数据结构 第5章广义表
- 格式:ppt
- 大小:253.00 KB
- 文档页数:33
第5章递归与广义表一、复习要点本章主要讨论递归过程和广义表。
一个递归的定义可以用递归的过程计算,一个递归的数据结构可以用递归的过程实现它的各种操作,一个递归问题也可以用递归的过程求解。
因此,递归算法的设计是必须掌握的基本功。
递归算法的一般形式:void p ( 参数表) {if( 递归结束条件)可直接求解步骤;基本项else p( 较小的参数);归纳项}在设计递归算法时,可以先考虑在什么条件下可以直接求解。
如果可以直接求解,考虑求解的步骤,设计基本项;如果不能直接求解,考虑是否可以把问题规模缩小求解,设计归纳项,从而给出递归求解的算法。
必须通过多个递归过程的事例,理解递归。
但需要说明的是,递归过程在时间方面是低效的。
广义表是一种表,它的特点是允许表中套表。
因此,它不一定是线性结构。
它可以是复杂的非线性结构,甚至允许递归。
可以用多重链表定义广义表。
在讨论广义表时,特别注意递归在广义表操作实现中的应用。
本章复习的要点:1、基本知识点要求理解递归的概念:什么是递归?递归的定义、递归的数据结构、递归问题以及递归问题的递归求解方法。
理解递归过程的机制与利用递归工作栈实现递归的方法。
通过迷宫问题,理解递归解法,从而掌握利用栈如何实现递归问题的非递归解法。
在广义表方面,要求理解广义表的概念,广义表的几个性质,用图表示广义表的方法,广义表操作的使用,广义表存储结构的实现,广义表的访问算法,以及广义表的递归算法。
2、算法设计求解汉诺塔问题,掌握分治法的解题思路。
求解迷宫问题、八皇后问题,掌握回溯法的解题思路。
对比单链表的递归解法和非递归解法,掌握单向递归问题的迭代解法。
计算广义表结点个数,广义表深度,广义表长度的递归算法。
输出广义表各个原子所在深度的非递归算法。
判断两个广义表相等的递归算法。
广义表的按深度方向遍历和按层次(广度)方向遍历的递归算法。
使用栈的广义表的按深度方向遍历的非递归算法。
递归的广义表的删除算法二、难点与重点1、递归:递归的定义、递归的数据结构、递归问题用递归过程求解链表是递归的数据结构,可用递归过程求解有关链表的问题2、递归实现时栈的应用递归的分层(树形)表示:递归树递归深度(递归树的深度)与递归工作栈的关系单向递归与尾递归的迭代实现3、广义表:广义表定义、长度、深度、表头、表尾用图形表示广义表的存储结构广义表的递归算法,包括复制、求深度、求长度、删除等算法三、教材中习题的解析5-1 已知A[n]为整数数组,试写出实现下列运算的递归算法:(1) 求数组A中的最大整数。
第5章数组与广义表一、选择题1.在以下讲述中,正确的是(B )。
A、线性表的线性存储结构优于链表存储结构B、二维数组是其数据元素为线性表的线性表C、栈的操作方式是先进先出D、队列的操作方式是先进后出2.若采用三元组压缩技术存储稀疏矩阵,只要把每个元素的行下标和列下标互换,就完成了对该矩阵的转置运算,这种观点(A )。
A、正确B、错误3.二维数组SA 中,每个元素的长度为3 个字节,行下标I 从0 到7,列下标J 从0 到9,从首地址SA 开始连续存放在存储器内,该数组按列存放时,元素A[4][7]的起始地址为(B)。
A、SA+141B、SA+180C、SA+222D、SA+2254.数组SA 中,每个元素的长度为3 个字节,行下标I 从0 到7,列下标J 从0 到9,从首地址SA 开始连续存放在存储器内,存放该数组至少需要的字节数是( C )。
A、80B、100C、240D、2705.常对数组进行的两种基本操作是(B )。
A、建立与删除B、索引和修改C、查找和修改D、查找和索引6.将一个A[15][15]的下三角矩阵(第一个元素为A[0][0]),按行优先存入一维数组B[120]中,A 中元素A[6][5]在B 数组中的位置K 为( B )。
A、19B、26C、21D、157.若广义表A 满足Head(A)=Tail(A),则A 为(B )。
A、()B、(())C、((),())D、((),(),())8.广义表((a),a)的表头是( C ),表尾是(C )。
A、aB、bC、(a)D、((a))9.广义表((a,b),c,d)的表头是( C ),表尾是(D )。
A、aB、bC、(a,b)D、(c,d)10.广义表((a))的表头是( B ),表尾是(C )。
A、aB、(a)C、()D、((a))11.广义表(a,b,c,d)的表头是(A ),表尾是(D )。
