9.4乘法公式(完全平方公式)
- 格式:ppt
- 大小:287.00 KB
- 文档页数:14
自主学习任务单-------9.4 乘法公式一、学习目标1.会推导完全平方公式,并能运用公式进行简单的计算;2.通过图形面积的计算,感受乘法公式的直观解释;3.经历探索完全平方公式的过程,发展学生的符号感和推理能力.二、学习过程(一)活动:做一做1.你能用代数式表示图中大正方形的面积吗?你可以用几种方法表示?2. 你能用多项式的乘法法则计算()2+吗?请你写出来.a b3. 例1 计算()2-.a b(二)新知:请你尝试用文字语言来叙述这两个等式.()2222a b a ab b +=++ ()2222a b a ab b -=-+(三)例题用完全平方公式计算(1) ()253p + ; (2) ()227x y - ;(3) ()22x y -+ ; (4) ()225a -- .拓展:用完全平方公式计算(1)2199 ; (2) ()2a b c ++.三、效果检测1. 下面的计算是否正确?如有错误,请改正.(1)222()x y x y -=-˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙( )(2)222(2)a b a ab b ---=+ ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙( )(3)22224()2m n m n mn +++= ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙( ) (4)22422111124a b a b a b ⎛⎫-=-+ ⎪⎝⎭ ˙˙˙˙˙˙˙˙˙˙˙˙˙˙( ) 2.填空:如果229x kxy y ++是一个完全平方公式展开后的结果,那么常数k 的值为 .3. 填空:一个正方形的边长为(6)acm a >.若边长减少6cm , 则这个正方形的面积减少了 2cm .4. 用完全平方公式计算:(1) ()223x y + ; (2) 2142a ⎛⎫-+ ⎪⎝⎭ ;(3) 2302 ; (4) ()2a b c -+ .5.已知2x y +=,1xy =,求()2x y +和22x y +的值.6.已知7a b -=,2ab =,求22a b +和()2a b +的值.附件1:教材内容附件2: 检测答案1. (1) 错误,原式222x xy y =-+.(2) 错误,原式()2=a b +222a ab b =++.(3) 错误,原式()22=222m m n n +⋅⋅+2244m mn n =++.(4) 正确,原式222224211=21121142a b a b a b a b ⎛⎫-⨯⋅+=- ⎪⎭+⎝. 2.6±解析:()222223699x y x xy y x kxy y ±=±+=++Q ,6k ∴=±. 3. 1236a -解析:正方形的面积减少了()()2222612361236a a a a a a --=--+=- 4. (1) 原式()()2222233x x y y =+⋅⋅+224129x xy y =++(2) 原式221124422a a ⎛⎫⎛⎫=-+⋅-⋅+ ⎪ ⎪⎝⎭⎝⎭214164a a =-+ (3)原式()222300230023002291204=+=+⨯⨯+=(4) 原式()2a b c =-+⎡⎤⎣⎦()()222a b a b c c =-+-+222222a ab b ac bc c =-++-+ 222222a b c ab ac bc =++-+-5. 解:将2x y +=两边平方得,()24x y +=, 即2224x y xy ++=,把1xy =代入得:222x y +=.6. 解:将7a b -=两边平方得:()222249a b a b ab -=+-=, 把2ab =代入得:22449a b +-=,即2253a b +=,则()222253457a b a b ab +=++=+=.。
9.4 乘法公式(二)一、教学目标:1.通过拼图探索计算2)(c b a ++的公式,并推导这个公式.2.进一步巩固完全平方公式和平方差公式,并会用乘法公式化简某些代数式.二、教学重、难点:如何灵活运用乘法公式三、教学过程:情境创设 请同学们用准备好了的正方形和长方形纸板拼图,拼成如图所示的大正方形.问:通过这样的拼图过程,你能发现什么吗?探索活动做一做问题一:你是如何表示图中大正方形的面积的?问题二:你能用2222)(b ab a b a ++=+推导2)(c b a ++吗?结论:得到公式ca bc ab c b a c b a 222)(2222+++++=++小试牛刀计算(1)2)432(c b a ++ (2)2)23(z y x --例题教学例1. 计算(1)2)35(p + (2)2)72(y x - (3))9)(3)(3(2++-x x x(4)22)32()32(+-x x (5))4)(4(++-+y x y x 练一练 (1)22)10()10(+-x x (2)))((2222n mn m n mn m +-++ (3)22)33()33(--+a a (4))3)(3()3(2y x y x y x +--+ 例2. 若,4,922-==+xy y x 求(1)2)(y x + (1)2)(y x -例3. 求代数式)(5)3()2(22n m m n m n m -+--+的值,其中51,101==n m . 小结(1) 说说完全平方公式、平方差公式的特征(2) 把b a +看成""x ,就可以用完全平方公式计算2)(c b a ++,运用这种转化的思想,你能计算3)(b a +、4)(b a +吗?作业P82习题9.4第1,4(2)、(4)、(6),6题。
