音响技术基础知识
- 格式:doc
- 大小:55.51 KB
- 文档页数:11
音箱基础必学知识点
1. 音箱的工作原理:音箱通过电流驱动音圈产生声音,经过振膜的振动传播出去。
2. 音箱的组成部分:音箱主要由振膜、音圈、磁环、磁铁、反射器、扬声器箱体等组成。
3. 音箱的频率响应:指音箱能够播放的声音频率范围,一般表示为20Hz-20kHz。
4. 音箱的灵敏度:指音箱对输入信号的响应程度,一般以分贝(dB)为单位表示。
5. 音箱的阻抗:指音箱对电流的阻碍程度,一般以欧姆(Ω)为单位表示。
6. 音箱的功率:指音箱能够处理的电功率大小,一般以瓦特(W)为单位表示。
7. 音箱的声压级:指音箱输出的声音强度,一般以分贝(dB)为单位表示。
8. 音箱的声场特性:指音箱在空间中产生的声音分布情况,包括直射声、反射声、散射声等。
9. 音箱的声学设计:包括音箱箱体结构设计、反射器设计、振膜设计等,以实现更好的声音效果。
10. 音箱的摆放位置:音箱的位置和方向对于声音的传播和感受有很大的影响,应根据实际情况选择合适的位置。
以上是音箱基础必学的知识点,能够帮助你更好地理解和使用音箱。
当然,音箱的知识还有很多,可以根据实际需求进一步深入学习。
基础知识一、功放1、功率放大器:用来放大音频信号的器材,也就是说前置放大器和功率放大器(纯功放)的统称。
2、中心机:是由功放、卡拉OK、独立声道输入系统、均衡器、调音台等器材组成(如H2000,包括独立声道输入系统、独立Hi-Fi音乐中心、专业宽频带卡拉OK、专业均衡器组成)3、纯功放:即两声道,要求对音频信号进行高保真功率放大的放大器。
(后级放大器)4、AV功放:用于家庭影院音响系统的放大器。
放大器:按功能分:⑴纯功放⑵A V功放:①4声道放大器(定向逻辑)②5+1声道放大器(THX)③5.1声道放大器(AC-3、DTS)流行④6.1声道放大器(THX EX、DTS EX)⑤7声道放大器(AC-3+DSP)⑶卡拉OK放大器:①卡拉OK扩音机(有扩音)②卡拉OK机(无扩音,功放放大)按名称分:⑴晶体管放大器(石机)⑵电子管放大器(胆机)⑶电子管和晶体管放大器(混合机)⑷合并式放大器⑸前级放大器、后级放大器⑹甲类放大器⑺甲乙类放大器⑻单声道放大器⑼双声道放大器前级放大器:对音频信号进行电压放大的电路和对音频信号进行必要控制的电路(主要进行音频处理)后级放大器:将前级放大器放大和控制后级的信号进行专门的功率放大。
合并式放大器:将前级放大器和后级放大器装置在一个外壳内的放大器。
胆机:用电子管作为放大器件构成的放大器(不能放置于A V功放内)即电子管。
特点:低音柔和,传输音频慢。
石机:用晶体管作为放大器件构成的放大器。
混血机:用晶体管和电子管共同构成的放大器。
(这种机器充分利用晶体管和电子管的特性来发挥各自的长处,改善了石机的冷色面、金属声,改良胆机的低音力度和速度,使之具有混血的优势,主要用于纯功放。
)甲类放大器:一种性能优越的放大器,主要用于纯功放中。
(它以牺牲放大器的功率换取高品质的音质,以声音靓丽著称)乙类放大器:一种效率高的放大器。
(缺点是会产生交越失真,效率比甲类放大器要高,音质没甲类放大器好)甲乙类放大器:又称A类放大器,介于甲类与乙类之间,解决了乙类放大器的失真,效率比甲类高,所以得到广泛的应用。
专业音响基础知识什么是分频器: (2)什么是激励器: (2)什么是反馈抑制器: (2)什么是调音台: (2)什么是幻象电源 (2)什么是话筒指向性: (3)什么是压缩限幅器: (3)什么是均衡器: (3)音响系统的主要技术指标 (4)二、信噪比: (4)三、动态范围: (4)四、失真: (4)五、立体声分离度: (4)六、立体声平衡度: (4)响度 (5)失真度 (5)音箱的灵敏度(单位Db) (5)阻抗 (5)信噪比 (5)音色 (6)动态范围 (6)总谐波失真(THD) (6)17、立体声分离度 (6)18、阻尼系数 (7)l9、等响度控制 (7)什么是分频器:分频器是指将不同频段的声音信号区分开来,分别给于放大,然后送到相应频段的扬声器中再进行重放。
在高质量声音重放时,需要进行电子分频处理。
它可分为两种:(1)功率分频器:位于功率放大器之后,设置在音箱内,通过LC滤波网络,将功率放大器输出的功率音频信号分为低音,中音和高音,分别送至各自扬声器。
连接简单,使用方便,但消耗功率,出现音频谷点,产生交叉失真,它的参数与扬声器阻抗有的直接关系,而扬声器的阻抗又是频率的函数,与标称值偏离较大,因此误差也较大,不利于调整。
(2)电子分频器:将音频弱信号进行分频的设备,位于功率放大器前,分频后再用各自独立的功率放大器,把每一个音频频段信号给予放大,然后分别送到相应的扬声器单元。
因电流较小故可用较小功率的电子有源滤波器实现,调整较容易,减少功率损耗,及扬声器单元之间的干扰。
使得信号损失小,音质好。
但此方式每路要用独立的功率放大器,成本高,电路结构复杂,运用于专业扩声系统。
什么是激励器:激励器是一种谐波发生器,利用人的心理声学特性,对声音信号进行修饰和美化的声处理设备。
通过给声音增加高频谐波成分等多种方法,可以改善音质、音色、提高声音的穿透力,增加声音的空间感。
现代激励器不仅可以创造出高频谐波,而且还具有低频扩展和音乐风格等功能,使低音效果更加完美、音乐更具表现力。
音响方面的知识点总结一、音响的基本原理1. 音响系统的组成音响系统通常由音源、音频信号处理器、功率放大器和音箱等几个基本部分组成。
音源是指产生声音的源头,如CD/DVD播放器、MP3播放器、电视、收音机等。
音频信号处理器主要负责对音频信号进行调节和处理,包括音量、音色、均衡等参数的调整。
功率放大器则负责将处理过的音频信号转化为电能,驱动音箱发声。
而音箱则是将电能转化为声音的装置,通常包括低音炮、中音单元和高音单元等。
2. 声音的基本特性声音是通过介质传播的机械波,它的基本特性包括频率、振幅、相位和声压等。
频率决定了声音的音调,通常用赫兹(Hz)来表示,振幅则决定了声音的响度,相位则关系到声音的相位差和相位延迟等,而声压则是指声音的压力,通常以帕斯卡(Pa)来表示。
3. 音响理论的基本原理了解声音在空间中的传播规律以及不同频率的声音对人耳的听觉效果有助于设计和选购合适的音响设备。
理论上,声音的传播和反射会受到空间的大小、形状、材质和声学特性等影响,而不同频率的声音在空间中的传播和反射状况也会有所不同。
因此,在设计和使用音响系统时,需要考虑空间的声学属性和声音在空间中的传播规律。
二、常见音响设备的类型和特点1. 家用音响设备家用音响设备通常包括CD/DVD播放器、功放、音箱等,其功放和音箱可以组合成2.0声道、2.1声道、5.1声道等多种组合。
2.0声道通常指两个音箱,分别用来发声,适用于一般的音乐欣赏和电影观赏;2.1声道则在2.0声道基础上加入了一个低音炮,能够更好地表现低频音效;而5.1声道则包括五个音箱和一个低音炮,适用于环绕音效的影视欣赏。
2. 专业音响设备专业音响设备通常用于演出、演奏和录音等专业场合,包括混音台、功放、音箱等。
混音台用于混合调音频信号,功放则负责放大音频信号,音箱则用来播放声音。
在专业音响设备中,还有监听音箱、舞台音箱、回音壁等不同类型的音响设备,它们各自适用于不同的专业场合和音响需求。
原装音箱常用知识点总结一、音箱的基本知识1. 音箱的原理:音箱是将电信号转换为机械波,再将机械波转换成空气中的声波,使人类能够听到声音的装置。
