化学与电化学加工技术
- 格式:pptx
- 大小:3.53 MB
- 文档页数:28
机械加工中的电化学加工技术研究随着科技的不断发展,机械加工技术也在不断进步。
在传统的机械加工方法中,电化学加工技术作为一种新兴的加工方法,受到了广泛关注。
本文将探讨机械加工中的电化学加工技术研究,并讨论其在实际应用中的潜力和前景。
一、电化学加工技术概述电化学加工技术是利用电解过程中金属离子的移动及其与电解液中的物质反应来实现加工目的的一种方法。
与传统的机械加工方法相比,它具有以下几个显著的优势。
首先,电化学加工技术可以实现高精度的加工。
通过控制电流、电压和电解液组分等参数,可以达到精度高于传统机械加工的效果。
这对于一些对工件精度要求较高的领域,如航空航天、光学装备制造等非常重要。
其次,电化学加工技术无需接触加工,对工件的损伤较小。
相比传统的机械加工方法,电化学加工技术不需要刀具与工件直接接触,避免了传统加工中可能产生的划伤、磨损等问题。
这对于一些对工件表面要求较高的领域十分有利。
再次,电化学加工技术可以加工复杂形状的工件。
由于电解液可以通过电解过程中的电化学反应在特定部位去除金属,因此可以在复杂几何结构上进行加工,而传统机械加工可能无法完成。
二、电化学加工技术在机械加工中的应用电化学加工技术已经在机械加工领域得到了广泛应用。
下面将分别从金属加工和非金属加工两个方面探讨其应用。
1. 金属加工方面在金属加工过程中,电化学加工技术可以用于锻造、铸造和冷加工等多个环节。
例如,在钢铁行业中,电化学加工技术可以用于去除表面氧化皮、清洁金属表面、修复金属表面缺陷等。
在精密零件制造过程中,电化学加工技术也可以用于实现精密切削、打磨和光亮处理等。
2. 非金属加工方面除了金属加工,电化学加工技术在非金属材料的加工中也有着广泛的应用。
例如,在半导体和电子行业中,可以利用电化学加工技术进行精细化学蚀刻,制作高精度电路板和芯片。
另外,在玻璃、陶瓷等材料的加工领域,电化学加工技术也可以实现精细造型和漆面处理。
三、电化学加工技术的挑战和前景虽然电化学加工技术在机械加工中有着广泛的应用,但是仍面临一些挑战。
电化学加工原理及应用电化学加工(Electrochemical Making),也称电解加工,是利用金属在外电场作用下的高速局部阳极溶解实现电化学反应,对金属材料进行加工的方法。
常用的电化学加工有电解加工、电磨削、电化学抛光、电镀、电刻蚀和电解冶炼等。
电化学加工的原理:电化学加工是利用金属在电解液中的电化学阳极溶解来将工件成型的。
如图1 所示,工件接直流电源的正极为阳极,按所需形状制成的工具接直流电源的负极为阴极。
阳极表面铁原子在外电源的作用下放出两个电子,成为正的二价铁离子而溶解进入电解液中(Fe-2e=Fe+2)。
溶入电解液中的Fe+2又与OH-离子化合,生成Fe(OH)2沉淀,随着电解液的流动而被带走。
Fe(OH)2 又逐渐为电解液中及空气中的氧氧化为Fe(OH)3红褐色沉淀。
正的H+被吸收到阴极表面,从电源得到电子而析出氢气(2H++2e=H2↑)。
电解液从两极间隙(0.1~0.8 mm)中高速(5~60 m/s)流过。
当工具阴极向工件进给并保持一定间隙时即产生电化学反应,在相对于阴极的工件表面上,金属材料按对应于工具阴极型面的形状不断地被溶解到电解液中,随着工件表面金属材料的不断溶解,工具阴极不断地向工件进给,溶解的电解产物不断地被电解液冲走,工件表面也就逐渐被加工成接近于工具电极的形状,如此下去直至将工具的形状复制到工件上。
电化学加工的应用:电化学加工应用主要有电解加工、电化学抛光、电镀、电铸、电解磨削等方面。
具体应用于发动机叶片加工、火炮膛线加工、加工锻模型腔、深孔、小孔、长键槽、等截面叶片整体叶轮以及零件去毛刺、难导电硬脆材料加工等。
航空发动机叶片加工----相对于叶片的几何结构及采用的材料, 电解加工能充分发挥其技术特长。
尽管由于叶片精密锻造、精密铸造、精密辊轧技术的提高而有更多的叶片采用精密成形, 使电解加工叶片的数量有一些减少, 但随着叶片材料向高强、高硬、高韧性方向发展和钛合金、钴镍超级耐热合金的采用, 以及超精密、超薄、大扭角、低展弦比等特殊结构叶片的出现, 对电解加工又提出了新的、更高的要求, 电解加工依然是优选工艺方法之一。
电化学加工技术国内外研究现状及展望电化学加工是一种新兴的加工技术,它具有重新塑造结构和表面形貌、分解有机物质、合成纳米结构以及增强固体表面性能等优点,可用于多种工业生产应用和分子工程与微纳米技术领域。
近年来,电化学加工技术受到了国内外学者以及工业界的广泛关注,电化学加工的相关研究及应用迅速发展,成为当今研究热点。
本文将综述国内外有关电化学加工技术研究现状及未来展望。
电化学加工技术是一种灵活且可实现低成本的加工方式,它可用于改变几乎所有固体表面的形态以及微结构,在改变金属表面形态和尺寸、表面粗糙度、复合材料结构、分解含有有机物质的溶液和晶体结构等方面具有重要意义,从而为实现金属表面的新型功能提供了新的理论和实践方法。
