专题突破7 方案设计题
- 格式:pptx
- 大小:3.91 MB
- 文档页数:19
中考数学专题复习——方案设计问题(经典题型)【专题点拨】方案设计型问题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案,有时也给出几个不同的解决方案,要求判断哪个方案较优。
它包括测量方案设计、作图方案设计和经济类方案设计等。
【典例赏析】【例题1】(2017黑龙江佳木斯)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?【考点】FH:一次函数的应用;CE:一元一次不等式组的应用.【分析】(1)根据总利润=三种蔬菜的利润之和,计算即可;(2)由题意,列出不等式组即可解决问题;(3)由题意,列出二元一次不等式,求出整数解即可;【解答】解:(1)由题意y=x+1.5×2x+2=﹣2x+200.(2)由题意﹣2x+200≥180,解得x≤10,∵x≥8,∴8≤x≤10.∵x为整数,∴x=8,9,10.∴有3种种植方案,方案一:种植西红柿8公顷、马铃薯76公顷、青椒16公顷.方案二:种植西红柿9公顷、马铃薯73公顷、青椒18公顷.方案三:种植西红柿10公顷、马铃薯70公顷、青椒20公顷.(3)∵y=﹣2x+200,﹣2<0,∴x=8时,利润最大,最大利润为184万元.设投资A种类型的大棚a个,B种类型的大棚b个,由题意5a+8b≤×184,∴5a+8b≤23,∴a=1,b=1或2,a=2,b=1,a=3,b=1,∴可以投资A种类型的大棚1个,B种类型的大棚1个,或投资A种类型的大棚1个,B种类型的大棚2个,或投资A种类型的大棚2个,B种类型的大棚1个,或投资A种类型的大棚3个,B种类型的大棚1个.【例题2】(2017内蒙古赤峰)为了尽快实施“脱贫致富奔小康”宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,依题意得: =,解得x=5.经检验x=5是原方程的解,且符合题意.答:梨树苗的单价是5元;(2)设购买梨树苗种树苗a棵,苹果树苗则购买棵,依题意得:(5+2)+5a≤6000,解得a≥850.答:梨树苗至少购买850棵.【例题3】(2017毕节)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.【考点】B7:分式方程的应用;95:二元一次方程的应用.【分析】(1)首先设这种笔单价为x元,则本子单价为(x﹣4)元,根据题意可得等量关系:30元买这种本子的数量=50元买这种笔的数量,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,根据题意可得这种笔的单价×这种笔的支数m+本子的单价×本子的本数n=1000,再求出整数解即可.【解答】解:(1)设这种笔单价为x元,则本子单价为(x﹣4)元,由题意得:=,解得:x=10,经检验:x=10是原分式方程的解,则x﹣4=6.答:这种笔单价为10元,则本子单价为6元;(2)设恰好用完100元,可购买这种笔m支和购买本子n本,由题意得:10m+6n=100,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买这种笔7支,购买本子5本;②购买这种笔4支,购买本子10本;③购买这种笔1支,购买本子15本.【能力检测】1.(2017黑龙江鹤岗)某企业决定投资不超过20万元建造A、B两种类型的温室大棚.经测算,投资A种类型的大棚6万元/个、B种类型的大棚7万元/个,那么建造方案有()A.2种B.3种C.4种D.5种【考点】95:二元一次方程的应用.【分析】直接根据题意假设出未知数,进而得出不等式进而分析得出答案.【解答】解:设建造A种类型的温室大棚x个,建造B种类型的温室大棚y个,根据题意可得:6x+7y≤20,当x=1,y=2符合题意;当x=2,y=1符合题意;当x=3,y=0符合题意;故建造方案有3种.故选:B.2.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.3.(2017黑龙江鹤岗)由于雾霾天气频发,市场上防护口罩出现热销.某药店准备购进一批口罩,已知1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)药店准备购进这两种型号的口罩共50个,其中A型口罩数量不少于35个,且不多于B型口罩的3倍,有哪几种购买方案,哪种方案最省钱?【考点】CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)设一个A型口罩的售价是a元,一个B型口罩的售价是b元,根据:“1个A型口罩和3个B型口罩共需26元;3个A型口罩和2个B型口罩共需29元”列方程组求解即可;(2)设A型口罩x个,根据“A型口罩数量不少于35个,且不多于B型口罩的3倍”确定x的取值范围,然后得到有关总费用和A型口罩之间的关系得到函数解析式,确定函数的最值即可.【解答】解:(1)设一个A型口罩的售价是a元,一个B型口罩的售价是b元,依题意有:,解得:.答:一个A型口罩的售价是5元,一个B型口罩的售价是7元.(2)设A型口罩x个,依题意有:,解得35≤x≤37.5,∵x为整数,∴x=35,36,37.方案如下:B型B型方案口罩口罩一35 15二36 14三37 13设购买口罩需要y元,则y=5x+7(50﹣x)=﹣2x+350,k=﹣2<0,∴y随x增大而减小,∴x=37时,y的值最小.答:有3种购买方案,其中方案三最省钱.4.(2017•温州)小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.(1)若区域Ⅰ的三种瓷砖均价为300元/m2,面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2,且两区域的瓷砖总价为不超过12000元,求S的最大值;(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等①求AB,BC的长;②若甲、丙两瓷砖单价之和为300元/m2,乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.【考点】C9:一元一次不等式的应用;HE:二次函数的应用;LB:矩形的性质.【分析】(1)根据题意可得300S+(48﹣S)200≤12000,解不等式即可;(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,由此即可解决问题;②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,由PQ∥AD,可得甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,由0<s<12,可得0<<12,解不等式即可;【解答】解:(1)由题意300S+(48﹣S)200≤12000,解得S≤24.∴S的最大值为24.(2)①设区域Ⅱ四周宽度为a,则由题意(6﹣2a):(8﹣2a)=2:3,解得a=1,∴AB=6﹣2a=4,CB=8﹣2a=6.②设乙、丙瓷砖单价分别为5x元/m2和3x元/m2,则甲的单价为(300﹣3x)元/m2,∵PQ∥AD,∴甲的面积=矩形ABCD的面积的一半=12,设乙的面积为s,则丙的面积为(12﹣s),由题意12(300﹣3x)+5x•s+3x•(12﹣s)=4800,解得s=,∵0<s<12,∴0<<12,∴0<x<50,∴丙瓷砖单价3x的范围为0<3x<150元/m2.【点评】本题考查不等式的应用、矩形的性质等知识,解题的关键是理解题意,学会构建方程或不等式解决实际问题,属于中考常考题型.5. (2017宁夏)某商店分两次购进 A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)A B第一次30 40 3800第二次40 30 3200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.【分析】(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据总利润=单件利润×购进数量,即可得出w与m之间的函数关系式,由A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.【解答】解:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据题意得:,解得:.答:A种商品每件的进价为20元,B种商品每件的进价为80元.(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据题意得:w=(30﹣20)(1000﹣m)+(100﹣80)m=10m+10000.∵A种商品的数量不少于B种商品数量的4倍,∴1000﹣m≥4m,解得:m≤200.∵在w=10m+10000中,k=10>0,∴w的值随m的增大而增大,∴当m=200时,w取最大值,最大值为10×200+10000=12000,∴当购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元.【点评】本题考查了一次函数的应用、二元一次方程组的应用以及解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出w与m之间的函数关系式.。