它主要由振膜、辐射器、声学隔离器和电磁振荡器等部分组成。
2. 音箱的分类:音箱根据使用场景和功能不同,可以分为家用音箱、专业音箱、车载音箱等多种类型。
3. 音箱的频率响应:频率响应是指音箱在不同频率下声音的输出能力,通常用来描述音箱对不同频率信号的解析度。
4. 音箱的阻抗:电阻是指电流通过某个元件时产生的电压降。
在音箱中,阻抗通常指的是音箱对音源的电阻,通常以欧姆(Ω)为单位。
5. 音箱的灵敏度:音箱的灵敏度是指在特定功率下,音箱所能输出的声音强度,通常以分贝(dB)为单位。
6. 音箱的功率:音箱的功率是指其所能承受的电功率,通常以瓦特(W)为单位。
7. 音箱的声学设计:声学设计是指根据音箱的使用场景和需求,通过声学原理和工程技术手段来设计合理的音箱结构,以达到良好的音质和音量效果。
二、音箱的选购知识1. 音箱的品牌:品牌是选购音箱时需要考虑的重要因素,一些知名品牌通常会有更好的音质和更可靠的质量。
2. 音箱的尺寸:音箱尺寸的选择需要根据使用场景和空间大小来决定,太大的音箱可能无法放置在狭小的空间里,而太小的音箱可能无法满足音响效果的要求。
3. 音箱的功率:功率是衡量音箱性能的一个重要指标,需根据使用需求和场景来选择适合的功率。
4. 音箱的频率响应:频率响应决定了音箱对于不同频率声音的表现,需要根据个人喜好和使用场景来选择适合的频率响应范围。
5. 音箱的阻抗:阻抗是影响音箱连接的功放、放大器等设备的重要因素,需要确保音箱的阻抗与其他设备的要求匹配。
6. 音箱的灵敏度:灵敏度是决定音箱输出声音强度的重要参数,需要根据使用需求来选择合适的灵敏度值。
7. 音箱的材质:音箱材质直接影响其声音的表现,在选购时需选择合适的材质来满足音质要求。
三、音箱的使用和维护知识1. 音箱的使用场景:音箱的使用场景有家用、商用、汽车等多种,需要根据不同的使用场景来选择合适的音箱类型和功率。
专业音响知识
专业音响知识涵盖了音频技术、音响设备、音频信号处理
以及音响系统搭建等方面的知识。
具体包括以下几个方面:
1. 音频技术:涉及声学原理、采样率、位深度、音频编码
格式等基础知识。
2. 音响设备:常见的音响设备包括扩音器、音箱、调音台、麦克风等。
了解各种设备的工作原理和功能,能够正确选
择和使用合适的设备。
3. 音频信号处理:包括均衡、压缩、延迟、混响等处理技术。
学会调节这些参数,改善音频信号的质量和效果。
4. 音响系统搭建:了解音响系统的组成结构和布线方法,
能够根据场地要求进行合理安放设备,搭建出高质量的音
响系统。
5. 音频后期制作:通过软件工具对录音进行后期处理,包
括剪辑、混音、母带处理等。
掌握一定的音频编辑技术,
能够优化录音效果。
掌握这些专业音响知识可以帮助人们更好地理解音频领域的技术和设备,为音频制作和现场演出提供技术支持。
音响技术基础知识音响技术是一门涉及声学、电学、电子学等多个领域的综合性学科,它旨在为人们提供高质量的声音重现。
对于音响爱好者或者从事相关行业的人来说,掌握音响技术的基础知识是非常重要的。
一、声音的基本概念声音是由物体振动产生的机械波,通过空气等介质传播到人耳,引起听觉感受。
声音的主要特性包括频率、振幅和波形。
频率决定了声音的音调,单位是赫兹(Hz)。
人耳能够听到的声音频率范围大约在 20Hz 到 20kHz 之间。
低于 20Hz 的称为次声波,高于20kHz 的称为超声波。
振幅则决定了声音的响度,也就是音量的大小。
振幅越大,声音越响亮;振幅越小,声音越轻柔。
波形决定了声音的音色,不同的乐器和发声体产生的波形不同,从而形成了各具特色的音色。
二、音响系统的组成一个完整的音响系统通常包括音源、放大器、扬声器和连接线材等部分。
音源可以是 CD 播放器、数字音乐播放器、蓝牙接收器等,负责提供音频信号。
放大器的作用是将音源输出的微弱信号进行放大,以驱动扬声器发声。
放大器分为前级放大器和后级放大器,前级主要用于对信号进行处理和调节,后级则负责提供强大的功率输出。
扬声器是将电信号转换为声音的关键部件。
常见的扬声器类型有动圈式、静电式、带式等。
扬声器的性能参数包括频率响应、灵敏度、阻抗等。
连接线材则用于连接各个音响设备,保证信号的传输质量。
优质的线材能够减少信号损失和干扰。
三、音响设备的参数1、频率响应频率响应是指音响设备能够重放的声音频率范围以及在各个频率上的响应特性。
理想的频率响应应该是平坦的,能够准确重现各种频率的声音。
2、灵敏度灵敏度表示扬声器在输入一定功率的信号时所产生的声压级。
灵敏度越高,扬声器在相同输入功率下发出的声音越大。
3、阻抗阻抗是指音响设备对交流电流的阻碍作用。
一般来说,扬声器的阻抗有4Ω、8Ω 等常见值。
放大器的输出阻抗应与扬声器的阻抗匹配,以获得最佳的性能。
4、失真度失真是指音响设备输出的信号与输入信号相比发生的变化。
专业音响知识第一篇:音响系统基础知识音响系统是指由音源、扬声器和电子音响设备组成的一种集声音放大、调音和扩散为一体的系统。
对于音响系统的设计和使用,需要一定的专业知识,以下就是一些基础知识。
一、音源音源通常包括录音设备、乐器和麦克风等。
对于录音设备来说,数字录音设备一般比模拟录音设备更为常见。
对于乐器,各种乐器发出的声音不同,因此选择和使用合适的麦克风非常重要。
在选择和使用麦克风时,要根据需要进行选择,比如选择动圈麦克风、电容麦克风、传统麦克风或无线麦克风等。
二、扬声器扬声器是音响系统中的重要部分,它起到放大、传送、扩散声音的作用。
由于扬声器的设计和用途不同,因此需要选择和使用不同类型的扬声器。
例如,公共场所的音响系统通常会选择吸顶式或吸墙式的扬声器;而在家庭中使用,则需要挑选与所在空间大小和声音效果相匹配的书架式或地板式扬声器。
三、电子音响设备电子音响设备主要包括音源选配器、功放机和调音台等。
音源选择器是将不同音源输入到音响系统中的一个技术控制器;功放机则是将音源信号放大并输出到扬声器中的一种设备;而调音台主要用于调整不同声音频率,以达到理想的音效。
四、音响系统调试技巧在使用音响系统时,需要根据环境和需求进行调试。
以下是一些调试技巧:1. 根据房间大小和声学特性调整各个扬声器的位置和方向。
2. 控制和调整各个音源和放大器之间的信号变化,以得到所需的音效。
3. 调整各个控制器的参数以优化音效。
4. 针对不同场合和环境进行音响系统特别的设置,如低频调节、回声控制和降噪等。
总之,音响系统需要根据不同的需求进行设计和使用,而这些基础知识是掌握音响系统的重要前提。
第二篇:使用音响系统的注意事项使用音响系统前,除了需要具备一定的技术知识外,还需要注意以下几点。
一、连线和连接连接音源和放大器以及扬声器时,需要根据正确的接口连接。
不恰当的连接方式会影响到音质。
此外,应尽量减少连接线的长度,以免产生干扰和噪音。
音响系统工程培训教程音响系统工程是一门涉及声学、电子学、建筑学等多学科知识的综合性技术。
它旨在为各种场所,如会议室、剧院、体育馆、家庭影院等,提供高质量的声音重现和传播。
本教程将为您介绍音响系统工程的基础知识、设计原则、设备选型、安装调试以及常见问题解决等方面的内容,帮助您初步了解和掌握音响系统工程的核心要点。
一、音响系统工程基础知识(一)声音的基本特性声音是由物体振动产生的机械波,通过空气等介质传播到人耳,引起听觉感受。
声音的基本特性包括频率、振幅、波长和相位。
频率决定了声音的音调高低,振幅决定了声音的响度大小,波长和相位则影响声音的传播和干涉现象。
