计量经济学-线性回归分析
- 格式:doc
- 大小:71.51 KB
- 文档页数:6
计量经济学试题线性回归分析与计量经济学试题线性回归分析与应用一、简介线性回归分析是计量经济学中常用的统计方法之一,用于探究因变量和一个或多个自变量之间的关系。
本文将通过解答计量经济学试题来讨论线性回归分析的理论和应用。
二、理论基础1. 线性回归模型线性回归模型可表示为Y = α + βX + ε,其中Y是因变量,X是自变量,α和β是待估参数,ε是误差项。
线性回归模型的核心在于确定待估参数的估计值。
2. 估计参数通常使用最小二乘法估计回归模型中的参数。
最小二乘法的原理是最小化残差平方和,即使得观测值与模型估计值之间的差异最小。
三、实例分析假设一个研究者对某城市的住房价格进行研究,选取了以下两个自变量:房屋面积(X1)和楼层高度(X2)。
通过收集一定数量的样本数据,可以进行线性回归分析来探究自变量对住房价格的影响。
1. 数据收集首先,该研究者需要收集一定数量的样本数据,包括房屋面积、楼层高度和住房价格。
这些数据将用于构建线性回归模型。
2. 模型建立在收集到足够的样本数据后,可以通过最小二乘法估计线性回归模型中的参数。
假设模型为Y = α + β1X1 + β2X2 + ε,其中Y表示住房价格,X1表示房屋面积,X2表示楼层高度。
3. 参数估计利用最小二乘法估计模型中的参数α、β1和β2。
通过计算残差平方和最小化的方法,可以得到参数的估计值,并进一步进行假设检验和推断。
4. 模型评估在得到参数的估计值后,需要对模型进行评估。
常用的评估指标包括决定系数(R^2)、调整后的决定系数(adjusted R^2)、F统计量、t统计量等。
5. 假设检验通过进行显著性检验,判断自变量对因变量的影响是否显著。
常见的假设检验包括零假设(自变量对因变量无显著影响)和备择假设(自变量对因变量有显著影响)。
6. 拟合优度拟合优度是评价模型拟合程度的指标,通常用R方来表示。
R方越接近1,说明模型对样本数据的拟合程度越好。
四、应用案例1. 经济增长与教育投入关系分析通过线性回归分析,可以探究教育投入对于经济增长的影响。
选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。
由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。
所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数”一,数理经济学方程Y = C(1) + C(2)*XY i=β0+β2X2+β3X3+β4X4二,计量经济学方程设定线性回归模型为:Y i=β0+β2X2+β3X3+β4X4+μ三,数据收集从《国家统计局》获取以下数据:年份财政收入(亿元)Y 国内生产总值(亿元)X2财政支出(亿元)X3商品零售价格指数(%)X41978 519.28 3624.1 1122.09 100.7 1979 537.82 4038.2 1281.79 102 1980 571.7 4517.8 1228.83 106 1981 629.89 4862.4 1138.41 102.4 1982 700.02 5294.7 1229.98 101.9 1983 775.59 5934.5 1409.52 101.5 1984 947.35 7171 1701.02 102.8 1985 2040.79 8964.4 2004.25 108.8 1986 2090.73 10202.2 2204.91 106 1987 2140.36 11962.5 2262.18 107.3 1988 2390.47 14928.3 2491.21 118.5 1989 2727.4 16909.2 2823.78 117.81990 2821.86 18547.9 3083.59 102.1 1991 2990.17 21617.8 3386.62 102.9 1992 3296.91 26638.1 3742.2 105.4 1993 4255.3 34636.4 4642.3 113.2 1994 5126.88 46759.4 5792.62 121.7 1995 6038.04 58478.1 6823.72 114.8 1996 6909.82 67884.6 7937.55 106.1 1997 8234.04 74462.6 9233.56 100.8 1998 9262.8 78345.2 10798.18 97.4 1999 10682.58 82067.5 13187.67 97 2000 12581.51 89468.1 15886.5 98.5 2001 15301.38 97314.8 18902.58 99.2 2002 17636.45 104790.6 22053.15 98.7四,参数估计利用eviews软件可以得到Y关于X2的散点图:可以看出Y和X2成线性相关关系Y关于X3的散点图:可以看出Y和X3成线性相关关系Y关于X1的散点图:Dependent Variable: YMethod: Least SquaresDate: 01/09/10 Time: 13:16Sample: 1978 2002Included observations: 25Variable Coefficient Std. Error t-Statistic Prob.C -2582.755 940.6119 -2.745825 0.0121X2 0.022067 0.005577 3.956633 0.0007X3 0.702104 0.033236 