《方案设计问题》专题【命题趋势】方案设计问题是也是中考数学中一个热门题型,一般题量为1题,多为解答题,分值约8-10分.方案设计型问题是通过一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的知识技能和方法,通过设计或操作,寻求恰当的解决方案.有时也给出几个不同的解决方案,要求半断哪个方案最优.它包括经济类方案设计、作图类方案设计、测量类方案设计等类型.方案设计问题特点是题中给出几种方案让考生通过计算选取最佳方案,或给出设计要求,让考生自己设计方案,这种方案有时不止一种,因而又其有开放型题的特点,此种题型考查考生的数学应用意识,命题的背景广泛,考生自由施展才华的空间大,因此倍受命题者的青睐。
【满分技巧】一.方案设计型问题一般解决步骤﹕一般包括“审题——建立相应模型——应用相关知识解决问题”三个步骤.其中根据具体问题建立相应的数学模型是解决这类问题的关键.二.初中数学主要数学模型﹕1.方程(组)模型.2.函数模型(一次函数、二次函数、反比例函数)3.不等式模型根据具体问题建立相应的数学模型,其实质就是利用相关知识解决生活实际问题,所谓建立数学模型,主要是因为实际问题中可能没有使用数学化的语言表示一些具体的量或数值,需要我们自己去建立或设出相应的符号,把生活实际问题数学化.以方便我们去利用相关数学知识解决这类问题.三.熟练掌握和运用数学的常用思想方法我们在解决任何问题时,往往都是利用现有的知识结合一些重要的数学思想方法去解决问题,我们一定要把实际问题转化成数学问题,利用现有的知识和方法,结合模型、转化、类比等数学思想解决问题.【限时检测】一、选择题1. (2019 黑龙江省鸡西市)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有( )A.4种B.3种C.2种D.1种2. (2019 黑龙江省绥化市)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种3. (2019 湖北省仙桃潜江天门江汉油田)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种4. (2019 江西省)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有()A.3种B.4种C.5种D.6种5. (2019 四川省绵阳市)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A. 3种B. 4种C. 5种D. 6种二、作图题6. (2019 四川省广安市)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)7. (2019 浙江省宁波市)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)三、解答题8. (2019 贵州省遵义市)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B 型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?9. (2019 黑龙江省鸡西市)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?10. (2019 湖北省荆州市)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?11. (2019 湖南省郴州市)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?12. (2019 湖南省衡阳市)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?13. (2019 湖南省张家界市)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?14. (2019 山东省滨州市)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.15. (2019 四川省巴中市)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?16. (2019 四川省广安市)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.17. (2019 浙江省温州市)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.18. (2019 河南省)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.【限时检测】一、选择题1. (2019 黑龙江省鸡西市)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有( )A.4种B.3种C.2种D.1种【答案】B【解析】设一等奖个数x个,二等奖个数y个,根据题意,得6x+4y=34,使方程成立的解有17xy=⎧⎨=⎩,34xy=⎧⎨=⎩,51xy=⎧⎨=⎩,∴方案一共有3种;故选:B.2. (2019 黑龙江省绥化市)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种【答案】C【解析】设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,1≤x<3,∵x为整数,∴x=1或2或3,∴有3种购买方案.故选:C.3. (2019 湖北省仙桃潜江天门江汉油田)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种【答案】B【解析】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为整数,∴,,,.故选:B.4. (2019 江西省)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有()A.3种B.4种C.5种D.6种【答案】D【解析】共有6种拼接法,如图所示.故选:D.5. (2019 四川省绵阳市)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A. 3种B. 4种C. 5种D. 6种【答案】C【解析】设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.二、作图题6. (2019 四川省广安市)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)【解析】如图所示7. (2019 浙江省宁波市)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【解析】(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.三、解答题8. (2019 贵州省遵义市)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B 型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?【解析】(1)设租用A ,B 两型客车,每辆费用分别是x 元、y 元,43107003410300x y x y +=⎧⎨+=⎩, 解得,17001300x y =⎧⎨=⎩, 答:租用A ,B 两型客车,每辆费用分别是1700元、1300元;(2)设租用A 型客车a 辆,租用B 型客车b 辆,45302401700130010000a b a b +⎧⎨+⎩…„, 解得,25a b =⎧⎨=⎩,42a b =⎧⎨=⎩,51a b =⎧⎨=⎩, ∴共有三种租车方案,方案一:租用A 型客车2辆,B 型客车5辆,费用为9900元,方案二:租用A 型客车4辆,B 型客车2辆,费用为9400元,方案三:租用A 型客车5辆,B 型客车1辆,费用为9800元,由上可得,方案二:租用A 型客车4辆,B 型客车2辆最省钱.9. (2019 黑龙江省鸡西市)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x 个,求有多少种购买方案?(3)设学校投入资金W 元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?【解析】(1)设购买一个甲种文具a 元,一个乙种文具b 元,由题意得:235330a b a b +=⎧⎨+=⎩,解得155a b =⎧⎨=⎩, 答:购买一个甲种文具15元,一个乙种文具5元;(2)根据题意得:955155(120)1000x x +-剟,解得35.540x 剟,x Q 是整数,36x ∴=,37,38,39,40.∴有5种购买方案;(3)155(120)10600W x x x =+-=+,100>Q ,W ∴随x 的增大而增大,当36x =时,1036600960W =⨯+=最小(元),1203684∴-=.