物质熔沸点、粒子半径大小判断
- 格式:doc
- 大小:42.00 KB
- 文档页数:4
高中化学微粒半径的大小比较方法高中化学经常要大家比较微粒半径的大小。
很多同学因为没有掌握方法所以比较起来容易出错。
下面我来给大家讲解一下比较微粒半径大小的方法:(1)一看“电子层数”:当电子层数不同时,电子层数越多,半径越大。
如:r(Cl)>r(F)、r(S)>r(O)、r(Na)>r(Na+)。
(2)二看“核电荷数”:当电子层数相同时,核电荷数越大,半径越小。
如:r(Na)>r(Cl)、r(O2-)>r(F-)>r(Na+)。
(3)三看“核外电子数”:当电子层数和核电荷数均相同时,核外电子数越多,半径越大。
如:r(Cl-)>r(Cl) 。
【例题1】已知X元素的阳离子和Y元素的阴离子具有相同的核外电子结构,下列叙述正确的是A.原子序数X<Y B.原子半径X<YC.离子半径X>Y D.原子最外层电子数X<Y 解析:由题意可知X、Y在周期表中的位置如右图所示:因此原子序数X>Y;原子半径X>Y;离子半径X<Y(同层比较核电荷数);所以只有D正确。
点拨:微粒半径的大小比较可归纳为“同层比核,同核比层”。
“同层比核”例如:Na+与F-、Cl与S、Cl-与S2-等,电子层数相同,核电荷数越大,核对电子的引力就越大,电子离核就越近,半径因而就越小;“同核比层”例如:Na与Na+、Cl 与Cl-的核电荷数相同,核外电子数越多,原子或离子的半径就越大。
因为当核电荷数相同时,核对核外点赞的吸引力相同。
电子多的微粒电子和电子之间有排斥,电子离核就远,所以半径大。
元素的原子半径、离子半径大小的比较规律:①同周期原子半径随原子序数的递增逐渐减小(稀有气体元素除外)。
如第三周期中的元素的原子半径:Na>Mg>Al>Si>P>S>Cl。
②同主族原子的半径随原子序数的递增逐渐增大。
如第IA族中的元素的原子半径:H<Li<Na<K<Rb<Cs。
③同周期阳离子的半径随原子序数的递增而逐渐减小。
如第三周期中的:Na+>Mg2+>Al3+。
一般来说(就是在一般的情况下比较,没说 “一定 ”)原子晶体,分子晶体,离子 晶体,金属晶体,非金属晶体,的熔沸点高低比较一下排成队列应该是:原子晶 体>离子晶体 >分子晶体 .各种金属晶体之间熔点相差大 ,不容易比较 .你写的 "非金 属晶体",在化学的"晶体"中,没有这个分类 .化学中的晶体总共有 :原子晶体,离子晶 体,金属晶体 ,分子晶体 ,混合晶体 (如:石墨)① 离子晶体:离子所带的电荷数越高,离子半径越小,则其熔沸点就越高。
② 分子晶体:对于同类分子晶体,式量越大,则熔沸点越高。
等物质分子间存在氢键。
③ 原子晶体:键长越小、键能越大,则熔沸点越高。
(3)常温常压下状态① 熔点:固态物质 >液态物质② 沸点:液态物质 >气态物质 定义:把分子聚集在一起的作用力 分子间作用力(范德瓦尔斯力):影响因素:大小与相对分子质量有关。
作用:对物质的熔点、沸点等有影响。
① 、定义:分子之间的一种比较强的相互作用。
分子间相互作用② 、③ 、④ 、⑤ 、 稍强;是一种较强的分子间作用力。
定义:从整个分子看, 分子里电荷分布是对称的 (正负电荷中心能重合) 的分子。
非极性分子双原子分子:只含非极性键的双原子分子如: O2、 H2、 Cl2 等。
举例:只含非极性键的多原子分子如: O3、 P4 等 分子极性多原子分子: 含极性键的多原子分子若几何结构对称则为非极性分子 如: CO2、 CS2 (直线型)、 CH4、 CCl4 (正四面体型) 极性分子: 定义:从整个分子看,分子里电荷分布是不对称的(正负电荷中心 不能重合)的。