(二)声学原理声学是研究声音产生、传播、接收和效应的科学。
在音响系统工程中,需要了解声波的反射、折射、衍射、吸收和扩散等现象,以及房间声学的相关知识,如混响时间、驻波、声聚焦等,这些因素都会对音响系统的性能产生重要影响。
(三)音响系统的组成一个完整的音响系统通常由声源、信号处理设备、功率放大器和扬声器等部分组成。
声源可以是麦克风、CD 播放器、电脑等;信号处理设备包括调音台、均衡器、效果器等,用于对声音信号进行调节和处理;功率放大器用于将处理后的信号进行放大,以驱动扬声器发声;扬声器则是将电信号转换为声音信号的最终设备。
二、音响系统工程设计原则(一)目标和需求分析在设计音响系统之前,首先需要明确系统的使用场所、用途、听众数量和声学环境等因素,确定系统的性能指标和功能要求,如声音覆盖范围、音质清晰度、音量大小等。
(二)扬声器布局扬声器的布局是影响音响系统性能的关键因素之一。
根据场所的形状、大小和声学特性,选择合适的扬声器类型(如点声源扬声器、线阵列扬声器等)和安装位置,以实现均匀的声音覆盖和良好的声像定位。
(三)功率和增益计算根据扬声器的灵敏度、功率和声音覆盖范围等参数,计算所需的功率放大器功率和系统增益,确保系统能够提供足够的音量和动态范围,同时避免过度放大导致失真和噪声。
音响基础知识一、声学基础:1、名词解释(1)波长——声波在一个周期内的行程。
它在数值上等于声速(344米/秒)乘以周期,即λ=CT(2)频率——每秒钟振动的次数,以赫兹为单位(3)周期——完成一次振动所需要的时间(4)声压——表示声音强弱的物理量,通常以Pa为单位(5)声压级——声功率或声强与声压的平方成正比,以分贝为单位(6)灵敏度——给音箱施加IW的噪声信号,在距声轴1米处测得的声压(7)阻抗特性曲线——扬声器音圈的电阻抗值随频率而变化的曲线(8)额定阻抗——在阻抗曲线上最大值后最初出现的极小值,单位欧姆(9)额定功率——一个扬声器能保证长期连续工作而不产生异常声时的输入功(10)音乐功率——以声音信号瞬间能达到的峰值电压来计算的输出功率(PMPO)(11)音染——声音染上了节目本身没有的一些特性,即重放的信号中多了或少了某些成份(12)频率响应——即频响,有效频响范围为频响曲线最高峰附近取一个倍频程频带内的平均声压级下降10分贝划一条直线,其相交两点间的范围2、问答(1)声音是如何产生的?答:世界上的一切声音都是由物体在媒质中振动而产生的。
扬声器是通过振膜在空中振动,使前方和后方的空气形成疏密变化,这种波动的现象叫声波,声波使耳膜同样产生疏密变化,传级大脑,于是便听到了声音。
(2)什么叫共振?共振声对扬魂器音质有影响吗?答:如果物体在受迫振动的振动频率与它本身的固有频率相等时,称为共振当物体产生共振时,不需要很大的外加振动能量就能是使用权物体产生大幅度的振动,甚至产生破坏性的振动。
当扬声器振膜振动时,由于单元是固定在箱体上的,振动通过盆架传递到箱体上。
部分被吸收,转化成热能散发掉;部分惟波的形式再辐射,由于共振声不是声源所发出的声音,将会影响扬声器的重放,使音质变坏,尤其是低频部分(3)什么是吸声系数与吸声量?它们之间的关系是什么?答:吸声性能拭目以待好坏通常用吸声系级“α”表示,即α=1-K;吸声量是用吸声系数与材料的面积大小来表示。
HIFI音响基础知识点总汇一、声学基础1、人耳能听到的频率范围是20—20KHZ;2、把声能转换成电能的设备是传声器;3、把电能转换成声能的设备是扬声器;4、声频系统出现声反馈啸叫,通常调节均衡器;5、房间混响时间过长,会出现声音混浊;6、房间混响时间过短,会出现声音发干;7、唱歌感觉声音太干,当调节混响器;8、讲话时出现声音混浊,可能原因是加了混响效果;9、声音三要素是指音强、音高、音色;Rt-10、音强对应的客观评价尺度是振幅;11、音高对应的客观评价尺度是频率;12、音色对应的客观评价尺度是频谱;13、人耳感受到声剌激的响度与声振动的频率有关;14、人耳对高声压级声音感觉的响度与频率的关系不大;15、人耳对中频段的声音最为灵敏;16、人耳对高频和低频段的声音感觉较迟钝;17、人耳对低声压级声音感觉的响度与频率的关系很大;18、等响曲线中每条曲线显示不同频率的声压级不相同,但人耳感觉的响度相同;19、等响曲线中,每条曲线上标注的数字是表示响度级;20、用分贝表示放大器的电压增益公式是20lg输出电压/输入电压;21、响度级的单位为phon;┖22、声级计测出的dB值,表示计权声压级;23、音色是由所发声音的波形所确定的;24、声音信号由稳态下降60dB所需的时间,称为混响时间;25、乐音的基本要素是指旋律、节奏、和声;26、声波的较大瞬时值称为振幅;27、一秒内振动的次数称为频率;28、如某一声音与已选定的1KHz纯音听起来同样响,这个1KHz纯音的声压级值就定义为待测声音的响度;29、人耳对1~3KHZ的声音最为灵敏;30、人耳对100Hz以下,8K以上的声音感觉较迟钝;31、舞台两侧的早期反射声对原发声起加重和加厚作用,属有益反射声作用;32、观众席后侧的反射声对原发声起回声作用,属有害反射作用;33、声音在空气中传播速度约为340m/s;34、要使体育场距离主音箱约34m的观众听不出两个声音,应当对观众附近的补声音箱加延时;35、反射系数小的材料称为吸声材料;36、透射系数小的材料称为隔声材料;37、透射系数大的材料,称为透声材料;38、全吸声材料是指吸声系数α=1;39、全反射材料是指吸声系数α=0;40、岩棉、玻璃棉等材料主要吸收高频和中频;41、聚氨酯吸声泡沫塑料主要吸收高频和中频;42、薄板加空腔主要吸收低频;43、薄板直接钉于墙上吸声效果很差;44、挂帘织物主要吸收高、中频;45、粗糙的水泥墙面吸声效果很差;46、人耳通过声源信号的强度差和时间差,可以判断出声源的空间方位,称为双耳效应;47、两个声音,一先一后相差5ms--50ms到达人耳,人耳感到声音是来自先到达声源的方位,称为哈斯效应;48、左右两个声源,声强级差大于15dB,听声者感到声源是在声强级大的声源方位,称为德波埃效应;49、一个声音的听音阈因为其它声音的存在而必须提高,这种现象称为掩敝效应;50、厅堂内某些位置由于声干涉,使某些频率相互抵消,声压级降低很多,称为死点;51、声音遇到凹的反射面,造成某一区域的声压级远大于其它区域称为声聚焦;52、声音在室内两面平行墙之间来回反射产生多个同样的声音,称为颤动回声;53、由于反射使反射声与直达声相差50ms以上,会出现回声;54、房间被外界声音振动激发,从而按照它本身的固有频率振动,称为房间共振;55、房间出现几个共振频率相同的重叠现象,称为共振频率的简并;56、由于简并等原因使原声音信号频谱发生改变而被赋予外加的音色导致失真,称为声染色;57、声场中直达声声能密度等于混响声声能密度的点与声源的距离称为混响半径;58、听音点在混响半经以内时,直达声起主要作用;59、听音点在混响半经以外时混响声起主要作用;60、声源振动使空气产生附加的交变压力,称为声波;61、质点振动方向与波的传播方向相垂直,称为横波;62、质点振动方向与波的传播方向相平行,称为纵波;63、一般点声源在空间幅射的声波,属于球面波;64、声波在不同物质中传播,速度最快的是金属;65、声波在不同物质中传播速度最慢的是空气;66、声波在不同物质中传播,其速度快慢依次为金属>木材>水>空气;67、回声的产生是由于反射声与直达声相差50ms以上;╇68、颤动回声的产生是由于声音在两个平行光墙之间来回反射;69、声聚焦的产生是由于声音遇到凹的反射面;70、声扩散的产生是由于声音遇到凸的反射面;71、在礼堂某坐位听到台上讲话变成两个重复的声音,其可能原因是由于反射声与直达声相差50ms 