答:购买甲种文具36个,乙种文具84个时需要的资金最少,最少资金是960元.10. (2019 湖北省荆州市)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示: 甲型客车 乙型客车 载客量(人/辆)35 30 租金(元/辆) 400 320学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为 辆;(3)学校共有几种租车方案?最少租车费用是多少?【解析】(1)设参加此次研学活动的老师有x 人,学生有y 人,依题意,得:,解得:.答:参加此次研学活动的老师有16人,学生有234人.(2)∵(234+16)÷35=7(辆)……5(人),16÷2=8(辆),∴租车总辆数为8辆.故答案为:8.(3)设租35座客车m辆,则需租30座的客车(8﹣m)辆,依题意,得:,解得:2≤m≤5.∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8﹣m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.11. (2019 湖南省郴州市)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?【解析】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,∴x+2=8.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件.(2)设A型机器安排m台,则B型机器安排(10﹣m)台,依题意,得:,解得:6≤m≤8.∵m为正整数,∴m=6,7,8.答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.12. (2019 湖南省衡阳市)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?【解析】(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,依题意,得:=,解得:x=5,经检验,x=5是原方程的解,且符合题意,∴x+10=15.答:购买一个A商品需要15元,购买一个B商品需要5元.(2)设购买B商品m个,则购买A商品(80﹣m)个,依题意,得:,解得:15≤m≤16.∵m为整数,∴m=15或16.∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.13. (2019 湖南省张家界市)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?【解析】(1)设购买甲种树苗x棵,购买乙种树苗(2x﹣40)棵,由题意可得,30x+20(2x﹣40)=9000,50x=9800,x=196,∴购买甲种树苗196棵,乙种树苗352棵;(2)设购买甲树苗y棵,乙树苗(10﹣y)棵,根据题意可得,30y+20(10﹣y)≤230,10y≤30,∴y≤3;购买方案1:购买甲树苗3棵,乙树苗7棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵;购买方案4:购买甲树苗0棵,乙树苗10棵;14. (2019 山东省滨州市)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.【解析】(1)设辆甲种客车与1辆乙种客车的载客量分别为x人,y人,,解得:,答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车x 辆,依题意有:,解得:6>x ≥4,因为x 取整数,所以x =4或5,当x =4时,租车费用最低,为4×400+2×280=2160.15. (2019 四川省巴中市)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?【解析】①设乙种物品单价为x 元,则甲种物品单价为(x +10)元,由题意得: 500x+10=450x解得x =90经检验,x =90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y 件,则乙种物品购进(55﹣y )件由题意得:5000≤100y +90(55﹣y )≤5050解得5≤y ≤10∴共有6种选购方案.16. (2019 四川省广安市)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元.(1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.【解析】(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元,,解得,,答:1只A型节能灯的售价是5元,1只B型节能灯的售价是7元;(2)设购买A型号的节能灯a只,则购买B型号的节能灯(200﹣a)只,费用为w元,w=5a+7(200﹣a)=﹣2a+1400,∵a≤3(200﹣a),∴a≤150,∴当a=150时,w取得最小值,此时w=1100,200﹣a=50,答:当购买A型号节能灯150只,B型号节能灯50只时最省钱.17. (2019 浙江省温州市)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【解析】(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a =10,则费用为100×10+100×b ×0.8≤1200,得b ≤2.5,∴b 的最大值是2,此时a +b =12,费用为1160元;若a =11,则费用为100×11+100×b ×0.8≤1200,得b ≤54∴b 的最大值是1,此时a +b =12,费用为1180元;若a ≥12,100a ≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a <10时,若a =9,则费用为100×9+100b ×0.8+100×1×0.6≤1200,得b ≤3,∴b 的最大值是3,a +b =12,费用为1200元;若a =8,则费用为100×8+100b ×0.8+100×2×0.6≤1200,得b ≤3.5,∴b 的最大值是3,a +b =11<12,不合题意,舍去;同理,当a <8时,a +b <12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.18. (2019 河南省)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元.(1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13,请设计出最省钱的购买方案,并说明理由.【解析】(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得,∴,∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30﹣z )个,购买奖品的花费为W 元,由题意可知,z ≥13(30﹣z ),∴z ≥152W =30z +15(30﹣z )=450+15z ,当z =8时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少.。
专题07 不等式与不等式组重难点突破讲义【典例解析】题型一、不等式及其性质【例1】(2020·嵊州市期中)式子:①35;②450x +>;③3x =;④2x x +;⑤4x ≠-;⑥21x x +≥+.其中是不等式的有( ). A .2个 B .3个C .4个D .5个【答案】C.【解析】解:①3<5;②4x+5>0;⑤x≠-4;⑥x+2≥x+1是不等式, ∴共4个不等式. 故答案为:C .【例2-1】(2021·浙江杭州模拟)若x y >,则( ) A .22x y < B .1x y >+C .2222x y --<--D .11x y -<-【答案】C.【解析】解:A .∵x>y ,∴2x>2y , A 不正确;B .∵x>y ,∴x+1>y+1, B 不正确;C .∵x>y ,∴-2x-2<-2y-2, C 正确;D .∵x>y ,∴x-1>y-1, D 不正确; 故答案为:C .【例2-2】(2019·云南玉溪期末)已知a <b ,则下列不等式一定成立的是( ) A .20182018a b< B .﹣2a <﹣2b C .a ﹣2018>b ﹣2018 D .a+2018>b+2018【答案】A.【解析】解:A 、∵a<b ,2018>0, ∴20182018a b<,正确; B 、∵a<b ,-2<0,∴ -2a>-2b ,错误; C 、∵a<b ,∴a-2018<b-2018,错误; D 、∵a<b ,∴a+2018<b+2018,错误; 故答案为:A .【例3】若不等式(2)2a x a ->-的解是1x <,则a 的取值范围是( ) A .0a < B .2a >C .2a <D .2a <-【答案】C.【解析】解:不等式(a -2)x >a -2的解集为x <1, ∴a -2<0, 解得:a <2, 故答案为:C .【例4】(2020·山西期中)李明乘车驶入地下车库时,发现车库入口处有几个标志码(如图1),其中第一个标志(如图2)表示“限高2m”.若设车的高度为x m ,则以下几个不等式中对此标志解释准确的是 ( )A .2x ≥B .2x >C .2x ≤D .2x <【答案】C.