举例 双原子分子:含极性键的双原子分子如: HCl 、 NO 、 CO 等多原子分子: 含极性键的多原子分子若几何结构不对称则为极性分子 如:NH3三角锥型)、H20(折线型或V 型)、H2O2HF 、H2O 、NH3 形成条件:第二周期的吸引电子能力强的 N 、0、F 与H 之间(NH3、H20) 对物质性质的影响:使物质熔沸点升高。
物质熔点和沸点高低的比较比较物质的熔点和沸点的高低,通常按下列步骤进行,首先比较物质的晶体类型,然后再根据同类晶体中晶体微粒间作用力大小,比较物质熔点和沸点的高低,具体比较如下:一、判断所给物质的晶体类型,然后按晶体的熔点和沸点的高低进行比较,一般来说晶体的熔点和沸点的高低是:原子晶体>离子晶体>分子晶体,例如:晶体硅>氯化钠>干冰。
但并不是所有这三种晶体的熔点和沸点都符合该规律,例如:氧化镁(离子晶体)>晶体硅(原子晶体)。
而金属晶体的熔点和沸点变化太大,例如汞、铷、铯、钾等的熔点和沸点都很低,钨、铼、锇等的熔点和沸点却很高,所以不能和其它晶体进行简单的比较。
例如、(2002年高考上海试题第7小题,)下列有关晶体的叙述中错误的是A离子晶体中,一定存在离子键 B 原子晶体中,只存在共价键C 金属晶体的熔沸点均很高D 稀有气体的原子能形成分子分析:其中选项C中的说法就是错误的,如汞、铷、铯、钾等的熔点和沸点都很低。
A、B、D三者说法都正确,所以应选C。
二、当物质是同类晶体时,则分别按下列方式比较。
1.原子晶体因为构成原子晶体的微粒是原子,微粒间的作用力是共价键,则其晶体的熔点和沸点的高低则由共价键的键能大小决定,而键能大小又由共价键的键长决定,键长越短,而键长可以通过原子半径来比较,键能越大,熔点和沸点就越高。
例如:金刚石>金刚砂>晶体硅。
例如:(2004高考上海试题第10题)有关晶体的下列说法中正确的是()A.晶体中分子间作用力越大,分子越稳定B.原子晶体中共价键越强,熔点越高C.冰熔化时水分子中共价键发生断裂D.氯化钠熔化时离子键未被破坏分析:分子间作用力大小与分子的稳定性无关;原子晶体中共价键越强,原子间作用力越大,熔点就越高,说法正确;冰熔化时只破坏分子之间作用力,分子内共价键不变;而氯化钠熔化时其离子键一定要断裂才能变化成阴阳离子;所以正确选B,而A、C、D三者都错了。
离子半径比较专题一、规律方法总结1、微粒半径大小的比较一般要掌握以下规律:(1).对原子来说:①同周期元素的原子(稀有气体除外),从左到右原子半径逐渐▁▁ ;②同主族元素的原子,从上到下原子半径逐渐▁▁▁▁。
③稀有气体元素的原子半径▁▁▁同周期元素原子半径。
(2).对离子来说:除符合原子半径递变规律外,经常使用的比较原则是:①同种元素的原子和离子相比较,阳离子比相应原子半径▁▁,阴离子比相应原子半径▁▁;②电子层结构相同的粒子(如O F Na Mg Al 223--+++、、、、),随着核电荷数的▁▁▁▁,离子半径▁▁▁▁。
2、微粒半径大小判断简易规律:(1)、同元素微粒:r 阳离子 ‹ r 原子 ‹ r 阴离子(2)、同主族微粒:电子层数越多,半径越大(3)、电子层数相同的简单微粒:核电荷数越大,半径越小3、判断三部曲第一步...先看电子层数,因为其半径大小的决定因素是电子层数。
电子层数越多,其半径越大。
第二步...在电子层数相同的情况下看核电荷数,因为核电荷数的多少是影响半径大小的次要因素。
而核电荷数越多,其半径越小。
第三步...在电子层数和核电荷数相同的情况下看电子数,核外电子数是影响半径大小的最小因素。
核外电子数越多,其半径越大。
值得注意的是此三步不可颠倒。
4、填空1)、同周期原子半径随原子序数的递增而r(Na) r(Mg) r(Al) r(Si) r(P) r(S) r(Cl)2)、同主族原子半径随原子序数的递增而r(Li) r(Na) r(K) r(Rb) r(F) r(Cl) r(Br) r(I)3)、同周期阳(阴)离子半径随原子序数的递增而 。