以上;72、人耳对不同频率的听觉特性是对中音最敏感,其次是高音,频率越低越不敏感;73、不同频率声波的指向性特点为高音指向性强,低音指向性弱;74、不同频率声波的绕射能力为低音容易绕射,高音不易绕射;75、音箱布局通常的做法是高音音箱挂高,并调好角度;低音音箱靠近地面;76、厅堂低频混响过长,较有效的措施是墙上装带空腔的薄板;77、隔音效果较好的材料是双层砖墙,中间留空气层;78、50HZ非正弦周期信号,其4次谐波为200HZ79、100HZ非正弦周期信号的3次谐波为300HZ;80、300HZ非正弦周期信号的5次谐波为1500HZ;81、80HZ非正弦周期信号的5次谐波为400HZ;82、要使体育场距离主音箱约17m的观众听不出两个声音,应当对观众附近的补声音箱加50ms延时;83、均衡器按63、125、250、500、1K、2K、4K、8K、16K划分频段,是1/1倍频程划分;84、均衡器按50、200、800、、12K、划分频段,是4倍频程划分;85、均衡器按40、50、63、80、100、125、160、200、250、315、400…20K划分频段,是1/3倍频程划分;86、较佳混响时间选择最长的场所是音乐厅;87、较佳混响时间选择最短的场所是多轨分期录音棚;88、适宜设计混响时间可调节的场所是多功能厅;89、赛宾公式适用于计算吸声系数较小的房间的混响时间;90、艾润公式适用于计算各类房间的混响时间;91、赛宾公式的内容为:混响时间等于房间容积/房间表面积X吸声系数;92、为减少房间的简并现象,避免声染声,房间较佳的长:宽:高比例为2:3:5;93、在大型剧场中,最易听到回声的坐位是前座;94、解决大型剧场前座观众听到回声的主要方法是观众席后墙加强吸声;95、分贝的正确写法是dB;96、音乐简谱中的1与ⅰ之间相距一个倍频程;97、音乐简谱中的1与2之间相距1度;98、声速C、声波频率、声波波长;,其间关系是C=fx;;99、声波频率与声波周期Τ的关系是f=1/T;╚100、驻波形成的条件是反向传播、振幅相同、频率相等、相位差为0或恒定;101、效果器中CHORUS表示合唱;102、由声波的扰动引起的媒质局部压强发生变化,叫做声压;103、声压级的单位为dB;104、声级的单位为dB;105、声压的单位为帕Pa;106、声强的单位为w/m2;107、闻阈的声压约为2×10-5Pa;108、痛阈的声压约为2×10Pa;109、痛阈的声压级约为120dB;110、闻阈的声压级约为0dB;111、凹曲面对声波形成集中反射,使声能集中于某一点或某一区域,称为声聚焦;112、凸曲面对声波反射,使声能形成扩散;113、人耳分辨两个声音的最小时间间隔是50ms;114、音乐中的旋律包括声乐和器乐旋律;115、在音乐简谱中1--ⅰ叫八度;116、室内混响声是由反射声引起的;117、基本音升高半音叫升音,用记号表示;118、基本音降低半音叫降音,用b记号表示;119、已升高或降低的音要变成基本音叫还原,用ㄆ记号表示;120、MIDI的意思是乐器数字接口;121、声源在距离大于一定数值的两个平行界面间产生反射而形成一系列回声,称为颤动回声; 122、声压与基准声压2×10-5Pa之比,取10为底的对数乘以20,称为声压级;123、音乐中的音色大部分都是复合音;124、室内早期反射声指只经过一次反射,进入听耳的反射声;125、音乐中基本音有7个;126、常用的两种吸声材料:多孔材料,薄板后留空腔;127、不属于隔声结构:穿孔钢板;128、属于隔声结构:双层砖墙;129、由于室内频率响应的变化,使原信号频谱有了某种改变,称为声染色;130、不属于多孔吸声材抖:石膏板;131、属于多孔吸声材料:岩棉;132、薄板共振结构吸声的特点是具有低频吸声特性,同时还有助于声波的扩散;133、将木板固定在框架上,板后留有一定的空气层,就可以构成薄板共振吸声结构;134、录音师录制树上鸟声是,录制军号演奏声是1Pa,两种声音相差40dB;135、混响声可以延长声音的持续时间,提高声音的丰满度;136、两个波源的频率相同或相近,发出的波相遇叠加时,便有可能产生波的干涉;137、两个在同一直线上沿相反方向传播的波,若振幅、频率相同,在两个波源的连线上便会出现驻波;138、语言与音乐兼用厅堂总噪声级一级指标为NR30;139、歌厅总噪声级一级指标为40dB〔A〕;140、室内产生的声聚焦对室内声场产生不均匀影响,其原因是室内存在凹形反射面;141、室内听音存在死点,是由于室内声源产生干涉现象或形成驻波;142、声影区是指室内听不到直达声的区域;143、物体的隔声量R与物体厚度有关,且与其表面结构和密度有关;144、在凹形面上铺设足够的吸声材料,可以解决声聚焦的缺陷;145、调节扬声器位置或加设补声扬声器可以解决声影区的缺陷;146、后墙面上做强吸声或加凸形扩散体,可以解决长延时回声的缺陷;147、两面平行墙表面加扩散体或改变平行角度,可以解决颤动回声的缺陷;148、一支电容话筒较高声压级为126dB,等效噪声级为20dB,其动态范围为106dB;149、声频的中高频段决定声音的明亮度,清晰度;150、声频的高频段决定声音的色彩;151、声频中的低频段决定声音的浑厚度,丰满度;152、声频的中低频段决定声音的结实有力;153、波线是指波的传播方向;154、回声是由声反射引起的;155、室内声场设计时,房间墙壁采用吸声材料的吸声性能越强,早期反射声的幅度就越小,混响时间就越短;156、吸声系数α越小的物体,其反射声越大;吸声系数越大的物体,其反射声越小;157、早期反射声的效果是给人以亲切感;158、室内装修完毕,如果其自然混响时间T60偏长,可以采用窗门加装厚重织物帘幕给予改善; 159、在大型厅堂设计中对近次反射声应充分利用;160、混响声与早期反射声两种声音相配合使人听起来感觉声音更丰满.161、声压级与声强级在数值上是相同的;162、声染色现象对扩声产生不利影响;163、室内声音频率传输特性与周围物体吸声系数有关;164、音调与声频率直接相关;165、不同房间的房间均衡补偿曲线是不相同的;166、点声源的声强与其距离成平方反比关系;167、采样频率必须比被采样信号较高频率高出二倍以上;168、频率越低的波,其绕射作用越强;169、声功率的单位为W;170、声压级的单位为dB;171、声强单位为瓦/平方米;172、声压的单位为帕Pa;173、声源与听声人相处于运动状态,听声人会感到声源所发出的频率有变化,这种现象称为多普勒效应;174、直达声经过延时并倒相180度,叠加在直达声上,使人耳产生空间印象,称为劳氏效应;175、人们区别具有相同频率和相同幅度的两个不同声音的主观感觉,称为音色;176、声音三要素中,主要与声音的频率有关的要素称为音调;177、两个声音的音调间的距离,称为音程;178、将声音按一定音程进行排列,称为音阶;179、瞬时电压随时间作正弦变化的信号,称为纯音信号;180、由一系列间断和持续时间有一定要求的、每列波包含一定个数的正弦波组成的脉冲信号,称为猝发声;181、包含有20Hz到20kHz的各种频率成分,且各频率的能量分布是均匀的噪声信号,称为白噪声. 