【例5】(2020·成武县期中)关于x 的不等式2x-a≤-1的解集为x≤1,则a 的值是( ) A .4B .3C .2D .1【答案】B.【解析】解:2x−a≤−1,2x≤a−1,x≤12a -, ∵x≤1, ∴12a -=1, 解得:a =3, 故答案为:B .【例6】(2020·哈尔滨月考)若关于x 的不等式(-1) 1m x m <-的解集为1x >,则m 的取值范围是( ) A .1m B .1m <C .1m ≠D .1m =【答案】B.【解析】解:∵不等式(m-1)x <m-1的解集为x >1, ∴m-1<0,即m <1, 故答案为:B . 题型二、含参数类【例7-1】(2020·湖南株洲市)关于x 的不等式30x a -≤只有两个正整数解,则a 的取值范围是_______ 【答案】6≤a <9.【解析】解:原不等式解得x≤3a, 解集中只有两个正整数解,这两个正整数解是1,2, ∴2≤3a<3, 解得:6≤a <9. 故答案为:6≤a <9.【例7-2】(2020·广西南宁市期末)若关于x 的不等式2x +a ≤0只有两个正整数解,则a 的取值范围是( ) A .﹣6≤a ≤﹣4 B .﹣6<a ≤﹣4C .﹣6≤a <﹣4D .﹣6<a <﹣4【答案】B.【解析】解:解不等式2x +a ≤0,得:x ≤﹣2a,不等式只有两个正整数解,这两个正整数解为1、2, 则2≤﹣2a<3, 解得:﹣6<a ≤﹣4, 故答案为:B .【变式7-1】(2021·北京专题练习)已知关于x 的不等式21x m x -<-的正整数解是1,2,3,则m 的取值范围是( ) A .34m < B .34m <C .811m <D .811m <【答案】C.【解析】解原不等式得:13m x +<不等式的正整数解为1,2,3,∴1343m +<解得:8<m≤11 故答案为:C.【变式7-2】(2021·中山大学附属中学)若关于x 的不等式3x +1<m 的正整数解是1,2,3,则整数m 的最大值是_____. 【答案】13.【解析】解:解不等式3x +1<m ,得13m x -<. ∵关于x 的不等式3x +1<m 的正整数解是1,2,3, ∴1343m -<≤, ∴1013m <≤,∴整数m 的最大值是13. 故答案为:13.【变式7-3】(2020·海淀区期中)已知关于x 的不等式2x ﹣k >3x 只有两个正整数解,则k的取值范围为_____. 【答案】-3≤k <-2. 【解析】解:∵2x -k >3x , ∴2x -3x >k , ∴x <-k ,因为只有两个正整数解,则2<-k ≤3, ∴-3≤k <-2, 故答案为:-3≤k <-2.【变式7-4】若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为( ) A .74a -<<- B .74a -≤≤-C .74a -≤<-D .74a -<≤-【答案】D.【例8-1】(2021·陕西西安市月考)不等式组9511x x x m +<+⎧⎨>+⎩的解集是2x >,则m 的取值范围是( ) A .2m B .1mC .1mD .1m <【答案】C.【解析】解:解不等式①得x>2,解不等式②得:x>m+1, ∵不等式组的解集是x>2, ∴m+1≤2 解得:m≤1, 故答案为:C .【例8-2】(2020·浙江期末)若关于x 的不等式组11x x m <⎧⎨>-⎩无解,则m 的取值范围是( )A .2m <B .2m >C .2m ≥D .2m ≤【答案】C.【解析】解:∵不等式组11x x m <⎧⎨>-⎩无解,∴m -1≥1, 解得:m ≥2, 故答案为:C .【例8-3】若不等式组5300x x m -≥⎧⎨-≥⎩有实数解.则实数m 的取值范围是 ( )A .53m ≤B .5<3m C .53m >D .53m ≥【答案】A.【解析】解:5300x x m -≥⎧⎨-≥⎩①②由①,得x 53≤;由②,得x ≥m , ∵不等式组有实数解, ∴m 53≤. 故答案为:A .【例8-4】(2020·宁波市期末)若关于x 的不等式0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( ) A .68m << B .67≤<mC .67m ≤≤D .67m <≤【答案】D. 【解析】解:解不等式0721x m x -<⎧⎨-≤⎩①②,由①式得,x<m ,由②式得x≥3,故m 的取值范围是:6<m≤7, 故答案为:D .【变式8-1】若关于x 的一元一次不等式组2132x x x m ->+⎧⎨<⎩的解集是3x <-,则m 的取值范围是( ) A .3m ≥- B .3m >-C .3m ≤-D .3m <-【答案】A.【解析】解:解不等式2x -1>3x +2,得:x <-3, ∵不等式组2132x x x m->+⎧⎨<⎩的解集为x <-3,∴m ≥-3. 故答案为:A .【变式8-2】若关于x 的一元一次不等式组12x x m<≤⎧⎨>⎩有解,则m 的取值范围为( )A .2m <B .2m ≤C .1m <D .12m ≤<【答案】A.【解析】解:∵不等式组12x x m <≤⎧⎨>⎩有解,∴m <2, 故答案为:A .【变式8-3】已知关于x 的不等式6m x <<的整数解共有3个,则m 的取值范围为_____________. 【答案】2≤m <3.【解析】解:由题意得:符合题意的整数解为5,4,3 ∴m 不能取值3,可以取值2 ∴2≤m <3故答案为:2≤m <3. 题型三、不等式组及其解法【例9】(2020·成都市锦江区月考)若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是3x my m =⎧⎨=+⎩(m 为常数),方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩的解x 、y 满足3x y +>,则m 的取值范围为______.【答案】m >2.【解析】解:方程组111222(2)2(2)2(2)2(2)2a x y b x y c a x y b x y c +++=⎧⎨+++=⎩,可转换为1112221(2)21(2)2a x y b x y c a x y b x y c ⎧⎛⎫+++= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++= ⎪⎪⎝⎭⎩,∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解集为3x my m =⎧⎨=+⎩,∴方程组1112221(2)21(2)2a x yb x yc a x y b x y c ⎧⎛⎫+++= ⎪⎪⎪⎝⎭⎨⎛⎫⎪+++= ⎪⎪⎝⎭⎩的解为:1223x y m x y m ⎧+=⎪⎨⎪+=+⎩①②,由②-①得:x=2把x=2代入①得:y=m -1, ∴x+y=m+1>3, ∴m>2, 故答案为:m>2.【例10】(2021·武城县四女寺镇明智中学九年级一模)不等式组1124223122x x x x ⎧+>-⎪⎪⎨⎪-≤⎪⎩的解集在数轴上表示正确的是( ) A .B .C .D .【答案】A.【解析】解:1124223122x x x x ⎧+>-⎪⎪⎨⎪-≤⎪⎩①②,由①得:x >-3,由②得:x ≤1, ∴不等式组的解为:-3<x ≤1,在数轴上表示如下:故答案为:A .【例11】(2020·山东枣庄月考)若关于,x y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足 3x y +>-,求出满足条件的m 的所有正整数数值.【答案】1、2、3、4.【解析】解:由23224x y m x y +=-+⎧⎨+=⎩①② ①+②得:3x+3y=-3m+6即x+y=-m+2>-3 ∴m<5满足条件的m 的所有正整数数值是1、2、3、4. 【例12】(2021·天津河西区)解不等式组321251x x x ≤+⎧⎨+≥-⎩①②请结合题意填空,完成本题的解答. (1)解不等式①,得________; (2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为______.【答案】(1)1x ≤;(2)3x ≥-;(3)见解析;(4)31x -≤≤【例13】(2021·江西模拟)解不等式组:3(2)41213x x x x --≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示它的解集.【答案】x ≤1.【解析】解:3(2)4?121?3x x x x --≥-⎧⎪⎨+>-⎪⎩①②,∵解不等式①得:x ≤1,解不等式②得:x <4, ∴不等式组的解集为:x ≤1, 在数轴上表示不等式组的解集为:.【例14】如果一元一次方程的解是一元一次不等式组的一个解,则称该一元一次方程为该不等式组的一个关联方程.如一元一次方程213x -=的解是2x =,一元一次不等式组21354x x >⎧⎨-<⎩的解集是132x <<,我们就说一元一次方程213x -=是一元一次不等式组21354x x >⎧⎨-<⎩的一个关联方程. (1)在方程①310x -=,②240x -=,③(21)7x x +-=-中,不等式组52322x x x x -<-+⎧⎨->-+⎩的关联方程是 ;(填序号)(2)若不等式组112132x x x ⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数,则这个关联方程可以是 ;(写出一个即可)(3)若方程92x x -=,132()2x x +=+都是关于x 的不等式组22x x mx m <-⎧⎨-⎩的关联方程,直接写出m 的取值范围.