21.12474 0.0000X4 23.98506 8.738296 2.744821 0.0121R-squared 0.997430 Mean dependent var 4848.366Adjusted R-squared 0.997063 S.D. dependent var 4870.971S.E. of regression 263.9591 Akaike info criterion 14.13511Sum squared resid 1463163. Schwarz criterion 14.33013Log likelihood -172.6889 F-statistic 2717.254Durbin-Watson stat 0.948521 Prob(F-statistic) 0.000000模型估计的结果为:Y i=-2582.755+0.022067X2+0.702104X3+23.98506X4(940.6119) (0.0056) (0.0332) (8.7383)t={-2.7458} {3.9567} {21.1247} {2.7449}R2=0.997 R2=0.997 F=2717.254 df=21五,相关检验1.经济意义检验模型估计结果说明,在假定其他变量不变的情况下,当年GDP 每增长1亿元,税收收入就会增长0.02207亿元;在假定其他变量不变的情况下,当年财政支出每增长1亿元,税收收入就会增长0.7021亿元;在假定其他变量不变的情况下,当零售商品物价指数上涨一个百分点,税收收入就会增长23.985亿元。
计量经济学基础线性回归与OLS估计线性回归是计量经济学中重要的经济分析工具之一,它对观测数据的统计关系进行建模。
OLS(Ordinary Least Squares)估计是一种常见的线性回归参数估计方法,它通过最小化观测数据的残差平方和来获得参数的估计值。
一、线性回归模型线性回归模型基于以下假设:存在一个线性关系,将自变量X的线性组合与因变量Y联系起来。
该模型可以表示为:Y = β0 + β1X1 + β2X2 + … + βkXk + ε其中,Y是因变量,X1、X2、…、Xk是自变量,β0、β1、β2、…、βk是待估计的参数,ε是误差项。
二、最小二乘法OLS估计根据最小二乘法的原理,通过最小化残差平方和来获得参数的估计值。
残差定义为观测值与模型估计值之间的差异,残差平方和则是所有残差平方的总和。
最小二乘估计的目标是找到最优的参数估计值,使得残差平方和最小。
为了实现这一目标,我们需要计算出各个参数的最优估计值。
具体计算方法如下:1. 计算回归系数的估计值回归系数的估计值可以通过以下公式计算:β̂j = Σ(xi - x)(yi - ȳ) / Σ(xi - x)²其中,β̂j是第j个回归系数的估计值,xi是第i个自变量的观测值,x是自变量的均值,yi是因变量的观测值,ȳ是因变量的均值。
2. 计算截距项的估计值截距项的估计值可以通过以下公式计算:β̂0 = ȳ - β̂1x1 - β̂2x2 - … - β̂k x k其中,β̂0是截距项的估计值。
三、OLS估计的性质OLS估计具有以下几个重要性质:1. 无偏性在满足线性回归模型的假设下,OLS估计是无偏的,即估计值的期望等于真实参数值。
2. 有效性在满足线性回归模型的假设下,OLS估计是最佳线性无偏估计,其方差最小。
3. 一致性当样本容量趋向于无穷大时,OLS估计是一致的,即估计值趋近于真实参数值。
四、OLS估计的假设OLS估计依赖于一些重要的假设:1. 线性关系假设线性回归模型假设因变量与自变量之间存在线性关系。
时间地点实验题目简单线性回归模型分析一、实验目的与要求:目的:影响财政收入的因素可能有很多,比如国内生产总值,经济增长,零售物价指数,居民收入,消费等。
为研究国内生产总值对财政收入是否有影响,二者有何关系。
要求:为研究国内生产总值变动与财政收入关系,需要做具体分析。
二、实验内容根据1978-1997年中国国内生产总值X和财政收入Y数据,运用EV软件,做简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用,得出回归结果。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用。
(一)模型设定为研究中国国内生产总值对财政收入是否有影响,根据1978-1997年中国国内生产总值X 和财政收入Y,如图1:1978-1997年中国国内生产总值和财政收入(单位:亿元)根据以上数据,作财政收入Y 和国内生产总值X 的散点图,如图2:从散点图可以看出,财政收入Y 和国内生产总值X 大体呈现为线性关系,所以建立的计量经济模型为以下线性模型:01i i i Y X u ββ=++(二)估计参数1、双击“Eviews ”,进入主页。
输入数据:点击主菜单中的File/Open /EV Workfile —Excel —GDP.xls;2、在EV 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation Specification ”对话框,选择OLS 估计,输入“y c x ”,点击“OK ”。