A、aB、(a)C、(a,b)D、(b,c,d)12.广义表((a,b,c,d))的表头是(C ),表尾是(B )。
《数据结构与算法》第五章数组和广义表本章介绍的数组与广义表可视为线性表的推广,其特点是数据元素仍然是一个表。
本章讨论多维数组的逻辑结构和存储结构、特殊矩阵、矩阵的压缩存储、广义表的逻辑结构和存储结构等。
5.1 多维数组5.1.1 数组的逻辑结构数组是我们很熟悉的一种数据结构,它可以看作线性表的推广。
数组作为一种数据结构其特点是结构中的元素本身可以是具有某种结构的数据,但属于同一数据类型,比如:一维数组可以看作一个线性表,二维数组可以看作“数据元素是一维数组”的一维数组,三维数组可以看作“数据元素是二维数组”的一维数组,依此类推。
图5.1是一个m行n列的二维数组。
5.1.2 数组的内存映象现在来讨论数组在计算机中的存储表示。
通常,数组在内存被映象为向量,即用向量作为数组的一种存储结构,这是因为内存的地址空间是一维的,数组的行列固定后,通过一个映象函数,则可根据数组元素的下标得到它的存储地址。
对于一维数组按下标顺序分配即可。
对多维数组分配时,要把它的元素映象存储在一维存储器中,一般有两种存储方式:一是以行为主序(或先行后列)的顺序存放,如BASIC、PASCAL、COBOL、C等程序设计语言中用的是以行为主的顺序分配,即一行分配完了接着分配下一行。
另一种是以列为主序(先列后行)的顺序存放,如FORTRAN语言中,用的是以列为主序的分配顺序,即一列一列地分配。
以行为主序的分配规律是:最右边的下标先变化,即最右下标从小到大,循环一遍后,右边第二个下标再变,…,从右向左,最后是左下标。
以列为主序分配的规律恰好相反:最左边的下标先变化,即最左下标从小到大,循环一遍后,左边第二个下标再变,…,从左向右,最后是右下标。
例如一个2×3二维数组,逻辑结构可以用图5.2表示。
以行为主序的内存映象如图5.3(a)所示。
分配顺序为:a11 ,a12 ,a13 ,a21 ,a22,a23 ; 以列为主序的分配顺序为:a11 ,a21 ,a12 ,a22,a13 ,a23 ; 它的内存映象如图5.3(b)所示。
数据结构5.3_⼴义表的定义和存储结构⼴义表定义:⼴义表(Lists,⼜称列表)是⼀种⾮线性的数据结构,是线性表的⼀种推⼴。
即⼴义表中放松对表元素的原⼦限制,容许它们具有其⾃⾝结构。
⼀个⼴义表是n(n≥0)个元素的⼀个序列,若n=0时则称为空表。
GL=(a1,a2,…,ai,…,an)其中n表⽰⼴义表的长度,即⼴义表中所含元素的个数,n≥0。
如果ai是单个数据元素,则ai是⼴义表GL的原⼦;如果ai是⼀个⼴义表,则ai是⼴义表GL的⼦表。
习惯上⽤⼤写表⽰⼴义表的名称;⽤⼩写字母表⽰原⼦。
当⼴义表⾮空时,称第⼀个元素a1为GL的表头(Head),称其余元素组成的表(a2,a3,...an)是GL的表尾(Tail)。
可以发现上述⼴义表的定义描述时,⼜⽤到了⼴义表的概念;⼴义表的存储结构:⼴义表中的数据元素可以具有不同的结构(或是原⼦,或是列表)。
因此难以⽤顺序存储结构表⽰,通常采⽤链式存储结构。
每个数据元素可⽤⼀个结点表⽰。
如何设定结点的结构?由于列表中的数据元素可能为原⼦或列表。
因此需要两种结构的结点:⼀种是表结点⽤于表⽰列表,⼀种是原⼦结点⽤于表⽰原⼦;若列表不空,则可以分解成表头和表尾;⼀个表结点可以由3个域组成:标志域(标识是表还是原⼦)、指⽰表头的指针域、指⽰表尾的指针域;对于原⼦结点只需要2个域:标志域、值域;--------⼴义表的头尾链表存储表⽰--------typedef enum {ATOM, LIST} ElemTag; //ATOM==0 原⼦; LIST==1 ⼦表typedef struct GLNode{ ElemTag tag; //公共部分,⽤于区分原⼦结点和表结点 union{ //原⼦结点和表结点的联合部分 AtomType atom; //atom是原⼦结点的值域, struct{ struct GLNode *hp *tp}ptr; //ptr是表结点的指针域,ptr.hp和ptr.tp分别指向表头和表尾 };} *GList; //⼴义表类型--------⼴义表的扩展线性链表存储表⽰--------typedef enum {ATOM, LIST}ElemTag;typedef struct GLNode{ ElemTag tag; union{ AtomType atom; struct GLNode *hp; } struct GLNode *tp;} *GList;相关链接:。