【答案】(1)②;(2)x-1=0;(3)1≤m <2. 【解析】解:(1)解不等式组52322x x x x -<-+⎧⎨->-+⎩得:712x <<, ∵方程①的解为13x =;方程②的解为x=2;方程③的解为:x=-2,∴不等式组的关联方程是②,故答案为:②;(2)解不等式组112132x x x ⎧-<⎪⎨⎪+>-+⎩ 得:1342x <<, 所以不等式组的整数解为:x=1,故答案为:x-1=0;(3)解不等式组22x x m x m<-⎧⎨-⎩ 得:2m x m <+.方程9-x=2x 的解为:x=3, 方程132()2x x +=+的解为:x=2, 其是关于x 的不等式组22x x m x m<-⎧⎨-⎩的关联方程, ∴m 222m 323m m <⎧⎪+≥⎪⎨<⎪⎪+≥⎩, 解得:1≤m <2∴m 的取值范围是1≤m <2.题型四、实际应用【例15】(2020·安徽合肥)春节期间某商场为促销,将定价为50元/件的商品如下销售:一次性购买不超过5件按照原价销售;一次性购买超过5件则按原价的八折出售.旗旗现在有290元,则最多可购买这种商品( )件.A .6B .7C .8D .9【答案】B.【解析】解:设旗旗可以购买x 件商品,∵290>250,∴旗旗购买的商品超过5件,50×0.8x≤290,解得:x≤714. ∵x 为整数,∴x 的最大值为7.故答案为:B .【例16】(2021·合肥市期中)阿慧在店内购买两种蛋糕当伴手礼,如图为蛋糕的价目表.已知阿慧共购买10盒蛋糕,花费的金额不超过500元.若他将蛋糕分给75位同事,每人至少能拿到一个蛋糕,则阿慧花多少元购买蛋糕?( )A .430B .450C .460D .490【答案】D. 【解析】解:设阿慧购买x 盒桂圆蛋糕,则购买(10-x )盒金枣蛋糕,则()()7040105001261075x x x x ⎧+-≤⎪⎨+-≥⎪⎩, 解得:122≤x ≤133, ∵x 是整数,∴x =3,70×3+40×(10-3)=490(元).故答案为:D .【例17-1】(2020·河南驻马店期中)阅读以下结论:(1)若|x |=a (a ≥0),则x =±a . (2)若|x |>a (a >0),则x >a 或x <﹣a ;若|x |<a (a >0),则﹣a <x <a .(3)若(x ﹣a )(x ﹣b )>0(0<a <b ),则x >b 或x <a ;若(x ﹣a )(x ﹣b )<0(0<a <b ),则a <x <b .根据上述结论,解答下面问题:(1)解方程:|3x ﹣2|﹣4=0.(2)解不等式:|3x ﹣2|﹣4>0.(3)解不等式:|3x ﹣2|﹣4<0.(4)解不等式:(x ﹣2)(x ﹣5)>0.(5)解不等式:(2x ﹣3)(2x ﹣5)<0.【答案】(1)x =2或x =﹣23;(2)x >2或x <﹣23;(3)﹣23<x <2;(4)x >5或x <2;(5)32<x <52. 【解析】(1)解:|3x ﹣2|﹣4=0,3x ﹣2=4或3x ﹣2=﹣4,解得x =2或x =23-; (2)解:|3x ﹣2|﹣4>0,3x ﹣2>4或3x ﹣2<﹣4,解得x >2或x <23-; (3)解:|3x ﹣2|﹣4<0,﹣4<3x ﹣2<4, 解得23-<x <2; (4)解:(x ﹣2)(x ﹣5)>0,x ﹣5>0或x ﹣2<0,解得x >5或x <2;(5)解不等式:(2x ﹣3)(2x ﹣5)<0,3<2x <5, 解得32<x <52. 【例17-2】(2020·北京通州区期末)对于一个数x ,我们用(]x 表示小于x 的最大整数,例如: (](](]2.62,34,109=-=-=.(1)填空:(]2020___________-=,(]2.4___________-=,(]0.7___________=; (2)如果,a b 都是整数,(]a 和(]b 互为相反数,求代数式224a b b -+的值;(3)如果(]3x =,求x 的取值范围.【答案】(1)-2021,-3,0;(2)4;(3)-3<x ≤-2或3<x ≤4.【解析】解:(1)(-2020]=-2021,(-2.4]=-3,(0.7]=0;故答案为:-2021,-3,0.(2)∵a ,b 都是整数,且(a]和(b]互为相反数,∴a-1+b-1=0,∴a+b=2,∴a 2-b 2+4b=(a-b )(a+b )+4b=2(a-b )+4b=2(a+b )=2×2=4;(3)当x <0时,∵|(x]|=3,∴x >-3,∴-3<x≤-2;当x >0时,∵|(x]|=3,∴x >3,∴3<x≤4.故x 的范围取值为-3<x≤-2或3<x≤4.【例18】(2020·四川南充期末)已知方程组2331x y k x y k +=+⎧⎨-=--⎩的解中,x 是非负数,y 是正数.(1)求k 的取值范围;(2)化简:21k k --+;(3)当k 为何整数时,不等式221x k kx +<+的解集为1x >.【答案】(1)425k -<≤;(2)-2k+1;(3)1或2.【解析】解:(1)解方程组2331x y k x y k +=+⎧⎨-=--⎩①②①+②,得 22x k =-+ ∴12kx =-+①-②,得 254y k =+ ∴522ky =+ 已知102k x =-+,且5202ky =+>∴k 2≤且45k >- ∴425k -<≤(2)∵425k -<≤∴20k -≤且10k +>. ∴21k k --+(2)(1)k k =---+21k =-+ 即21k k --+21k =-+;(3)∵221x k kx +<+∴221kx x k ->-∴(21)21k x k ->-∵解集为 1x >,∴210k ->. ∴12k > 结合425k -<≤ 得122k <≤.∴整数k=1或k=2.【例19】某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A ,B 两种树苗,共21棵,已知A 种树苗每棵90元,B 种树苗每棵70元.设购买A 种树苗x 棵,购买两种树苗所需费用为y 元.(1)求y 与x 的函数表达式,其中0≤x ≤21;(2)若购买B 种树苗的数量少于A 种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【答案】见解析.【解析】解:(1)根据题意,得:y =90x +70(21﹣x )=20x +1470,所以函数解析式为:y =20x +1470;(2)∵购买B 种树苗的数量少于A 种树苗的数量,∴21﹣x <x ,解得:x >10.5,又∵y =20x +1470,且x 取整数,∴当x =11时,y 有最小值=1690,∴使费用最省的方案是购买B 种树苗10棵,A 种树苗11棵,所需费用为1690元.【例20】(2021·河南郑州市期中)某班对期中考试进步的同学进行表彰,若购买百乐笔15支,晨光笔20支,需花费250元;若购买百乐笔10支,晨光笔25支,需花费225元. (1)求百乐笔、展光笔的单价;(2)如果再次购买百乐笔、晨光笔共35支,并且购买两种笔的总费用不超过300元,求至多购买多少支百乐笔?【答案】见解析.【解析】解:(1)设百乐笔的单价为x 元/支、展光笔的单价为y 元/支,根据题意得,15202501025225x y x y +=⎧⎨+=⎩,整理得:34502545x y x y +=⎧⎨+=⎩①② ①×2-②×3得:y=5把y=5代入①得:x=10105x y =⎧∴⎨=⎩答:百乐笔的单价为10元、展光笔的单价为5元.(2)设购买百乐笔m 支,则晨光笔(35-m )支,由题意得:()10535300m m +-≤,解得:m ≤25,答:至多购买25支百乐笔.【例21】某学校为了增强学生体质,加强体育锻炼,决定让各班购买跳绳和毽子作为活动器材.已知购买2根跳绳和5个毽子共需32元;购买4根跳绳和3个毽子共需36元. (1)求购买一根跳绳和一个毽子分别需要多少元;(2)某班需要购买跳绳和毽子的总数量是54,且购买的总费用不能超过260元;若要求购买跳绳的数量多于20根,通过计算说明共有哪几种购买方案.【答案】见解析.【解析】解:(1)设购买一根跳绳需要x 元,购买一个毽子需要y 元,依题意,得:25324336x y x y +=⎧⎨+=⎩, 解得:64x y =⎧⎨=⎩. 答:购买一根跳绳需要6元,购买一个毽子需要4元;(2)设购买m 根跳绳,则购买(54−m )个毽子,由题意,得:()645426020m m m ⎧+-≤⎨>⎩,解得:20<m ≤22.∵m 为正整数,∴m 可以为21,22.∴共有2种购买方案,方案1:购买21根跳绳,33个毽子;方案2:购买22根跳绳,32个毽子.。