即出现回归结果图3:图3. 回归结果Dependent Variable: Y Method: Least Squares Date: 10/10/10 Time: 02:02 Sample: 1978 1997 Included observations: 20Variable Coefficient Std. Error t-Statistic Prob. C 857.8375 67.12578 12.77955 0.0000 X0.1000360.00217246.049100.0000R-squared 0.991583 Mean dependent var 3081.158 Adjusted R-squared 0.991115 S.D. dependent var 2212.591 S.E. of regression 208.5553 Akaike info criterion 13.61293 Sum squared resid 782915.7 Schwarz criterion 13.71250 Log likelihood -134.1293 F-statistic 2120.520 Durbin-Watson stat0.864032 Prob(F-statistic)0.000000参数估计结果为:i Y = 857.8375 + 0.100036i X(67.12578) (0.002172)t =(12.77955) (46.04910)2r =0.991583 F=2120.520 S.E.=208.5553 DW=0.8640323、在“Equation ”框中,点击“Resids ”,出现回归结果的图形(图4):剩余值(Residual )、实际值(Actual )、拟合值(Fitted ).(三)模型检验1、 经济意义检验回归模型为:Y = 857.8375 + 0.100036*X (其中Y 为财政收入,i X 为国内生产总值;)所估计的参数2ˆ =0.100036,说明国内生产总值每增加1亿元,财政收入平均增加0.100036亿元。
计量经济学实验报告回归分析计量经济学实验报告:回归分析一、实验目的本实验旨在通过运用计量经济学方法,对收集到的数据进行分析,研究自变量与因变量之间的关系,并估计回归模型中的参数。
通过回归分析,我们可以深入了解变量之间的关系,为预测和决策提供依据。
二、实验原理回归分析是一种常用的统计方法,用于研究自变量与因变量之间的线性或非线性关系。
在回归分析中,我们通过最小二乘法等估计方法,得到回归模型中未知参数的估计值。
根据估计的参数,我们可以对因变量进行预测,并分析自变量对因变量的影响程度。
三、实验步骤1.数据收集:收集包含自变量与因变量的数据集。
数据可以来自数据库、调查、实验等。
2.数据预处理:对收集到的数据进行清洗、整理和格式化,以确保数据的质量和适用性。
3.模型选择:根据问题的特点和数据的特性,选择合适的回归模型。
常见的回归模型包括线性回归模型、多元回归模型、岭回归模型等。
4.模型估计:运用最小二乘法等估计方法,对选择的回归模型进行估计,得到模型中未知参数的估计值。
5.模型检验:对估计后的模型进行检验,以确保模型的适用性和可靠性。
常见的检验方法包括残差分析、拟合优度检验等。
6.预测与分析:根据估计的模型参数,对因变量进行预测,并分析自变量对因变量的影响程度。
四、实验结果与分析1.数据收集与预处理本次实验选取了某网站的销售数据作为样本,数据包含了商品价格、销量、评价等指标。
在数据预处理阶段,我们剔除了缺失值和异常值,以确保数据的完整性和准确性。
2.模型选择与估计考虑到商品价格和销量之间的关系可能存在非线性关系,我们选择了多元回归模型进行建模。
采用最小二乘法进行模型估计,得到的估计结果如下:销量 = 100000 + 10000 * 价格 + 5000 * 评价 + 随机扰动项3.模型检验对估计后的模型进行残差分析,发现残差分布较为均匀,且均在合理范围内。
同时,拟合优度检验也表明模型对数据的拟合程度较高。
计量经济学实验简单线性回归模型引言计量经济学是经济学中的一个分支,致力于通过经验分析和实证方法来研究经济问题。
实验是计量经济学中的重要方法之一,能够帮助我们理解和解释经济现象。
简单线性回归模型是实验中常用的工具之一,它能够通过建立两个变量之间的数学关系,预测一个变量对另一个变量的影响。
本文将介绍计量经济学实验中的简单线性回归模型及其应用。
简单线性回归模型模型定义简单线性回归模型是一种用于描述自变量(X)与因变量(Y)之间关系的线性模型。
其数学表达式为:Y = β0 + β1X + ε其中,Y表示因变量,X表示自变量,β0和β1为未知参数,ε表示误差项。
参数估计在实际应用中,我们需要通过数据来估计模型中的参数。
最常用的估计方法是最小二乘法(OLS)。
最小二乘法的目标是通过最小化观测值与拟合值之间的平方差来估计参数。
具体而言,我们需要求解以下两个方程来得到参数的估计值:∂(Y - β0 - β1X)^2 / ∂β0 = 0∂(Y - β0 - β1X)^2 / ∂β1 = 0解释变量与被解释变量在简单线性回归模型中,解释变量(X)用来解释或预测被解释变量(Y)。
例如,我们可以使用房屋的面积(X)来预测房屋的价格(Y)。
在实验中,我们可以根据收集到的数据来建立回归模型,并利用该模型进行预测和分析。
应用实例数据收集为了说明简单线性回归模型的应用,我们假设收集了一些关于学生学习时间与考试成绩的数据。
下面是收集到的数据:学习时间(小时)考试成绩(百分制)2 723 784 805 856 88模型建立根据收集到的数据,我们可以建立简单线性回归模型来分析学生学习时间与考试成绩之间的关系。
首先,我们需要确定自变量和因变量的符号。
在这个例子中,我们可以将学习时间作为自变量(X),考试成绩作为因变量(Y)。
然后,我们使用最小二乘法来估计模型中的参数。
通过计算,可以得到如下参数估计值:β0 = 69.85β1 = 2.95最终的回归方程为:Y = 69.85 + 2.95X预测与分析通过建立的回归模型,我们可以进行预测和分析。