r(Na +) r(Mg 2+) r(Al 3+) r(P 3-) r(S 2-) r(Cl -)4)、同主族阳(阴)离子半径随原子序数的递增而r(Li +) r(Na +) r(K +) r(F -) r(Cl -) r(Br -) r(I -)5)、同种元素的原子、离子,其电子数越多半径就r(Fe 3+) r(Fe 2+) r(Fe) r(Cl -) r(Cl)6)、电子层结构相同的离子,核电荷数越大,离子的半径r(O 2-) r(F -) r(Na +) r(Mg 2+) r(Al 3+)二、例题部分例1:下列化合物中,阴离子和阳离子的半径之比最大的是( )A.CsIB.NaFC.LiID.KCl例2.下列4种微粒,按半径由大到小顺序排列的是( )①X 1S 22S 22P 63S 23P 4 ② Y 1S 22S 22P 63S 23P 5③Z 2- 1S 22S 22P 63S 23P 6 ④ W 1S 22S 22P 5A 、①›②›③›④B 、③›④›①›②C 、③›①›②›④D 、①›②›④›③例3:X 元素的阳离子和Y 元素的阴离子具有与氩原子相同的电子层结构,下列叙述正确的是A 、X 的原子序数比Y 小B 、X 的原子最外层电子数比Y 的大C 、 X 的原子半径比Y 的大D 、 X 元素的最高正价比Y 的小例4:下列微粒半径的大小顺序不正确的是( )(A )H <F < N (B )Fe >Fe 2+>Fe 3+(C )S 2->Cl - > Na + > Mg 2+ ( D )F ->O 2->S 2-例5:下列各组微粒半径大小比较中,不正确的是( )A. r(K)>r(Na)>r(Li)B. r(Mg 2+)>r(Na +)>r(F -)C. r( Na +)>r(Mg 2+)>r(Al 3+)D. R(Cl -)>r(F -)>r(F)例6:如果X m+、Y n-具有相同的电子层结构,Z n-的半径大于Y n-的半径,则三种元素得原子序数由大到小的顺序是(A) Z>X>Y (B) X>Y>Z (C) Z>Y>X (D) X>Z>Y例7:W 、X 元素的阳离子与Y 、Z 元素的阴离子具有相同的电子层结构且W 分别与Y 、Z 形成WY 、W 2Z 型离子化合物,则它们的原子序数关系是( )(A)X>W>Z>Y (B)W>X>Z>Y (C)W>X>Y>Z (D)X>W>Y>Z例8:具有相同电子层结构的五种微粒:X +、Y 2+ 、W 、Z 2-、R ˉ,下列分析不正确的是 ( ) A 原子序数:Y >X >W >R >Z B 、微粒半径:X +>Y 2+>Z 2->R ˉC 、W 一定是稀有气体元素的原子D 、原子半径:X >Y >Z > R例9:下列粒子半径之比大于1的是( )A. K K +B. Mg CaC. S PD. -Cl Cl 例10: 在主族元素X 、Y 、Z 中,X 与Y 两元素的原子核外电子层数相同,X 的原子半径大于Y 的原子半径,X 与Z 两原子的阳离子具有相同的电子层结构,Z 的离子半径大于X 的离子半径,则三种元素中原子序数最大的是()A.XB.YC.ZD.无法判断例11:下列粒子半径大小的比较中,正确的是( )A .Na +<Mg 2+<Al 3+<O 2-B .S 2->Cl ->Na +>Al 3+C .Na<Mg<Al<SD .Cs>Rb>K>Na例12:下列说法正确的是( )A.X m+和Y n-与氖的电子层结构相同,原子半径前者大于后者B.NaF和MgI中阳离子与阴离子半径之比,前者小于后者2C.16O和18O原子的核外电子数,前者大于后者的稳定性,前者大于后者D.HCl和H S2三、知识拓展(我暂时还没搞清楚…先忽略它们吧~)1. 由微粒半径的大小推导原子序数(或元素的核电荷数)的大小例题. 有a、b、c、d四种主族元素,已知a、b的阳离子和c、d的阴离子都具有相同的电子层结构,而且原子半径a>b;阴离子所带的负电荷数为c>d 。