国内外的研究表明,由于精确控制加工参数,其可以用于实现精细加工,创造出复杂的形状和根据工程需要改变表面颜色和表面粗糙度。
此外,电化学加工还可以用于纳米结构和复合材料的制备,以及改变金属表面的物理和化学性能,如耐腐蚀性和表面活性。
在电化学加工中,电极形状和表面结构是极为重要的,它们可以影响电极的可靠性、电化学加工速度和效果,因此国内外学者对电极的不同结构以及表面增强技术进行了广泛的探索和研究,以提高电极在加工过程中的使用寿命以及加工效果。
此外,电化学加工中反应液的作用也极为重要,可以通过改变反应液的配置来改变电化学加工的加工形貌、加工精度及完成度,同时反应液还可以提供和维护电极活性中间体等。
因此有关反应液研究及应用也越来越受到重视。
总结以上,电化学加工技术具有改变表面形态的能力,可实现精确的加工工艺,从而可实现多种特殊的加工功能;同时,在其发展过程中,研究者也对电极形状及表面结构、反应液等方面进行了广泛的探索和研究,以改善电化学加工技术的可靠性和适用性。
预计未来有关电化学加工技术的研究将取得更多成果,从而更好地为实现金属表面功能提供理论和技术支持。
电化学加工(ECM)是一种基于电解原理的加工技术。
加工时,工具用作阴极,与直流电源的负极相连,而工件用作阳极,与直流电源的正极相连。
电解质中的阴极与工件之间发生电荷交换,阳极工件溶解。
ECM技术的优点是:1)不论硬度和强度如何,都可以加工具有不同硬度和强度的材料;2)生产效率高,约为电火花加工的5-10倍,在某些情况下比切削加工要高。
3)表面质量好,无残余应力和变质层,无飞边,刀痕和毛刺,表面粗糙度可达Ra 0.05μm;4)工具电极在理论上没有任何损失,基本上可以长期使用。
目前,ECM技术的主要问题是加工精度难以严格控制,尺寸一般只能达到0.15-0.3mm。
在ECM的基础上,德国EMAG自主开发的精密ECM技术不仅可以满足越来越小的零件的需求,而且使加工精度小于20μm,同时使产品的表面质量更高完善。
如今,电化学加工已广泛应用于航空航天,汽车制造,精密医疗器械制造,显微镜和能源技术。
不论是镍基,钛合金零件还是淬火零件等超硬超级合金材料,电化学加工技术都可以用于经济有效的精密加工。
02飞机发动机ECM机加工整体叶片整体式叶片盘是高级航空发动机设计中典型的整体结构部件,其材料主要由先进的复合高温镍基合金制成。
传统的加工技术很难处理具有复杂刀片轮廓,高精度和切削力后变形大的部件。
因此,寻求更好的质量,高效率,高精度和低成本的加工方法已成为各国航空制造企业的目标。
ECM加工技术作为实现高温合金叶轮加工的重要方法,已经成为大型航空发动机公司研发的关键技术。
凭借其在该领域的多项专利技术,Emake成为世界上第一家为航空发动机提供ECM电解机床的欧洲设备制造商。
最终的叶片轮廓精度为≤0.06mm,超级合金材料的表面粗糙度ra≤0.2μm。
金属的化学和电化学蚀刻加工及抛光一、实验导言金属材料和非金属材料各有不同的加工处理方法。
金属材料的加工成形和提高表面光洁度的方法很多,历史悠久的传统加工方法有:热加工,即将材料加热至熔融状态,放到模具里冷却成形;机械加工:在常温下,用车床、刨床、镗床、铣床以及冷扎等加工工具的机械能量,使被加工材料成形。
随着被加工材料组成、材质的变化,仅仅用传统加工方法已不能满足生产和科研的需要。
20世纪50年代以来,对材料的化学和电化学加工方法迅速发展起来。
化学加工是利用自发进行的氧化还原反应将电极电势低的金属氧化掉,保留下需要的部分成为产品。
这种加工方法又称为化学蚀刻。
之所以称为“蚀刻”,是因为其加工反应原理与金属腐蚀原理相同,也可以说是金属腐蚀原理在材料加工中的应用。
随着电讯技术的迅猛发展,电子器件的生产加工技术不断更新,越来越趋向于微型化、精密化,集成化,以至如在“微波水热合成法制备纳米材料”中所述:在分子和原子量级上加工器件已不足为奇。
不过截至目前,印刷电路板的制作工艺仍在沿用始于上世纪初的化学蚀刻方法。
电化学加工是利用电化学中电解的原理使非自发进行的氧化还原反应得以进行,而将金属加工成为需要的产品的。
这种加工方法又称为电化学蚀刻。
不锈钢是具有抵抗大气、酸、碱、盐等腐蚀作用的合金钢的总称。
在钢中添加元素铬,其含量达12%~13%以上,含量超过17%的不锈钢为耐酸钢。
典型不锈钢的化学成分为:1Crl8Ni9Ti。
不锈钢的强耐腐蚀性使得一般的化学加工对它来说不适宜。
因此常用电化学加工法。
化学蚀刻和电化学蚀刻二者的区别在于前者不必通电流,而后者需要外电源通电实现加工反应。
从加工速率来说,电化学加工来得快。
化学蚀刻和电化学蚀刻主要用于:各种难切削材料的加工(硬质合金、钛合金等)、各种复杂表面的加工(喷气涡轮机叶片、整体涡轮、发动机机匣等)、各种超精、光整及特殊要求的加工(航天、航空陀螺仪等)。
为了提高加工效率和质量,人们寻找更加有效的加工方法,还创造出了将化学或电化学加工与机械加工有机结合、同步进行的加工方法,例如,电解磨翻、电解珩磨等。