9.4乘法公式(完全平方公式)班级 姓名 学号 等第 教学目标:(1) 探索并推导完全平方公式、并能运用公式进行简单的计算; (2) 引导学生感受转化的数学思想以及知识间的内在联系。
教学重点:完全平方公式;教学难点:正确的应用完全平方公式、进行计算教学方法:探索、引导法教具准备:三角尺、投影仪 a 教学过程:一. 情景创设 b如右图:你能通过不同的方法计算大正方形的面积吗? 从而你发现了什么? 二. 探索活动问题一:如何用字母表示上图中大正方形的面积? 生: 将上图看成一个大正方形,则面积为 2)(b a +。
师:很好,还有没有其它的方法呢?生:可将上图看成是由两个小长方形和两个小正方形组成的图形,那么它的面积为222b ab a ++。
师:两种方法都求出了大正方形的面积,从而我们可以发现什么呢? 生:2)(b a +=222b ab a ++ 这个公式就叫做一个完全平方公式。
问题二:你能用多项式的乘法法则推导公式2)(b a +=222b ab a ++吗? 生:2)(b a +=))((b a b a ++=22b ba ab a +++=222b ab a ++ 师:很好,你能用同样的方法计算2)(b a -吗?生:222222))(()(b ab a b ba ab a b a b a b a +-=---=--=- 即:2222)(b ab a b a +-=-,这是我们要学习的另一个完全平方公式。
完全平方公式:2)(b a + 222b ab a ++=2222)(b ab a b a +-=-师:你能用文字语言叙述这两个公式吗?两数和 (差)的平方等于这两数的平方和加上 (减去)这两数乘积的两倍师:你能说出这两个公式的特点吗?生:左边是:两数和 (差)的平方. 右边是: 两数的平方和加上(减去)这两数乘积的两倍. 三. 范例点睛例1 计算:( a – b )2想一想:你有几种方法计算 (a -b )2例2 用完全平方公式计算(1) ( 5 + 3p )2 (2) ( 2x - 7y )2例3 用完全平方公式计算(1)( -x + 2y )2 (2) ( -2a - 5)2例4 用完全平方公式计算 (1)9982 (2) 1012例4:填空题:(注意分析,找出a 、b )①()()2216=++x ; ②()()()22243=+-y x③()()22=+-ab a ;④()()225025=++ab a ⑤()-+=⎪⎭⎫ ⎝⎛-2224116214y x y x⑥()()222b ab a b a ++=+- ()()222b ab a b a +-=-+例5.已知3=+y x ,2=xy ,求①22y x +;②yx 11+四.随堂练习1、用完全平方公式计算 (1)(1+x )2 (2) (y -4)2(3) ( x − 2y )2 (4) (2x y + x )22. 一个正方形的边长为a c m 。
初中数学苏科版七年级下册9.4 乘法公式——完全平方公式同步训练一、单选题(本大题共10题,每题3分,共30分)1.等于()A. B. C. D.2.下列等式能够成立的是()A. (2x-y)2=4x2-2xy+y2B. (x+y)2=x2+y2C. (a-b)2= a2-ab+b2D. (+x)2= +x23.若代数式x2-6x+b可化为(x-a)2-1,则b-a的值是()A. 5B. -5C. 11D. -114.已知a+b=-5,ab=-4,则a2-ab+b2的值是()A. 37B. 33C. 29D. 215.已知x﹣y=3,xy=1,则x2+y2=()A. 5B. 7C. 9D. 116.若,,则的值为()A. 6B. 7C. 8D. 97.对于任何实数m、n,多项式m2+n2-6m-10n+36的值总是()A. 非负数B. 0C. 大于2D. 不小于28.已知(m 2018)2+(m 2020)234,则(m 2019)2的值为()A. 4B. 8C. 12D. 169.小淇将(2019x+2020)2展开后得到a1x2+b1x+c1;小尧将(2020x﹣2019)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1﹣c2的值为()A. 2019B. 2020C. 4039D. 110.已知a=2019x+2018,b=2019x+2019,c=2019x+2020.