物质熔沸点高低的比较及应用河北省宣化县第一中学栾春武如何比较物质的熔、沸点的高低,首先分析物质所属的晶体类型,其次抓住同一类型晶体熔、沸点高低的决定因素,现总结如下供同学们参考:一、不同类型晶体熔沸点高低的比较一般来说,原子晶体>离子晶体>分子晶体;金属晶体(除少数外)>分子晶体。
例如:SiO2>NaCL>CO2(干冰)金属晶体的熔沸点有的很高,如钨、铂等;有的则很低,如汞、镓、铯等。
二、同类型晶体熔沸点高低的比较同一晶体类型的物质,需要比较晶体内部结构粒子间的作用力,作用力越大,熔沸点越高。
影响分子晶体熔沸点的是晶体分子中分子间的作用力,包括范德华力和氢键。
1.同属分子晶体①组成和结构相似的分子晶体,一般来说相对分子质量越大,分子间作用力越强,熔沸点越高。
例如:I2>Br2>Cl2>F2。
②组成和结构相似的分子晶体,如果分子之间存在氢键,则分子之间作用力增大,熔沸点出现反常。
有氢键的熔沸点较高。
例如,熔点:HI>HBr>HF>HCl;沸点:HF>HI>HBr>HCl。
③相对分子质量相同的同分异构体,一般是支链越多,熔沸点越低。
例如:正戊烷>异戊烷>新戊烷;互为同分异构体的芳香烃及其衍生物,其熔沸点高低的顺序是邻>间>对位化合物。
④组成和结构不相似的分子晶体,分子的极性越大,熔沸点越高。
例如:CO>N2。
⑤还可以根据物质在相同的条件下状态的不同,熔沸点:固体>液体>气体。
例如:S >Hg>O2。
2.同属原子晶体原子晶体熔沸点的高低与共价键的强弱有关。
一般来说,半径越小形成共价键的键长越短,键能就越大,晶体的熔沸点也就越高。
例如:金刚石(C-C)>二氧化硅(Si-O)>碳化硅(Si-C)晶体硅(Si-Si)。
3.同属离子晶体离子的半径越小,所带的电荷越多,则离子键越强,熔沸点越高。
例如:MgO>MgCl2,NaCl>CsCl。
4.同属金属晶体金属阳离子所带的电荷越多,离子半径越小,则金属键越强,高沸点越高。
高中化学熔沸点的比较根据物质在相同条件下的状态不同1.一般熔、沸点:固>液>气,如:碘单质>汞>CO22. 由周期表看主族单质的熔、沸点同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高;但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低;3. 从晶体类型看熔、沸点规律晶体纯物质有固定熔点;不纯物质凝固点与成分有关凝固点不固定; 非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性软化过程直至液体,没有熔点;①原子晶体的熔、沸点高于离子晶体,又高于分子晶体;在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高;判断时可由原子半径推导出键长、键能再比较;如键长:金刚石C—C>碳化硅Si—C>晶体硅 Si—Si;熔点:金刚石>碳化硅>晶体硅②在离子晶体中,化学式与结构相似时,阴阳离子半径之和越小,离子键越强,熔沸点越高;反之越低;如KF>KCl>KBr>KI,ca>KCl;③分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低;具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se>H2S;对于分子晶体而言又与极性大小有关,其判断思路大体是:ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高;如:CH4<SiH4<GeH4<SnH4;ⅱ组成和结构不相似的物质相对分子质量相近,分子极性越大,其熔沸点就越高;如: