间的电压超出耐受电压时就会发生大规模放电/电弧。
这类放电一般发生在电压上升沿,并且产生一大的连续的100Hz为主的包络线,并且有低的波峰因数。
其特征为:
•工频耐压水平降低
•信号稳定,重复性强
• 100hz的相关性强烈
3.2 典型图谱
电位悬浮的典型图谱如下:
电位悬浮故障连续模式中有效值和峰值都会增大,信号稳定,而100HZ相关性明显,50HZ 相关性较弱。
在相位模式下,一个周期内会有两簇较集中的信号聚集点。
3.3经验判据
经验表明,电位悬浮一般发生在开关气室的屏蔽松动,PT/CT气室绝缘支撑松动或偏离,母线气室绝缘支撑松动或偏离,气室连接部位接插件偏离或螺母松动等。
对于110KVGIS,如果Vf2/Vf1>>1, Vpeak>30mV ,应停电处理或密切监测。
如果2>Vf2/Vf1>1,Vpeak>100mV就应停电处理或密切监测。
对于220KV及以上电压等级的GIS,应更严格执行。
注意,GIS内部只要形成了电位悬浮,就是危险的,应加强监测,有条件就应及时处理。
对于铁壳的PT,由于磁致伸缩引起的磁噪声,可能也会产生类似电位悬浮的图谱,但一般A、B、C、三相都会有这种类似的图谱,可以加以区分。
4 绝缘子上的颗粒
移动到绝缘子上的颗粒有许多种行为方式,它可能在绝缘子四周移动,并可能放电、
充电等,这特别与水平绝缘子有关系。
它也可能固定到绝缘子上,并向绝缘子表面放电,绝缘子表面不是自热绝缘材料,也可能损害表面,从而最终导致击穿。
目前,有关绝缘子表面上的颗粒发出的超声信号知识有限,调查也表明这些放电没有确定的超声信号。
一些初步研究表明,来自于绝缘子上大颗粒的信号可以被灵敏的传感器探测出来。
基本特征:
•信号不稳定,但不像自由颗粒那样变化大,有一定的稳定值
•表现出50HZ的相关性较强,但一般100HZ 的成分也有
•在紧邻盆子附近信号强,距离远后则很弱
目前还很难给此类缺陷制定相关危险性判据,但如果发现,就是非常有害的,应及时处理。
如果在GIS交接耐压试验中,发现此问题,建议擦拭。
5 机械振动
有些缺陷形成了机械振动,但没形成悬浮电位,应加以区分。
基本特征:
•信号不稳定
•相位图呈现多条竖线并在零点(180度)左右两侧均匀分布。
典型图谱如下。