2021年中考数学复习之专题突破训练《专题七:三角形初步和全等三角形》一、选择题1.如图,要用“HL ”判定Rt ABC ∆和Rt △A B C '''全等的条件是( )A .AC AC ='',BCBC ='' B .A A ∠=∠',AB A B =''C .AC AC ='',AB A B =''D .B B ∠=∠',BC B C =''2.如果将一副三角板按如图方式叠放,那么1∠等于( )A .120︒B .105︒C .60︒D .45︒3.下列语句中,正确的是( )A .等腰三角形底边上的中线就是底边上的垂直平分线B .等腰三角形的对称轴是底边上的高C .一条线段可看作是以它的垂直平分线为对称轴的轴对称图形D .等腰三角形的对称轴就是顶角平分线4.如图,Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠,交BC 于点D ,10AB =,15ABD S ∆=,则CD 的长为( )A .3B .4C .5D .65.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆≅∆的是()A .CB CD =B .BCA DCA ∠=∠C .BAC DAC ∠=∠D .90B D ∠=∠=︒6.ABC DEF ∆≅∆,下列结论中不正确的是( )A .AB DE =B .BE CF =C .BC EF =D .AC DE =7.如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个直接到达A 和B 的点C ,连接AC 并延长到D ,使CD CA =,连接BC 并延长到E ,使CE CB =,连接DE ,那么量出DE 的长,就是A 、B 的距离.我们可以证明出ABC DEC ∆≅∆,进而得出AB DE =,那么判定ABC ∆和DEC ∆全等的依据是( )A .SSSB .SASC .ASAD .AAS8.如图,小明书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )A .SSSB .SASC .SSAD .ASA9.如图所示,在ABC ∆中,AC BC ⊥,AE 为BAC ∠的平分线,DE AB ⊥,7AB cm =,3AC cm =,则BD 等于( )A.1cm B.2cm C.3cm D.4cm10.在等边三角形ABC中,D,E分别是BC,AC的中点,点P是线段AD上的一个动点,当PCE∆的周长最小时,P点的位置在()A.ABC∆的重心处B.AD的中点处C.A点处D.D点处11.如图,已知D、E分别为ABC∆的中线,连接EF,∆的边AC、BC的中点,AF为ABD若四边形AFEC的面积为15,且8∆中AB边上高的长为()AB=,则ABCA.3B.6C.9D.无法确定12.如图,ABC∆中,AD BC⊥,D为BC的中点,以下结论:∆≅∆;ABD ACD=;AB AC∠=∠;B CAD是ABC∆的一条角平分线.其中正确的有()A.1个B.2个C.3个D.4个13.如图ABC ∆中,已知D 、E 、F 分别是BC 、AD 、CE 的中点,且4ABC S ∆=,那么阴影部分的面积等于( )A .2B .1C .12D .1414.如图,将两根钢条AA '、BB '的中点O 连在一起,使AA '、BB '能绕着点O 自由转动,就做成了一个测量工具,由三角形全等可知A B ''的长等于内槽宽AB ,那么判定OAB ∆≅△OA B ''的理由是( )A .SASB .ASAC .SSSD .AAS15.如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的( )A .三边高的交点B .三条角平分线的交点C .三边垂直平分线的交点D .三边中线的交点16.如图,AB DB =,12∠=∠,请问添加下面哪个条件不能判断ABC DBE ∆≅∆的是()A .BC BE =B .AC DE =C .AD ∠=∠D .ACB DEB ∠=∠17.如图,已知ABC ∆的六个元素,则下面甲、乙、丙三个三角形中和ABC ∆全等的图形是( ) A .甲和乙B .乙和丙C .只有乙D .只有丙18.如图是由4个相同的小正方形组成的网格图,其中12∠+∠等于( )A .150︒B .180︒C .210︒D .225︒19.如图,ABC ∆中,AB AC =,BD CE =,BE CF =,若50A ∠=︒,则DEF ∠的度数是()A .75︒B .70︒C .65︒D .60︒20.点D 是在等腰直角三角形ABC 的斜边AB 的中点,点E ,点F 分别是AC ,BC 上的中点,连接DC ,DE ,DF ,那么图中的等腰直角三角形的个数是( )A .8个B .7个C .6个D .5个21.如图,用三角板作ABC ∆的边AB 上的高线,下列三角板的摆放位置正确的是( )A .B .C .D .22.如果线段AM 和线段AN 分别是ABC ∆边BC 上的中线和高,那么下列判断正确的是()A .AM AN >B .AM ANC .AM AN <D .AM AN23.如图,在ABC ∆中,120ACB ∠=︒,4BC =,D 为AB 的中点,DC BC ⊥,则ABC ∆的面积是( )A .16B .163C .8D .8324.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD ,使其不变形,这样做的根据是( )A .两点之间的线段最短B .长方形的四个角都是直角C .长方形是轴对称图形D .三角形有稳定性25.如图,在ABC ∆中,D ,E 分别是BC ,AC 的中点,AD 与BE 交于点G .若6BG =,则(EG = )A .4.5B .4C .3.5D .326.若一个三角形的两边长分别为3cm 、6cm ,则它的第三边的长可能是( ) A .2cmB .3cmC .6cmD .9cm27.如图,直线//AB CD ,且AC CB ⊥于点C ,若35BAC ∠=︒,则BCD ∠的度数为()A .65︒B .55︒C .45︒D .35︒28.如图,在ABC ∆中,30A ∠=︒,50B ∠=︒,CD 平分ACB ∠,则ADC ∠的度数是()A .80︒B .90︒C .100︒D .110︒29.如图,若ABC ADE ∆≅∆,则下列结论中一定成立的是( )A .AC DE =B .BAD CAE ∠=∠C .AB AE =D .ABC AED ∠=∠30.如图,ABC ∆中,AB BC =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =,若25BAE ∠=︒,则(ACF ∠= )A .70︒B .75︒C .60︒D .65︒二、填空题31.一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,32x y -,2x y +,若这两个三角形全等,则x y +的值是 .32.如图65A ∠=︒,40B ∠=︒,则ACD ∠= .33.如图,已知ABC ADE ∆≅∆,若7AB =,3AC =,则BE 的值为 .34.如图,在ABC ∆中,60ACB ∠=︒,75BAC ∠=︒,AD BC ⊥于D ,BE AC ⊥于E ,AD 与BE 交于H ,则CHD ∠= .35.如图,四边形ABCD 中,90ACB BAD ∠=∠=︒,AB AD =,2BC =,6AC =,四边形ABCD 的面积为 .36.如图,在ABC ∆中,90A ∠=︒,AB AC =,ABC ∠的平分线BD 交AC 于点D ,CE BD ⊥,交BD 的延长线于点E ,若8BD =,则CE = .37.如图,在ABC ∆中,ABC ∠,ACB ∠的平分线交于点O ,OD BC ⊥于D ,如果25AB cm =,20BC cm =,15AC cm =,且2150ABC S cm ∆=,那么OD = cm .38.空调安装在墙上时,一般都会采用如图所示的方法固定,这种方法应用的几何原理是 .39.若a 、b 、c 是ABC ∆的三边,且3a cm =,4b cm =,5c cm =,则ABC ∆最大边上的高是 cm .40.如图为6个边长相等的正方形的组合图形,则123∠-∠+∠= .41.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有 对.42.如图,面积为212cm 的ABC ∆沿BC 方向平移至DEF ∆位置,平移的距离是BC 的三倍,则图中四边形ACED 的面积为 .43.如图,点G 是ABC ∆的重心,AG 的延长线交BC 于点D ,过点G 作//GE BC 交AC 于点E ,如果6BC =,那么线段GE 的长为 .44.如图,点D 在线段BC 上,AC BC ⊥,8AB cm =,6AD cm =,4AC cm =,则在ABD ∆中,BD 边上的高是 cm .45.如图,12//l l ,//AB CD ,2BC CF =.若CEF ∆的面积是5,则四边形ABCD 的面积是 .46.如图,工程建筑中的屋顶钢架经常采用三角形的结构,其中的数学道理是 .47.在ABC ∆中,30A ∠=︒,C ∠为钝角,若6AB =,BC 边长为整数,则BC 的长为 . 48.如图,已知ABC ∆中,点D ,E 分别在边AC ,AB 上,连接BD ,DE ,180C AED ∠+∠=︒,请你添加一个条件,使BDE BDC ∆≅∆,你所添加的条件是 .49.如图,ABC DEC ∆≅∆,点E 在边AB 上,76DEC ∠=︒,则BCE ∠的度数是 .50.如图,在正方形网格中,123∠+∠+∠= .51.如图,在ABC ∆中,100ABC ∠=︒,ACB ∠的平分线交AB 边于点E ,在AC 边取点D ,使20CBD ∠=︒,连接DE ,则CED ∠的大小= 在ABC ∆中,4AB =,60C ∠=︒,A B ∠>∠,则BC 的长的取值范围是 .53.如图所示的网格是正方形网格,A ,B ,C ,D 是网格线交点,则ABC ∆的面积与ABD ∆的面积的大小关系为:ABC S ∆ ABD S ∆一副直角三角板按如图所示放置,其中90C DFE ∠=∠=︒,45A ∠=︒,60E ∠=︒,点F 在CB 的延长线上,点D 在AC 上,AB 与DF 相交于点O .