CO>N2,CH3OH >CH3—CH3;ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低;如: C17H35COOH硬脂酸>C17H33COOH 油酸;ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4, C2H5Cl>CH3Cl,CH3COOH>HCOOH;ⅴ同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低;如:CH3CH23CH3 正>CH3CH2CHCH32异>CH34C新;芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低;沸点按邻、间、对位降低④金属晶体:金属单质和合金属于金属晶体,其中熔、沸点高的比例数很大,如钨、铂等但也有低的如汞、铯等;在金属晶体中金属原子的价电子数越多,原子半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低;如:Na<Mg<Al;合金的熔沸点一般说比它各组份纯金属的熔沸点低;如铝硅合金<纯铝或纯硅;5. 某些物质熔沸点高、低的规律性①同周期主族短周期金属熔点;如 Li<Be,Na<Mg<Al②碱土金属氧化物的熔点均在2000℃以上,比其他族氧化物显着高,所以氧化镁、氧化铝是常用的耐火材料;③卤化钠离子型卤化物熔点随卤素的非金属性渐弱而降低;如NaF>NaCl>NaBr>NaI;通过查阅资料我们发现影响物质熔沸点的有关因素有:①化学键,分子间力范德华力、氢键;②晶体结构,有晶体类型、三维结构等,好象石墨跟金刚石就有点不一样;③晶体成分,例如分子筛的桂铝比;④杂质影响:一般纯物质的熔点等都比较高;但是,分子间力又与取向力、诱导力、色散力有关,所以物质的熔沸点的高低不是一句话可以讲清的,我们在中学阶段只需掌握以上的比较规律;。
离子晶体的熔点高低怎么比较
1.离子晶体:阴阳离子半径越小,电荷数越多,离子键越强,熔沸点越高,反之越低.离子键与离子带电荷、离子半径之和有关,离子带电荷多,离子半径小,则离子键强,熔沸点越高.
2.原子晶体:原子间键长越短,共价键越稳定,物质熔沸点越高,反之越低.
3.分子晶体:分子晶体在熔化或汽化时,破坏的是"分子间作用力",而不是破坏"化学键",所以分子晶体的熔沸点一般都较低.分子晶体熔
化破坏分子间作用力----范德华力{取向力,诱导力,色散力}其中,色散力与分子量有关.分子量越大,色散力越大.分子晶体中分子间作用力越大,物质熔沸点越高,反之越低.其中组成和结构相似的分子,相对分子质量越大,分子间作用力越大.。
物质熔沸点高低的规律总结ʏ陕西省永寿县中学 马亚楼物质熔沸点高低是由构成物质质点间作用力大小决定的㊂物质质点间作用力包括分子之间的作用力和各种化学键㊂现从这两方面谈几点比较物质熔沸点高低的规律和方法㊂一㊁从分子之间作用力大小比较物质熔沸点高低1.氢键法㊂因为氢键作用力大于范德华力,所以由氢键构成的物质的熔沸点高于由范德华力构成的物质的熔沸点,如乙醇>氯乙烷,H F >H I >H B r >H C l㊂一般情况下,H F ㊁N H 3㊁H 2O ㊁C 2H 5OH ㊁C H 3C O O H 等分子间都存在氢键㊂2.同系物C 数法㊂对于有机同系物来说,因结构相似,C 数越多,分子越大,范德华力就越大,熔沸点也就越高,如C 2H 6<C 3H 8<C 4H 10,C H 3C l <C H 3C H 2C l <C H 3C H 3C H 3C l㊂3.