则多项式a2+b2+c2﹣ab﹣bc﹣ac 的值为()A. 1B. 2C. 3D. 4二、填空题(本大题共9题,每题2分,共18分)11.若a+b=17,ab=60,则(a- b)2=________12.若a2+b2=6,a+b=3,则ab的值为________.13.已知x﹣=6,求x2+ 的值为________.14.已知xy=-3,x+y=-4,则x2-xy+y2的值为________.15.计算:20202﹣4040×2019+20192=________.16.设(a+2b) 2=(a-2b) 2+A,则A=________.17.已知,则的值是________.18.已知关于的二次三项式是完全平方式,则a=________.19.我围古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)“的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为________.三、解答题(本大题共7题,共82分)20.计算:(a+b+c)221.先化简,再计算:(2a+b)(b﹣2a)﹣(a﹣3b)2,其中a=﹣2,b= .22.已知(x+y)2=25,(x﹣y)2=81,求x2+y2和xy的值.23.已知,,求下列各式的值.(1);(2);(3).24. (1)当,时,分别求代数式和的值;(2)当,时,________ (填“ ”,“ ”,“ ”)(3)观察(1)(2)中代探索代数式和有何数量关系,并把探索的结果写出来:________ (填“ ”,“ ”,“ ”)(4)利用你发现的规律,求的值.25.如图1,A纸片是边长为a的正方形,B纸片是边长为b的正方形,C纸片是长为b,宽为a的长方形.现用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:________;方法2:________;(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系________;(3)根据(2)题中的等量关系,解决如下问题:若a+b=5,a2+b2=13,求ab的值;26.(阅读理解)“若满足,求的值”.解:设,,则,,(解决问题)(1)若满足,则的值为________;(2)若满足,则的值为________;(3)如图,正方形的边长为,,,长方形的面积是200,四边形和都是正方形,四边形是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).答案解析部分一、单选题1.【答案】B【考点】完全平方公式及运用解:(−a+b)2=a2−2ab+b2.故答案为:B.【分析】根据完全平方式的定义,将(−a+b)2展开即可求解.2.【答案】C【考点】完全平方公式及运用解:A、(2x-y)2=4x2-4xy+y2 ,故A错误;B、(x+y)2=x2+2xy+y2,故C错误;C、(a-b)2=a2-ab+b2,故C正确;D、( +x)2= +2+x2,故D错误;故答案为:C.【分析】根据(a b)2=a22ab+b2逐一判断即可.3.【答案】A【考点】完全平方公式及运用解:由x2-6x+b=x2-6x+9+(b-9)=(x-3)2+(b-9)=(x-a)2-1,所以a=3,b-9=-1,即a=3,b=8,故b-a=5.故选A.【分析】利用配方法可得x2-6x+b=(x-3)2+(b-9),从而可得(x-3)2+(b-9)=(x-a)2-1,继而得出a=3,b-9=-1,求出a、b的值并代入计算即可.4.【答案】A【考点】完全平方公式及运用解:∵a+b=-5,ab=-4,∴a2-ab+b2=(a+b)2-3ab=(-5)2-3×(-4)=37,故答案为:A.【分析】先根据完全平方公式进行变形,再代入求出即可.5.【答案】D【考点】代数式求值,完全平方公式及运用解:∵x﹣y=3,xy=1,∴(x﹣y)2=x2+y2﹣2xy,∴9=x2+y2﹣2,∴x2+y2=11,故答案为:D.【分析】由完全平方公式:(x﹣y)2=x2+y2﹣2xy,然后把x﹣y,xy的值整体代入即可求得答案.6.【答案】A【考点】完全平方公式及运用解:将a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1,把a2+b2=13代入得:13﹣2ab=1,解得:ab=6.故答案为:A.【分析】将a﹣b=1两边平方,利用完全平方公式化简,将第一个等式代入计算即可求出ab的值.7.【答案】D【考点】完全平方公式及运用解:m2+n2-6m-10n+36=(m2-6m+9)+(n2-10n+25)+2=(m-3)2+(n-5)2+2≥2故对于任何实数m、n多项式m2+n2-6m-10n+36的值都不小于2.故答案为:D.【分析】将多项式进行变形,整理成含有两个完全平方式的形式,再改写成平方的形式,根据平方的非负性进行解答.8.