若//DE CF ,则BOF ∠等于 .55.如图,ACD ∠是ABC ∆的一个外角,CE 平分ACD ∠,若60A ∠=︒,40B ∠=︒,则DCE ∠的大小是 度.三、解答题56.如图,在ABC ∆中()AC AB >,2AC BC =,BC 边上的中线AD 把ABC ∆的周长分成60和40两部分,求AC 和AB 的长.57.已知22a m n =+,2b m =,c mn =,且0m n >>.比较a ,b ,c 的大小;请说明以a ,b ,c 为边长的三角形一定存在.58.已知:如图,AD 是ABC ∆的中线,求证:2AB AC AD +>.59.三角形三条边上的中线交于一点,这个点叫三角形的重心.如图G 是ABC ∆的重心.求证:3AD GD =.60.如图,ABC ∆中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,50CAB ∠=︒,60C ∠=︒,求DAE ∠和BOA ∠的度数.61.如图,已知ABC ∆.若4AB =,5AC =,则BC 边的取值范围是 ;点D 为BC 延长线上一点,过点D 作//DE AC ,交BA 的延长线于点E ,若55E ∠=︒,125ACD ∠=︒,求B ∠的度数.62.如图所示,有一池塘,要测量池塘两端A 、B 的距离,请用构造全等三角形的方法,设计一个测量方案,并说明测量步骤和依据.63.如图,点C、E分别在直线AB、DF上,小华想知道ACE∠是否互补,但是∠和DEC他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF 的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO BO=,因此他得出结论:ACE=.小华的想法对吗?为什∠和DEC∠互补,而且他还发现BC EF么?64.已知:如图,在ABC∆中,80B∠,60∠=︒;BAC∠=︒,AD BC⊥于D,AE平分DAC 求AEC∠的度数.65.如图,点C、E、B、F在一条直线上,AB CF=,⊥于B,DE CF⊥于E,AC DF =.求证:CE BFAB DE=.66.已知:如图,D是AB上一点,E是AC上的一点,BE、CD相交于点F,62A∠=︒,∠=︒.求:ABE35∠=︒,20ACD∠的度数;BDC∠的度数.BFD67.如图,在ABC∆中,AB AC=,G=,D,E,F分别在三边上,且BE CD=,BD CF为EF的中点.若40∠的度数;∠=︒,求BA试说明:DG垂直平分EF.68.如图,在ABC⊥,垂足为F.∆中,CD AB⊥,垂足为D,点E在BC上,EF ABCD与EF平行吗?请说明理由.如果12∠=∠,且3115∠=︒,求ACB∠的度数.69.如图,在BCD∆中,4BD=,BC=,5求CD的取值范围;若//BDE∠的度数.∠=︒,求CAE BD,55A∠=︒,12570.如图,在ABC∆中30∠,∠=︒,AD是BC边上高线,AE平分BACBACB∠=︒,110求DAE∠的度数.71.图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,DAB∠和BCD∠的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:在图1中,请直接写出A∠、B∠、C∠、D∠之间的数量关系:;仔细观察,在图2中“8字形”的个数:个;图2中,当50D∠=度,40B∠=度时,求P∠的度数.图2中D∠和B∠为任意角时,其他条件不变,试问P∠与D∠、B∠之间存在着怎样的数量关系..72.如图,在三角形ABC中,10AB cm=,6AC cm=,D是BC的中点,E点在边AB上,三角形BDE与四边形ACDE的周长相等.求线段AE的长.若图中所有线段长度的和是53cm,求12BC DE+的值.73.如图,有一时钟,时针OA长为6cm,分针OB长为8cm,OAB∆随着时间的变化不停地改变形状.求:13点时,OAB∆的面积是多少?14点时,OAB∆的面积比13点时增大了还是减少了?为什么?问多少整点时,OAB∆的面积最大?最大面积是多少?请说明理由.设(0180)BOA αα∠=︒︒,试归纳α变化时OAB ∆的面积有何变化规律74.如图,已知CD 平分ACB ∠,EDC ECD ∠=∠.若30ACD ∠=︒,25B ∠=︒,求BDE ∠度数.75.如图1,ABC ∆与DBC ∆全等,且90ACB DBC ∠=∠=︒,6AB =,4AC =.如图2,将DBC ∆沿射线BC 方向平移得到△111D B C ,连接1AC ,1BD .求证:11BD AC =且11//BD AC ;DBC ∆沿射线BC 方向平移的距离等于 时,点A 与点1D 之间的距离最小.76.如图,已知B 、D 在线段AC 上,且AD CB =,BF DE =,90AED CFB ∠=∠=︒.求证:AED CFB ∆≅∆.77.同学们小学已经学习了三角形面积计算方法.如图是直角三角形,请你根据图中标注的量,解决下列问题:如图,以BC为底,AC为高,可得三角形ABC的面积为;也可以以AB为底,CD为高,可得三角形ABC的面积为.根据的启示,请列方程求出图中GH的长.78.如图,△ABC中,AB=AC,点D,E,F分别在边BC,AB,AC上,且BD=CF,BE =CD.求证:△BDE≌△CFD;若∠A=80°,求∠EDF的度数;若AB=AC=5,BC=6,AF=x,BE=y,请直接写出y关于x的函数表达式,并注明自变量x的取值范围.79.如图,在△ABC中,AB=AC=4,∠B=∠C=50°,点D在线段BC上运动,连接AD,作∠ADE=50°,DE交线段AC于E.当∠BDA=120°时,∠EDC=;点D从B向C运动时,∠BDA逐渐变;当DC等于多少时,△ABD≌△DCE,请说明理由;在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数,若不可以,请说明理由.80.沛沛沿一段笔直的人行道行走,边走边欣赏风景,在由C 走到D 的过程中,通过隔离带的空隙P ,刚好浏览完对面人行道宣传墙上的一条标语.具体信息如下:如图,////AB PM CD ,相邻两平行线间的距离相等.AC ,BD 相交于P ,PD CD ⊥垂足为D .已知16CD =米.请根据上述信息求标语AB 的长度.。
专题突破七实验探究题【题型特征】物质的探究是每年中考必考的重要题型,以实验题的题型出现,主要考查学生的阅读理解能力、猜想能力、获取和处理信息的能力、实验方案的设计和评价能力、对实验现象的分析和对比能力以及分类、比较、抽象、概括等科学方法的运用能力,难度中等或偏大,有较好的区分度,失分率高。
【解题策略】做这类题关键还是在于对物质的性质,尤其是酸、碱、盐和单质、氧化物的性质要熟练掌握和运用。
认真审题之后,确定探究的问题,选择合适的方法,将探究的问题和所学的知识进行整合和提炼,迁移到要解决的问题中来。
一般反应后生成物的成分,除了一定有生成物之外,再看反应物是否过量,一般可分为三种情况。
物质变质问题也有三种情况,包括没有变质、部分变质和全部变质。
类型1物质组成或成分的探究(含标签类)例1(2021百色中考)某校毕业班同学准备进行化学技能操作考试实验时,发现实验台上摆放的药品中,有一装有溶液的试剂瓶未盖瓶盖且标签破损(如图),于是决定对这瓶溶液进行实验探究。
【提出问题】这瓶溶液是什么溶液?【交流讨论】根据受损标签的情况判断,这瓶溶液不可能是A(填序号)。
A.酸溶液 B.碱溶液 C.盐溶液【获得信息】Ⅰ.酸、碱、盐的性质实验中用到含钠元素的物质是氯化钠、氢氧化钠、碳酸钠和碳酸氢钠。
Ⅱ.室温(20 ℃)时,四种物质的溶解度数据如下表:Ⅲ.NaCl、BaCl2的水溶液呈中性。
【提出猜想】这瓶溶液可能是:猜想一:氯化钠溶液;猜想二:碳酸钠溶液;猜想三:氢氧化钠溶液;猜想四:碳酸氢钠溶液。
经过讨论,大家认为猜想四不合理,理由是根据室温(20 ℃)时碳酸氢钠的溶解度无法配制出10%的溶液(合理即可)。
【实验推断】(1)小丽用洁净的玻璃棒蘸取该溶液滴在pH试纸上,测得pH>7,则这瓶溶液不可能是氯化钠溶液,理由是氯化钠溶液呈中性(合理即可)。
(2)小明取样滴加过量的BaCl2溶液并不断振荡,观察到有沉淀产生,该反应的化学方程式为BaCl2+Na2CO3===BaCO3↓+2NaCl,静置后,取少许上层清液,滴入酚酞溶液,振荡后无明显现象。