同分异构体支链法㊂在有机同分异构体中,支链越多,分子就越接近于球形,分子间接触面积就越小,沸点就越低,如正戊烷>异戊烷>新戊烷㊂4.分子量法㊂对于一些结构相似的物质因为分子量大小与分子大小成正比,故分子量越大,分子间力就越大,沸点就越高,如C H 3C l >C H 3F ,C H 2C l 2>CH 3C l >C H 4㊂5.极性法㊂对于分子大小与分子量大小都相近的共价化合物来说,分子极性越大,分子间力就越大,沸点就越高,如C O>N 2㊂二㊁从化学键的强弱比较物质熔沸点高低6.晶体类型法㊂不同类型晶体物质间熔沸点高低变化顺序大致为共价晶体>离子晶体>金属晶体>分子晶体,如沸点:金刚石>食盐>铁>干冰7.微粒半径法㊂对于晶体类型相同的物质,熔沸点高低可由质点微粒半径大小来判断㊂即质点半径越小,质点间键长就越短,键就越难断裂,晶体的沸点(熔点㊁硬度)就越高㊂如金属晶体类沸点A l >M g >N a ㊂同理可得碱金属从L i ңC s 沸点逐渐降低㊂共价晶体类沸点C >S i C >S i ,同理可得沸点C >B >S i ㊂至于离子晶体,其沸点高低与晶格能大小基本上成正比㊂即阴阳离子所带电荷越多,离子键就越强,沸点就越高;离子核间距离越大,离子键越弱,物质沸点越低,如M g O >N a C l ,M g O>C a O ㊂判断物质沸点高低的方法很多,要根据不同的题目采用不同的方法分析比较,灵活运用知识㊂8.状态法㊂一般来说,物质沸点高低按常温下的状态 固体>液体>气体 变化㊂例1 下列各组物质中,按熔点由低到高排列正确的是( )㊂A.O 2㊁I 2㊁H g B .C O 2㊁K C l ㊁S i O 2C .N a ㊁K ㊁R bD .S i C ㊁N a C l ㊁S O 2解析:本题主要考查离子晶体㊁共价晶体㊁分子晶体㊁金属晶体四类典型晶体熔点的关系㊂一般是分子晶体的熔点低于金属晶体与离子晶体,这两种晶体的熔点又低于共价晶体㊂同一类型晶体间,其微粒之间的作用力越强,熔点越高㊂O 2㊁I 2㊁H g 常温下分别是气体㊁固体和液体,所以熔点O 2<H g <l 2,故A 项不符合题意㊂C O 2㊁K C l ㊁S i O 2分别属于分子晶体㊁离子晶体和共价晶体,它们的熔点由低到高的顺序为C O 2<K C l <S i O 2,故B 项符合题意㊂N a ㊁K ㊁R b 都是金属晶体,结合碱金属的知识,熔点应为N a >K>R b,故C 项不符合题意㊂S i C ㊁N a C l ㊁S O 2分别属于共价晶体㊁离子晶体和分子晶体,它们的熔点为S i C >N a C l >S O 2㊂答案:B例2 下列物质熔点由高到低的排列顺序正确的是( )㊂A.S i O 2>KC l >H 2S >H 2O B .S i O 2>K C l >H 2O>H 2S C .H 2O>H 2S >K C l >S i O 2D .K C l >S i O 2>H 2O>H 2S 解析:M r (H 2O )<M r (H 2S),但H 2O 分子间存在氢键,故熔点H 2O>H 2S㊂答案:B93解题篇 经典题突破方法 高考理化 2023年12月例3下列物质的熔点由高到低排列,正确的是()㊂A.L i>N a>K>C sB.N a C l>K C l>R b C l>C s C lC.F2>C l2>B r2>I2D.