182、包含有20Hz到20kHz的各种频率成分,且功率谱密度与频率成反比的噪声信号,称为粉红噪声; 183、两只指向性为心形或无指向性的传声器,相距为人头两耳之间的距离进行拾音,称为A/B制立体声制式;184、两只传声器组合一体,一只指向性为8字形传声器,主指向左侧面;另一只心形或无指向性传声器指向正面;将两个传声器信号接入矩阵进行"和""差"变换后输出,称为M/S制立体声制式;185、两只指向性为心形或8字形的传声器极头,一上一下地安装在同一传声器壳体内,两者主轴的夹角在0---360度内变化,称为X/Y制立体声制式;186、在室内某一点听到声音到达人耳的先后次序为直达声、近次反射声、混响声;二、音响设备与系统1、压缩器的主要保护作用是保护音箱;2、播放迪斯科舞曲,均衡器适宜低音强烈提升,高音适当提升;3、演唱卡拉OK效果器程序宜选DELAY;4、演唱用民族唱法,效果器程序宜选LARGEHALL;5、激励器在扩声系统起到美化音色作用;6、压缩器能改变扩声系统的动态范围特性;7、均衡器能改变扩声系统的频率响应特性;8、声音暗淡,要提升高音,应调节调音台的TREBLE;9、为了突出人声,要提升中音,应调节调音台的MID;10、为了增强振憾感,要提升低音,应调节调音台的BASS;11、要左右移动演唱者的声像方位,应调节调音台的PAN;12、调音台的PEAK指示灯是表示峰值;13、PEAK灯长亮时应当调节适当减小GAIN;14、正常情况下,改变音箱输出声音的大小,宜调节调音台的FADER;15、均衡器通常连接在调音台与功放之间;16、效果器通常连接在调音台EFFIN与EFFOUT之间;17、压限器通常连接在调音台与功放之间;18、根据等响曲线,欣赏音乐时应当调节把音量适当开大才能使高、低音都很丰满;19、音响系统的频率特性是指对各个频率信号放大量的不均匀性;20、播放牛仔、桑巴等节奏强劲的舞曲,均衡器适宜低音强烈提升,高音适当提升;21、演唱歌曲、用通俗唱法时,效果器程序宜选DELAY;22、美声唱法,效果器程序宜选LARGEHALL;23、扩展器在扩声系统起到扩展动态范围作用;24、音调控制器能改变扩声系统的频率响应特性;25、降噪器能改变扩声系统的信噪比特性;26、压缩器的功能是压缩较高电平与较低电平间的相对变化;27、扩展器对信号的处理是对弱信号减小增益;28、压缩器对信号的处理是压缩较大电平与最小电平之间的变化范围;29、动态范围是表示信号的较大电平与最小电平之间的变化范围;30、压缩阀值电平是指压缩器起控制作用的信号电平;31、听觉激励器的主要功能是用于适当添加谐波以美化音色;32、降噪器的主要功能是减少磁带噪声;33、互补型降噪器对信号的处理方式是先压缩后扩展;34、在各类音频信号源中,信噪比最差的设备是磁带录音机;35、压缩器的压缩比达到大于10:1时即成限幅器;36、压缩器的压缩比是表示输入电平增加的分贝数与输出电平增加的分贝数之比;37、噪声门的主要功能是降低无信号时的噪声;38、反馈抑制器的主要功能是抑制声音的正反馈;39、为了保护功放和音箱,通常把压限器放在均衡器与功放之间;40、按下均衡器的HighCUT按纽时,可以降低高频咝咝噪声;41、按下均衡器的LOWCUT按纽,可以降低低频嗡嗡声;42、为使讲话声清晰嘹亮,通常同时按下HighCut和LowCut;43、为了保护音箱和功放,主要依靠压限器;44、为了抑制声反馈引起的啸叫,主要依靠均衡器;45、演唱卡拉OK要增加声音的丰满浑厚,主要依靠效果器;46、激励器能补充原声中的谐波,增加音乐的透明度和接近感;47、用激励器增强音乐中的低音成份,应使用其重音处理BIGBOTTOM通道;48、要改变低音的强弱和持续时间,应调节激励器重音处理通道的GIRTH,OVERHANG旋纽;49、压缩器RATIO的意义压缩比,通常选用的数值为2:1---3:1;50、压缩器ReleaseTime的意义为恢复时间,通常选用的数值500ms以上;51、压缩器AttackTime的意义为启动时间,通常选用的数值1---5ms;52、压缩器GateThreshold的意义为压缩门限;53、压缩器出现"喘息效应"可能是由于恢复时间过短;54、压缩器出现不自然的"音头加重"通常是由于启动时间过长;55、专业音响与家用音响系统组合的主要区别是多了调音台;56、影响音响系统重放音质好坏的关键设备是音箱;57、音响调音员在现场演出中操作最频繁的调音设备是调音台;58、音响系统进行声学调试,如产生啸叫时主要调节均衡器;59、音响系统中避免音箱和功放过载的主要设备是压限器;60、除音箱外,对演出音质效果影响较大的设备是话筒;61、专业音响系统最易损坏的设备是音箱;62、专业音响系统中效率较低的设备是音箱;63、专业音响系统中,失真率较大的设备是音箱;64、专业音响系统中,消耗功率最多的设备是功放;65、音响系统中,将电能转换成声能的设备是音箱;66、音响系统中,将声能转换成电能的设备是话筒;67、音响系统中,能够驱动音箱的设备是功放;68、音响系统中,技术最成熟,各项技术指标较高的设备是功放;69、前置放大器和功率放大器的主要分工是前置负责放大和控制,功放负责放大;70、准确衡量专业功放输出功率的指标是较大不失真输出功率;71、用分贝表示放大器的功率增益公式是10lg输出功率/输入功率;72、专业录音系统主要包括电台、电视台、电影制片厂、音像公司的录音棚设备;73、专业厅堂扩音系统主要包括礼堂、会议厅、剧场、歌舞厅的音响设备;74、公共广播系统包括餐厅、商场、酒店、公园的背景音响和消防广播;75、录音卡座、开盘录音机的声音记录是属于磁性录音;76、电影拷贝的声音记录是属于光学录音;77、CD、LD、DVD的声音记录是属于激光数字录音;78、LP密纹唱片的声音记录是属于机械录音;79、谐波失真系数的定义是各谐波电压有效值平方和的开方除以基波电压的有效值;80、功率放大器的阻尼系数DF等于额定负载阻抗与输出内阻之比;81、功放的阻尼系数越大,则对扬声器共振的抑制能力越强;82、一般功放的阻尼系数数值宜选择15~100;83、前置放大器的PHONOIN输入端匹配要求为输入1~10mV,有RIAA均衡网络;84、前置放大器的MICIN输入端匹配要求为输入1~10mV,平直均衡特性;85、前置放大器的TAPEIN输入端匹配要求为输入~2V,平直均衡特性;86、前置放大器的CDIN输入端匹配要求为输入~2V,平直均衡特性;87、前置放大器的AUXIN输入端匹配要求为输入~2V,平直均衡特性;88、前置放大器的TUNERIN输入端匹配要求为输入~2V,平直均衡特性;89、前置放大器的LINEIN输入端匹配要求为输入~2V,平直均衡特性;90、前置放大器中Loudness的功能是响度控制,在放大器音量较小时对信号的高低音加以补偿;91、前置放大器中Volume的功能是音量控制,改变放大器的增益大小;92、前置放大器中TrebleBass的功能是音调控制,改变放大器高音、低音比例;93、前置放大器中Balance的功能是平衡控制,调节立体声放大器左右声道的相对音量输出;94、放大器中HPF电路的主要功能是高通滤波,用以滤除100Hz以下的低频噪声;95、放大器中LPF电路的主要功能是低通滤波,用以滤除5KHZ以上的高频噪声;96、放大器中LOWCUT电路的主要功能是高通滤波,用以滤除100HZ以下的低频噪声;97、放大器中HIGHCUT电路的主要功能是低通滤波,用以滤除5KHZ以上的高频噪声;98、OTL电路输出功率的计算式为电源电压2/8X负载电阻;99、OCL电路输出功率的计算式为电源电压2/2X负