【课标解读】方案设计问题涉及面较广,内容比较丰富,题型变化较多,不仅有方程、不等式、函数,还有几何图形的设计等.方案设计型题是通过设置一个实际问题情境,给出若干信息,提出解决问题的要求,要求学生运用学过的知识和方法,进行设计和操作,寻求恰当的解决方案.有时也给出几个不同的解决方案,要求判断哪个方案较优.它包括与方程、不等式有关的方案设计、与函数有关的方案设计和与几何图形有关的方案设计.【解题策略】常见的几种考题类型有:1.解决与方程、不等式有关的方案设计题目,通常利用方程或不等式求出符合题意的方案;2.与函数有关的方案设计一般有较多种供选择的解决问题的方案,但在实施中要考虑到经济因素,此类问题类似于求最大值或最小值的问题,通常用函数的性质进行分析;3.与几何图形有关的方案设计,一般是利用几何图形的性质,设计出符合某种要求和特点的图案. 解题策略可以概括为:从实际问题入手→归纳若干信息→提出问题要求→引导设计操作→判断优化方案【考点深剖】★考点一与方程、不等式有关的方案设计方程、不等式方案设计问题主要是利用方程、不等式的相关知识,建立相应的数学模型,利用列方程(组)和不等式(组),通过有关的计算,找到方程(组)的解和不等式(组)的解集,再结合题目要求,确定未知数的具体数值.未知数有几个值,即有几种方案.方程、不等式方案设计的主要步骤:(1)利用方程、不等式建立相应的数学模型;(2)列出方程(组)或不等式(组);(3)通过解方程(组)或不等式(组),确定未知数的值;(4)确定方案.【典例1】(2018•济宁)“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据题意,得:,解得:18≤m<20,∵m为整数,∴m=18或m=19,则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.★考点二与函数有关的方案设计函数方案设计是指由题目提供的背景材料或图表信息,确定函数关系式.利用函数图象的性质获得解决问题的具体方法.解决此类问题的难点主要是正确确定函数关系式,关键是熟悉函数的性质及如何通过不等式确定函数自变量的取值范围.【典例2】(2018·浙江省台州·12分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t 之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.【分析】(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8.8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;②求出8<t≤12和12<t≤24时,月毛利润w在满足336≤w≤513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案.(2)①当0<t≤8时,w=(2t+8)×=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;②当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,∴8<t≤12时,w随t的增大而增大,当2(t+3)2﹣2=336时,解题t=10或t=﹣16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,当t=12时,w取得最小值448,由﹣(t﹣21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.★考点三与几何图形有关的方案设计图形方案设计题,它摆脱了传统的简单作图,把对作图的技能的考查放在一一个实际生活的大背景下,从而考查了学生的综合创新能力,给同学们的创造性思维提供了广阔的空间与平台.此类题常利用某些规则的图形,如等腰三角形、菱形、矩形、圆等,利用图形的性质,或利用轴对称和中心对称等,拼出符合某些条件的图形.学科*网【典例3】某区规划修建一个文化广场(平面图形如图所示),其中四边形ABCD是矩形,分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,矩形的边长AB=y米,BC=x米.(注:取π=3.14)(1)试用含x的代数式表示y;(2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元;①设该工程的总造价为W元,求W关于x的函数关系式;②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由.③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64.82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能否完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由.②仅靠政府投入的1千万不能完成该工程的建设任务.理由如下,由①知W=200(x﹣100)2+1.056×107>107,所以不能;★考点四 涉及统计计算的方案设计【典例4】某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分): 方案1:所有评委所给分的平均数;方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余所给分的平均数; 方案3:所有评委所给分的中位数; 方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.解:(1)方案1最后得分:110×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:18×(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8或8.4. (2)因为方案1中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案1不适合作为最后得分的方案;又因为方案4中的众数有两个,从而使众数失去了实际意义,所以方案4不适合作为最后得分的方案.【讲透练活】变式1:(2018•广州)友谊商店A 型号笔记本电脑的售价是a 元/台.最近,该商店对A 型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A 型号笔记本电脑x 台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.【分析】(1)根据两个方案的优惠政策,分别求出购买8台所需费用,比较后即可得出结论;(2)根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论.(2)∵若该公司采用方案二购买更合算,∴x>5,方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x﹣5)a×80%=5a+0.8ax﹣4a=a+0.8ax,则0.9ax>a+0.8ax,x>10,∴x的取值范围是x>10.变式2:(2018·广西梧州·10分)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A.B两种型号的电动自行车共30辆,其中每辆B 型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A.B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?【分析】(1)设A.B两种型号电动自行车的进货单价分别为x元(x+500)元,构建分式方程即可解决问题;(2)根据总利润=A型两人+B型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题;【解答】解:(1)设A.B两种型号电动自行车的进货单价分别为x元(x+500)元.由题意:=,解得x=2500,经检验:x=2500是分式方程的解.答:A.B两种型号电动自行车的进货单价分别为2500元3000元.(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30),(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,学科*网变式3:(2018•莱芜•10分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?【分析】(1)利用二元一次方程组解决问题;(2)用不等式组确定方案,利用一次函数找到费用最低值.(2)设该公可购买甲型机器人a台,乙型机器人(8﹣a)台,根据题意得解这个不等式组得∵a为正整数∴a的取值为2,3,4,∴该公司有3种购买方案,分别是购买甲型机器人2台,乙型机器人6台购买甲型机器人3台,乙型机器人5台变式4:阅读下列材料:小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题:................(1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并指明拼接成的平行四边形(画出一个符合条件的平行四边形即可);(2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ,请在图4中探究平行四边形MNPQ面积的大小(画图表明探究方法并直接写出结果).解:⑴如图中平行四边形即为所求.⑵如图:平行四边形MNPQ 面积为52. 变式5:(2018•福建B 卷•10分)空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米. 如图1,求所利用旧墙AD 的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD 的面积最大,并求面积的最大值.【分析】(1)按题意设出AD ,表示AB 构成方程;(2)根据旧墙长度a 和AD 长度表示矩形菜园长和宽,注意分类讨论s 与菜园边长之间的数量关系.(2)设AD=x 米,矩形ABCD 的面积为S 平方米 ①如果按图一方案围成矩形菜园,依题意 得:S=,0<x <a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米.。