【答案】D【考点】完全平方公式及运用解:∵(m-2018)2+(m-2020)2=34,∴(m-2019+1)2+(m-2019-1)2=34,∴(m-2019)2+2(m-2019)+1+(m-2019)2-2(m-2019)+1=34,2(m-2019)2+2=34,2(m-2019)2=32,(m-2019)2=16.故答案为:D.【分析】先把(m -2018)2+(m-2020)2=34变形为(m-2019+1)2+(m-2019-1)2=34,把(m-2019)看作一个整体,根据完全平方公式展开,得到关于(m-2019)2的方程,解方程即可求解.9.【答案】C【考点】完全平方公式及运用解:∵(2019x+2020)2展开后得到a1x2+b1x+c1;∴c1=20202,∵(2020x﹣2019)2展开后得到a2x2+b2x+c2,∴c2=20192,∴c1﹣c2=20202﹣20192=(2020+2019)(2020﹣2019)=4039,故答案为:C.【分析】依据小淇将(2019x+2020)2展开后得到a1x2+b1x+c1;小尧将(2020x﹣2019)2展开后得到a2x2+b2x+c2,即可得到c1﹣c2=20202﹣20192,进而得出结论.10.【答案】C【考点】代数式求值,完全平方公式及运用解:∵a=2019x+2018,b=2019x+2019,c=2019x+2020.,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a2﹣2ab+b2)+(a2﹣2ac+c2)+(b2﹣2bc+c2)]=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=×[1+4+1]=3,故答案为:C.【分析】把已知的式子化成[(a-b)2+(a-c)2+(b-c)2]的形式,然后代入求解.二、填空题11.【答案】49【考点】完全平方公式及运用解:∵,,∴.故答案为:49.【分析】利用完全平分公式的变形公式进行计算即可.12.【答案】【考点】完全平方公式及运用解:由a+b=3两边平方,得a2+2ab+b2=9 ①,a2+b2=6 ②,①﹣②,得2ab=3,两边都除以2,得ab= .故答案为:.【分析】根据完全平方公式,可得a2+2ab+b2=9,再根据等式的性质,可得答案.13.【答案】38【考点】完全平方公式及运用解:将x﹣=6两边平方,可得:,解得:,故答案为:38.【分析】把x﹣=6两边平方后化简整理解答即可.14.【答案】25【考点】完全平方公式及运用解:x2-xy+y2=(x+y)2-3xy=(-4)2-3×(-3)=25.【分析】利用配方将原式变形为(x+y)2-3xy,然后整体代入计算即可.15.【答案】1【考点】完全平方公式及运用解:20202﹣4040×2019+20192=20202﹣2×2020×2019+20192=(2020﹣2019)2=12=1.故答案为:1.【分析】完全平方公式式的应用,a2-2ab+b2=(a-b)2。
苏科版数学七年级下册《9.4 乘法公式》说课稿3一. 教材分析乘法公式是数学中的一种基本公式,广泛应用于各个领域。
苏科版数学七年级下册《9.4 乘法公式》这一节主要介绍了平方差公式和完全平方公式。
平方差公式可以帮助我们简化计算,快速求出两个数的平方差;而完全平方公式则可以帮助我们求出一个数的平方,或者两个数的乘积的平方。
这两个公式在解决实际问题中具有重要的作用。
二. 学情分析学生在学习这一节之前,已经学习了有理数的乘法、乘方等基础知识,对于公式有一定的认识。
但乘法公式较为抽象,需要学生在理解的基础上进行记忆。
同时,学生需要掌握如何将实际问题转化为乘法公式的形式,从而解决问题。
三. 说教学目标1.知识与技能目标:学生能够掌握平方差公式和完全平方公式,并能够灵活运用这两个公式解决实际问题。
2.过程与方法目标:通过小组合作、讨论等方式,培养学生主动探究、合作学习的意识,提高学生的数学思维能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生自信心,使学生能够积极主动地参与到数学学习中。
四. 说教学重难点1.重点:平方差公式和完全平方公式的记忆与运用。
2.难点:如何将实际问题转化为乘法公式的形式,以及如何在复杂问题中灵活运用乘法公式。
五. 说教学方法与手段1.采用启发式教学,引导学生主动探究、发现规律,培养学生的数学思维能力。
2.利用多媒体课件,生动形象地展示乘法公式的推导过程,帮助学生理解记忆。
3.小组合作、讨论,鼓励学生发表自己的观点,培养学生的合作意识。
4.创设实际问题情境,引导学生运用乘法公式解决问题,提高学生的应用能力。
六. 说教学过程1.导入:通过复习有理数的乘法、乘方等基础知识,引出本节课的主题——乘法公式。
2.讲解:讲解平方差公式和完全平方公式的推导过程,让学生理解并记忆这两个公式。
3.练习:布置一些简单的练习题,让学生运用平方差公式和完全平方公式进行计算,巩固所学知识。
4.应用:创设一些实际问题情境,让学生运用乘法公式解决问题,培养学生的应用能力。