载电阻;100、BTL电路输出功率的计算式为电源电压2/负载电阻;101、OCL电路为了消除开关机瞬间对扬声器的冲击,办法是加入延时通断继电器;102、OCL电路前级采用差动放大电路的主要目的是克服零点漂移;103、OCL电路中自举电容的主要作用是提高放大器的增益;104、OCL电路功放管设置一定的偏置电压的主要作用是减少交越失真;105、OCL电路功放管发射极串联负反馈电阻的主要作用是稳定工作点;106、BTL电路在电源电压和负载不变的条件下,其输出功率是OCL电路的4倍;107、扬声器保护电路的主要功能是防止直流电流流入扬声器导至烧坏;一、声学基础1、人耳能听到的频率范围是20—20KHZ;2、把声能转换成电能的设备是传声器;3、把电能转换成声能的设备是扬声器;4、声频系统出现声反馈啸叫,通常调节均衡器;5、房间混响时间过长,会出现声音混浊;6、房间混响时间过短,会出现声音发干;7、唱歌感觉声音太干,当调节混响器;8、讲话时出现声音混浊,可能原因是加了混响效果;9、声音三要素是指音强、音高、音色;Rt-10、音强对应的客观评价尺度是振幅;11、音高对应的客观评价尺度是频率;12、音色对应的客观评价尺度是频谱;13、人耳感受到声剌激的响度与声振动的频率有关;14、人耳对高声压级声音感觉的响度与频率的关系不大;15、人耳对中频段的声音最为灵敏;16、人耳对高频和低频段的声音感觉较迟钝;17、人耳对低声压级声音感觉的响度与频率的关系很大;18、等响曲线中每条曲线显示不同频率的声压级不相同,但人耳感觉的响度相同;19、等响曲线中,每条曲线上标注的数字是表示响度级;20、用分贝表示放大器的电压增益公式是20lg输出电压/输入电压;21、响度级的单位为phon;┖22、声级计测出的dB值,表示计权声压级;23、音色是由所发声音的波形所确定的;24、声音信号由稳态下降60dB所需的时间,称为混响时间;25、乐音的基本要素是指旋律、节奏、和声;26、声波的较大瞬时值称为振幅;27、一秒内振动的次数称为频率;28、如某一声音与已选定的1KHz纯音听起来同样响,这个1KHz纯音的声压级值就定义为待测声音的响度;29、人耳对1~3KHZ的声音最为灵敏;30、人耳对100Hz以下,8K以上的声音感觉较迟钝;31、舞台两侧的早期反射声对原发声起加重和加厚作用,属有益反射声作用;32、观众席后侧的反射声对原发声起回声作用,属有害反射作用;33、声音在空气中传播速度约为340m/s;34、要使体育场距离主音箱约34m的观众听不出两个声音,应当对观众附近的补声音箱加延时;35、反射系数小的材料称为吸声材料;36、透射系数小的材料称为隔声材料;37、透射系数大的材料,称为透声材料;38、全吸声材料是指吸声系数α=1;39、全反射材料是指吸声系数α=0;40、岩棉、玻璃棉等材料主要吸收高频和中频;41、聚氨酯吸声泡沫塑料主要吸收高频和中频;42、薄板加空腔主要吸收低频;43、薄板直接钉于墙上吸声效果很差;44、挂帘织物主要吸收高、中频;45、粗糙的水泥墙面吸声效果很差;46、人耳通过声源信号的强度差和时间差,可以判断出声源的空间方位,称为双耳效应;47、两个声音,一先一后相差5ms--50ms到达人耳,人耳感到声音是来自先到达声源的方位,称为哈斯效应;48、左右两个声源,声强级差大于15dB,听声者感到声源是在声强级大的声源方位,称为德波埃效应;49、一个声音的听音阈因为其它声音的存在而必须提高,这种现象称为掩敝效应;50、厅堂内某些位置由于声干涉,使某些频率相互抵消,声压级降低很多,称为死点;51、声音遇到凹的反射面,造成某一区域的声压级远大于其它区域称为声聚焦;52、声音在室内两面平行墙之间来回反射产生多个同样的声音,称为颤动回声;53、由于反射使反射声与直达声相差50ms以上,会出现回声;54、房间被外界声音振动激发,从而按照它本身的固有频率振动,称为房间共振;55、房间出现几个共振频率相同的重叠现象,称为共振频率的简并;56、由于简并等原因使原声音信号频谱发生改变而被赋予外加的音色导致失真,称为声染色;57、声场中直达声声能密度等于混响声声能密度的点与声源的距离称为混响半径;58、听音点在混响半经以内时,直达声起主要作用;59、听音点在混响半经以外时混响声起主要作用;60、声源振动使空气产生附加的交变压力,称为声波;61、质点振动方向与波的传播方向相垂直,称为横波;62、质点振动方向与波的传播方向相平行,称为纵波;63、一般点声源在空间幅射的声波,属于球面波;64、声波在不同物质中传播,速度最快的是金属;65、声波在不同物质中传播速度最慢的是空气;66、声波在不同物质中传播,其速度快慢依次为金属>木材>水>空气;67、回声的产生是由于反射声与直达声相差50ms以上;╇68、颤动回声的产生是由于声音在两个平行光墙之间来回反射;69、声聚焦的产生是由于声音遇到凹的反射面;70、声扩散的产生是由于声音遇到凸的反射面;71、在礼堂某坐位听到台上讲话变成两个重复的声音,其可能原因是由于反射声与直达声相差50ms 以上;72、人耳对不同频率的听觉特性是对中音最敏感,其次是高音,频率越低越不敏感;73、不同频率声波的指向性特点为高音指向性强,低音指向性弱;74、不同频率声波的绕射能力为低音容易绕射,高音不易绕射;75、音箱布局通常的做法是高音音箱挂高,并调好角度;低音音箱靠近地面;76、厅堂低频混响过长,较有效的措施是墙上装带空腔的薄板;77、隔音效果较好的材料是双层砖墙,中间留空气层;78、50HZ非正弦周期信号,其4次谐波为200HZ79、100HZ非正弦周期信号的3次谐波为300HZ;80、300HZ非正弦周期信号的5次谐波为1500HZ;81、80HZ非正弦周期信号的5次谐波为400HZ;82、要使体育场距离主音箱约17m的观众听不出两个声音,应当对观众附近的补声音箱加50ms延时;83、均衡器按63、125、250、500、1K、2K、4K、8K、16K划分频段,是1/1倍频程划分;84、均衡器按50、200、800、、12K、划分频段,是4倍频程划分;85、均衡器按40、50、63、80、100、125、160、200、250、315、400…20K划分频段,是1/3倍频程划分;86、较佳混响时间选择最长的场所是音乐厅;87、较佳混响时间选择最短的场所是多轨分期录音棚;88、适宜设计混响时间可调节的场所是多功能厅;89、赛宾公式适用于计算吸声系数较小的房间的混响时间;。
基本知识篇1、音响技术的发展历史。
音响技术的发展历史可以分为电子管、晶体管、集成电路、场效应管四个阶段。
1906年美国人德福雷斯特发明了真空三极管,开创了人类电声技术的先河。
1927年贝尔实验室发明了负反馈技术后,使音响技术的发展进入了一个崭新的时代,比较有代表性的如"威廉逊"放大器,较成功地运用了负反馈技术,使放大器的失真度大大降低,至50年代电子管放大器的发展达到了一个高潮时期,各种电子管放大器层出不穷。
由于电子管放大器音色甜美、圆润,至今仍为发烧友所偏爱。
60年代晶体管的出现,使广大音响爱好者进入了一个更为广阔的音响天地。
晶体管放大器具有细腻动人的音色、较低的失真、较宽的频响及动态范围等特点。
在60年代初,美国首先推出音响技术中的新成员--集成电路,到了70年代初,集成电路以其质优价廉、体积小、功能多等特点,逐步被音响界所认识。
发展至今,厚膜音响集成电路、运算放大集成电路被广泛用于音响电路。
70年代的中期,日本生产出第一只场效应功率管。