金刚石>硅>碳化硅解析:A项皆为金属晶体,其熔点高低决定于金属键的强弱,由L iңC s,同主族元素原子半径逐渐增大,离子半径相应增大,金属键逐渐减弱,熔点逐渐降低,故A项正确㊂B 项中皆为离子晶体,其熔点高低决定于离子键的强弱,由N a+ңC s+半径逐渐增大,与C l-间的作用逐渐减弱,熔点逐渐降低,故B 项正确㊂C项中皆为分子晶体,其熔点决定于分子间作用力的大小,由F2ңI2相对分子质量逐渐增大,分子间作用力逐渐增强,熔点越来越高,故C项错误㊂D项中皆为共价晶体,其熔点的高低决定于共价键的强弱,由原子半径可推知三种键长的顺序是C C<C S i<S i S i,三种键能的强弱顺序是C C> C S i>S i S i,故D项错误㊂答案:A㊁B例4有以下烷烃:①3,3-二甲基戊烷 ②正庚烷③2-甲基己烷 ④正丁烷它们的沸点由高到低的顺序是()㊂A.③>①>②>④B.①>②>③>④C.②>③>①>④D.②>①>③>④解析:在同类烃中,碳链越长,即分子量越大的烃,熔沸点越高;当碳原子数相同时,支链越多,空间几何形状越对称的烃,熔沸点越低㊂四种物质中丁烷的相对分子质量最小,则沸点最低,而3,3-二甲基戊烷㊁庚烷㊁2-甲基己烷互为同分异构体,含有的支链越多,沸点越低,则沸点由高到低的顺序为②>③>①>④㊂答案:C例5下列物质的熔沸点高低顺序正确的是()㊂A.金刚石>晶体硅>二氧化硅>碳化硅B.C I4>C B r4>C C l4>C F4C.M g O>H2O>N2>O2D.金刚石>生铁>钠>纯铁解析:A项中,物质全部为共价晶体,判断其熔沸点高低可比较其原子半径:S i>C>O,故键长关系为S i S i>S i C>S i O>C C,键长越长,键能越小,故A项错误;B项中物质为同种类型的分子晶体,可比较其相对分子质量大小,相对分子质量越大,熔沸点越高,故B项正确㊂C项中N2与O2为同种类型的分子晶体,O2的熔沸点比N2的高,故C项错误㊂D项中熔沸点关系应为金刚石>纯铁>生铁>钠,合金的熔沸点比纯金属低,故D项错误㊂答案:B例6(1)氯酸钾熔化,粒子间克服的作用力;二氧化硅熔化,粒子间克服的作用力;碘的升华,粒子间克服的作用力㊂三种晶体的熔点由高到低的顺序是(填化学式)㊂(2)下列六种晶体:①C O2 ②N a C l③N a④S i⑤C S2 ⑥金刚石它们的熔点从低到高的顺序为(填序号)㊂解析:(1)氯酸钾是离子晶体,熔化离子晶体时需要克服离子键的作用力;二氧化硅是共价晶体,熔化共价晶体时需要克服共价键的作用力;碘为分子晶体,熔化分子晶体时需克服的是分子间的作用力㊂由于共价晶体是由共价键形成的空间网状结构的晶体,所以共价晶体的熔点最高,其次是离子晶体,由于分子间作用力与化学键相比较要小得多,所以碘的熔点最低㊂(2)先把六种晶体分类㊂共价晶体为④⑥,离子晶体为②,金属晶体为③,分子晶体为①⑤㊂由于C原子半径小于S i原子半径,所以金刚石的熔点高于晶体硅;C O2和C S2同属于分子晶体,其熔点与相对分子质量成正比,故C S2熔点高于C O2;N a在通常状况下是固态,而C S2是液态,C O2是气态,所以N a的熔点高于C S2和C O2;N a在水中即熔化成小球,说明它的熔点较N a C l低㊂答案:(1)离子键共价键分子间S i O2>K C l O3>I2(2)①⑤③②④⑥(责任编辑谢启刚)0 4解题篇经典题突破方法高考理化2023年12月。
高中化学物质熔沸点的判断
1.一般熔、沸点:固>液>气,如:碘单质>汞>CO2
2.同主族单质的熔、沸点
从上到下,金属单质的熔点逐渐降低;非金属单质熔点沸点逐渐升高。
但碳族元素特殊,即C,Si,Ge,Sn 越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。
3.同周期中熔沸点规律
①同周期通常会比较同一类型的元素单质熔沸点,比如说比较Na、Mg、Al的熔沸点,则由金属键键能决定,Al所带电荷最多,原子半径最小,所以金属键最强,故熔沸点是:Na<Mg<Al。
②非金属元素,一般不会比较它们单质之间的熔沸点,一般比较他们的氢化物的熔沸点。
比较时要注意CH4、NH3、H2O、HF他们的分子间除分子间作用力外,还有氢键,所以同主族氢化物熔沸点他们是最高的,其余的按分子间作用力大小排列。