由于场效应功率管具有电子管纯厚、甜美的音色,以及动态范围达90dB、THD<0.01%(100kHz时)的特点,很快在音响界流行。
现今的许多放大器中都采用了场效应管作为末级输出。
音响技术的发展经历了电子管、晶体管、场效应管的历史时期,在不同的历史时期都各有其特点。
预计音响技术今后的发展主流为数字音响技术。
介绍一下dB的具体含义.单位dB是一个在电子方面使用得非常广泛的,它是测量和比较一个系统的功率,电压和电流大小的相对单位.后来由于科技的进步,认识到人类对声音的响应是按对数规律变化的,于是有了一个单位就是贝尔(Bell)是电话的发明人的名字.其表达式是: Bell=lg(P/Po)P是被测量的功率Po是参考功率:Bell表示以10为底的对数.实际中发现Bell太大了,于是取其十分之一作为一个新单位,就是分贝(dB)将Bell除以10就是dB表达式是:dB=10lg(P/Po),dB=20lg(E/Eo ),dB=20lg(I/Io).2.什么是Hi-Fi?什么样的音响器材才Hi-Fi?Hi-Fi是英语High-Fidelity的缩写,直译为"高保真",其定义是:与原来的声音高度相似的重放声音。
音响基础知识
音响基础知识指的是音响设备的基本原理和组成部分,包括音响系统的组成、音频信号的处理、音箱的工作原理等内容。
以下是一些常见的音响基础知识:
1. 音响系统的组成:音响系统一般由音源(如CD机、MP3播放器)、前置放大器、功放器、音箱等组成。
2. 音频信号的处理:音频信号处理包括音源的选择、音调的调整(包括高音和低音的调节)、音量的调节等,这需要通过前置放大器和功放器来实现。
3. 音箱的工作原理:音箱是将电信号转换为声音的装置,一般包括音箱单元、声学箱体和滤波器等。
其中,音箱单元负责将电信号转换为机械振动,声学箱体则将振动转化为声音,并通过滤波器对声音进行调整。
4. 音场效果:音场效果是指声音的空间分布和定位感。
通过合理摆放和调整音响设备,如左右声道的设置、环形音场等,可以实现更加真实和逼真的音场效果。
5. 音响设备的连接:音响设备之间的连接通常是通过音频线(如RCA线)或数字音频线(如光纤线、同轴电缆等)实现的。
6. 声音的特性:声音的特性包括频率、音量和声音质量(如音色、清晰度等)。
不同的音源和音响设备会影响声音的特性。
这些是一些常见的音响基础知识,希望能够给您提供一些参考。
如有更具体的问题,可随时向我提问。
音响师入门基础知识音响师入门基础知识1.什么是音场的宽度及深度一般理解是二声道(或多声道)扩声时,声音辐射的水平角度。
深度就是纵深感了。
这些就是平常我们所说的声音的立体感。
2.什么是音场?音场就是声场,就是音源辐射的声能,通过媒体质点的运动以球面方式向四周扩散。
媒体中有声波存在的区域称为声场。
说明白一点,就听得声音的范围。
3.什么是激励器,激励器的工作原理过程是怎么样的啊?声音激励器又称频谱增强器,它与混响效果器一样,是美化声音效果的一种装置。
它的作用是对高音细节和低音分别进行激励和提升,并能滤除“咝咝”声和发闷的低音频率。
使低音更加丰满浑厚中高音更加明亮,人声更有感染力,提高了声音的清晰度,减少了声音背景的咝咝声和低音的模糊度。
把声音修饰得更丰满、更透亮更完美。
声音激励器低音提升的原理是通过一个低音激励器,把音乐信号中的基音激励产生极为丰富的偶次谐波(偶次泛音),这些新的偶次谐波恰好是在基音的八度音范围,产生特别适合人的听觉感受。
与此同时,还能滤除50-80HZ之间发闷的低音频率,把低音修饰得柔而不闷,人声更为透亮。
声音激励器对高音细节的激励是通过连续不断分析音源信号中的高音成分,自动修饰激励高频分量不足的声音信号,并能滤除由于高音提升后出现的咝咝声。
4.什么是均衡器?主要有哪几种?均衡器是频率均衡器的简称。
主要对音频范围内的设备或系统频率进行调整(提升或衰减)。
一般可分为图示式均衡器及参量式均衡器。
图示式均衡器,一般将需要调整的电位器做成滑杆式。
针对不同频点,对应的调整电位器进行向上提升或向下衰减。
从电位器滑杆的不同位置,看出各频点的补偿状况即为图示式。
参量式均衡器就是参数可调的音调控制器。
可对2-4个频段中的频点作提升或衰减(俗称音调控制器)。
调音台各通道中的音调控制即为参量式均衡器。
5.声场布置的原则有哪些啊?其实所说的声场布置得原则,应该是采用什么形式来布置声场。
谈到声场布置,其实质是扬声器的布置。
音响技术的基本知识1、音响技术的发展历史。
音响技术的发展历史可以分为电子管、晶体管、集成电路、场效应管四个阶段。
1906年美国人德福雷斯特发明了真空三极管,开创了人类电声技术的先河。
1927年贝尔实验室发明了负反馈技术后,使音响技术的发展进入了一个崭新的时代,比较有代表性的如"威廉逊"放大器,较成功地运用了负反馈技术,使放大器的失真度大大降低,至50年代电子管放大器的发展达到了一个高潮时期,各种电子管放大器层出不穷。
由于电子管放大器音色甜美、圆润,至今仍为发烧友所偏爱。
60年代晶体管的出现,使广大音响爱好者进入了一个更为广阔的音响天地。
晶体管放大器具有细腻动人的音色、较低的失真、较宽的频响及动态范围等特点。
在60年代初,美国首先推出音响技术中的新成员--集成电路,到了70年代初,集成电路以其质优价廉、体积小、功能多等特点,逐步被音响界所认识。
发展至今,厚膜音响集成电路、运算放大集成电路被广泛用于音响电路。
70年代的中期,日本生产出第一只场效应功率管。
由于场效应功率管同时具有电子管纯厚、甜美的音色,以及动态范围达90dB、THD<0.01%(100kHz时)的特点,很快在音响界流行。
现今的许多放大器中都采用了场效应管作为末级输出。
音响技术的发展经历了电子管、晶体管、场效应管的历史时期,在不同的历史时期都各有其特点。
预计音响技术今后的发展主流为数字音响技术。
1.介绍一下dB的具体含义.单位dB是一个在电子方面使用得非常广泛的,它是测量和比较一个系统的功率,电压和电流大小的相对单位.后来由于科技的进步,认识到人类对声音的响应是按对数规律变化的,于是有了一个单位就是贝尔(Bel)是电话的发明人的名字.其表达式是: Bel=lg(P/Po)P是被测量的功率Po是参考功率:Bel表示以10为底的对数.实际中发现Bel太大了,于是取其十分一作为一个新单位,就是分贝(dB)将Bel除以10就是dB表达式是:dB=10lg(P/Po),dB=20lg(E/Eo ),dB=20lg(I/Io).2.什么是Hi-Fi?什么样的音响器材才Hi-Fi?Hi-Fi是英语High-Fidelity的缩写,直译为"高保真",其定义是:与原来的声音高度相似的重放声音。
那么什么样的音响器材的重放声音才是Hi-Fi呢?迄今为止仍难以作出确切的结论。
音响界的专业人士借助于各类仪器,通过各种手段,检测出各种指标来决定器材Hi-Fi 的程度,而音响发烧友则往往通过自己的耳朵去判断器材是否达到心目中的Hi-Fi。
判别重放声音高保真程度的高低,不仅需要有性能优良的器材和软件,而且还要有良好的听音环境。
因此,如何正确衡量音响器材的Hi-Fi程度,还存在着客观测试和主观评价的差别。
3.音响系统的主要技术指标。
音响系统整体技术指标性能的优劣,取决于每一个单元自身性能的好坏,如果系统中的每一个单元的技术指标都较高,那么系统整体的技术指标则很好。
其技术指标主要有六项:频率响应、信噪比、动态范围、失真度、瞬态响应、立体声分离度、立体声平衡度。
一、频率响应:所谓频率响应是指音响设备重放时的频率范围以及声波的幅度随频率的变化关系。
一般检测此项指标以1000Hz的频率幅度为参考,并用对数以分贝(dB)为单位表示频率的幅度。
音响系统的总体频率响应理论上要求为20~20000Hz。
在实际使用中由于电路结构、元件的质量等原因,往往不能够达到该要求,但一般至少要达到32~18000Hz。
二、信噪比:所谓信噪比是指音响系统对音源的重放声与整个系统产生的新的噪声的比值,其噪声主要有热噪声、交流噪声、机械噪声等等。
一般检测此项指标以重放信号的额定输出功率与无信号输入时系统噪声输出功率的对数比值分贝(dB)来表示。
一般音响系统的信噪比需在85dB以上。
三、动态范围:动态范围是指音响系统重放时最大不失真输出功率与静态时系统噪声输出功率之比的对数值,单位为分贝(dB)。
一般性能较好的音响系统的动态范围在100(dB)以上。
四、失真:失真是指音响系统对音源信号进行重放后,使原音源信号的某些部分(波形、频率等等)发生了变化。
音响系统的失真主要有以下几种:1.谐波失真:所谓谐波失真是指音响系统重放后的声音比原有信号源多出许多额外的谐波成分。
此额外的谐波成分信号是信号源频率的倍频或分频,它是由负反馈网络或放大器的非线性特性引起的。
高保真音响系统的谐波失真应小于1%。
2.互调失真:互调失真也是一种非线性失真,它是两个以上的频率分量按一定比例混合,各个频率信号之间互相调制,通过放音设备后产生新增加的非线性信号,该信号包括各个信号之间的和及差的信号。
3.瞬态失真:瞬态失真又称瞬态响应,它的产生主要是当较大的瞬态信号突然加到放大器时由于放大器的反映较慢,从而使信号产生失真。
一般以输入方波信号通过放音设备后,观察放大器输出信号的包络波形是否输入的方波波形相似来表达放大器对瞬态信号的跟随能力。
五、立体声分离度:立体声分离度表示立体声音响系统中左、右两个声道之间的隔离度,它实际上反映了左、右两个声道相互串扰的程度。
如果两个声道之间串扰较大,那么重放声音的立体感将减弱。
六、立体声平衡度:立体声平衡度表示立体放音系统中左、右声道增益的差别,如果不平衡度过大,重放的立体声的声像定位将产生偏移。
一般高品质音响系统的立体声平衡度应小于1dB。
4.音响系统重放声音的音域及音频范围是如何划分的?各个频段对音乐的表现如何?音响系统的重放声音的音域范围一般可以分为超低音、低音、中低音、中音、中高音、次高音、高音、特高音八个音域。
音频频率范围一般可以分为四个频段,即低频段(30~150Hz);中你频段(150~500Hz);中高频段(500~5000Hz);高频段(5000~20000Hz)。
其中,30~150Hz频段:能够表现音乐的低频成分,使欣赏者感受到强劲有力的动感。
150~500Hz频段:能够表现单个打击乐器在音乐中的表现力,是低频中表达力度的部分。
500~5000Hz频段:主要表达演唱者语言的清晰度及弦乐的表现力。
5000~20000Hz频段:主要表达音乐的明亮度,但过多会使声音发破。
5.音响发烧友有哪些常用术语。
音响发烧友常用的术语较为抽象,常用的术语如下:1.神经线:主要指输送低电平(毫伏、微伏级)、小电流的信号线。
一般神经线为音频、视频两用,较高级的神经线两端的插头为镀金的RCA插头,并在导线的表面涂有防静电保护层。
2.发烧线:主要是指截面较大、股数较多的音箱信号传输线。
品质较高的发烧线是采用无氧铜等材料制成的。
3.煲机:所谓煲机类似于机械类机器的摩合期,即将音响器材工作一定时间后,使机器内的温度与环境温度相同,使各级放大器的工作状态达到最佳点,此时重放的声音为最佳。
4.摩机:所谓摩机源于英文Modify,意为修正、修饰。
发烧友对音响系统内的元器件或线路进行更换、改造,使其升级,称之为摩机。
5.爆棚:所谓爆棚是指音响器材在重放时,当乐曲进入高潮时所产生的震耳欲聋的气氛。
6.胆机:胆机是指采用电子管制作的放大器。
电子管放大器温暖通透的音质让老一辈发烧友至今难以忘怀。
7.石机:所谓石机是指采用晶体管制作的放大器。
8.胆石机:即为电子管与晶体管混合制作的音响器材。
一般将电子管作为前级放大器,晶体管作为后级放大器。
9.环牛:所谓环牛是指环形变压器,它与普通变压器相比漏磁较小。
10.大水塘:大水塘是指电源滤波电容,一般为10000μF以上的大容量电容。
11.靓声:指音响器材的重放声音质很好,达到了高保真的要求。
12.解析度:指音响器材的重放声具有一定的透明度,给人以"清澈见底"的感觉。
13.染色:所谓染色是指重放过程中由于声波的振动使其它物体或材料出现共振而产生的重放声中没有的声音。
它对重放的效果是有害的。
14.咪头:指各种话筒。
15.补品:指对音响系统进行改造时所使用的质量较高的元件。
6.音箱应如何放置?音箱位置的正确放置是获得良好放音效果的因素之一,在摆放时必须注意以下几个问题: 1.两只音箱之间的距离不小于1.5~2米,并保持同一水平。
音箱的左右两边与墙壁的距离应该相同。
音箱的前面不应有任何杂物,如图2中(a)所示。
音P10。
2.音箱的高音单元与听音者的耳朵应保持同一水平线,听音者与两只音箱之间应为60度夹角,听音者的身后要留有一定的空间,如图2中(b)所示。
3.两个音箱两侧的墙壁在声学上应保持一致,即两侧的墙壁对声波的反射应相同。
4.如果音箱声波的方向性不宽,可将两只音箱略向内侧摆放,如图2中(c)所示。
5.对于小型音箱如果感觉低频不够,可将音箱靠近墙角摆放。
7.音响器材在连接时需注意哪些问题?音响器材各级之间的配接较为重要。
如果连接不当不仅会影响器材的重放效果,甚至会损坏器材。
1.器材连接的基本要求:(1)信号电平的匹配:在连接音响器材时一定要注意各器材之间的输入、输出信号电平的差异。
如果前级器材输入信号的电平过大,会产生非线性失真,反之则会降落氏重放系统的信噪比,甚至无法推动下一级器材的放大器,因此在配接时要注意器材之间的电平不应相差过大。
如果在实际使用中出现信号电平不适配时,必须通过衰减电路使输入的信号电平降低,或通过放大电路使输入信号的电平提升。
对于一般的动圈式话筒输出电压为几毫伏,因此需要设有一级放大电路将信号放大后送至前置放大电路。
对于录音座、CD唱机及LD机,由于其输出信号的电平达0.755~1V以上,因此可以直接送入前置放大器。
(2)阻抗的匹配:在Hi-Fi音响器材中,比如晶体管功率放大器的输出阻抗为低阻抗,而电子管功率放大器等器材的输出阻抗为高阻抗。
如果它们与扬声器连接时阻抗不匹配,会使放大器的输出功率分配不均,或因阻尼过大使扬声器的瞬态特性变差。
阻抗匹配的连接一般有平衡式和不平衡式两种。
所谓平衡式是指传输信号的两芯屏蔽线对地的阻抗相等。
所谓不平衡式是指两芯屏蔽线中,其中有一根接地。
当平衡输出与不平衡输入相连接时,必须通过加匹配变压器进行匹配。
2.接插件的连接方法:在Hi-Fi音响器材中,器材的连接是依靠各种接插件来完成的,常用的接插件有以下几种,如图4所示。
音P14。
(1)二芯插头:主要用来传输各种器材之间的信号以及作为话筒输入信号的输入插头。
按其直径分为有2.5mm、3.5mm、6.5mm三种.(2)莲花插头:主要用于在音频器材和视频器材之间作线路的输入和输出插头,如图中(b)所示。
(3)卡侬插头(XLR):主要用于话筒与放大器之间的连接,如图中(c)所示。
(4)五芯插座(DIN):主要用于卡式录音座与放大器之间的连接,它可以将立体声输入和输出信号集中在一个插座上。