如氧族元素氢化物的熔沸点是:H2O>H2Te>H2Se>H2S;卤素:HF>HI>HBr>HCl。
4.从晶体类型看熔、沸点规律
⑴不同类晶体:一般情况下,原子晶体>离子晶体>分子晶体
⑵同种类型晶体:构成晶体质点间的作用大,则熔沸点高,反之则小。
①离子晶体:化学式与结构相似时,离子所带的电荷数越高,阴阳离子半径之和越小,离子键越强,熔沸点越高。
反之越低。
如KF>KCl>KBr>KI
②分子晶体:对于同类分子晶体,式量越大,则熔沸点越高。
ⅰ组成和结构相似的分子晶体,相对分子质量越大,分子间作用力越强,物质的熔沸点越高。
如:CH4<SiH4<GeH4<SnH4。
ⅱ组成和结构不相似的物质(相对分子质量相近),分子极性越大,其熔沸点就越高。
如:CO>N2,CH3OH
>CH3—CH3。
ⅲ在高级脂肪酸形成的油脂中,不饱和程度越大,熔沸点越低。
如:C17H35COOH(硬脂酸)>C17H33COOH(油酸);
ⅳ烃、卤代烃、醇、醛、羧酸等有机物一般随着分子里碳原子数增加,熔沸点升高,如C2H6>CH4,C2H5Cl >CH3Cl,CH3COOH>HCOOH。
ⅴ同分异构体:链烃及其衍生物的同分异构体随着支链增多,熔沸点降低。
如:CH3(CH2)3CH3 (正)>CH3CH2CH(CH3)2(异)>(CH3)4C(新)。
芳香烃的异构体有两个取代基时,熔点按对、邻、间位降低。
(沸点按邻、间、对位降低)
注意:分子晶体的熔沸点由分子间作用力而定,分子晶体分子间作用力越大物质的熔沸点越高,反之越低。
(具有氢键的分子晶体,熔沸点反常地高,如:H2O>H2Te>H2Se>H2S,C2H5OH>CH3—O—CH3)。
③原子晶体:键长越小、键能越大,则熔沸点越高。
在原子晶体中成键原子之间共价键键长(两成键原子原子核之间的距离,由原子半径之和来判断)越短,键能越大,则熔点越高。
如半径之和金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)
键长:金刚石(C—C)>碳化硅(Si—C)>晶体硅(Si—Si)。
熔点:金刚石>碳化硅>晶体硅
④金属晶体:金属单质和合金属于金属晶体,在金属晶体中金属原子的价电子数越多,原子半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔沸点越高,反之越低。
如:Na<Mg<Al。
合金的熔沸点一般说比它各组份纯金属的熔沸点低。
如铝硅合金<纯铝(或纯硅)。
⑶常温常压下状态
①熔点:固态物质>液态物质
②沸点:液态物质>气态物质
粒子半径大小的判断
1、电子层数相同的原子,核电荷数大的半径小;
2、电子层结构相同的离子,核电荷数多的半径小;
3、最外层电子数相同的原子,核电荷数多的半径大;
4、核电荷数相同时,核外电子数越多,半径越大(同种元素的粒子,阴离子半径>原子半径>阳离子半径);
5、同周期元素,阴离子半径大于阳离子半径;
6、电子层数越多的原子,半径越大。
其他规律:
1、如果元素化合价的绝对值+原子最外层电子数=8,则化合物中各元素达8电子稳定结构
如:224O C -+ 844=++原子:C 862=+-原子:O 则达到8电子稳定结构。
2、分子极性的判断
(1)双原子非金属单质分子都是非极性分子,如H 2、O 2。
(2)双原子化合物分子都是极性分子,如l HC 、r HB 。
(3)判断AB n 型分子可参考使用以下经验规律:
若A 的化合价的绝对值等于该元素所在的主族序数(最外层电子数),则为非极性分子,如CO 2。
3、“相似相溶”原理:极性分子组成的溶质易溶于由极性分子组成的溶剂;非极性分子组成的溶质易溶于由非极性分子组成的溶剂。
4、。