克尔电光效应 旋光现象
- 格式:ppt
- 大小:101.50 KB
- 文档页数:8
4.9 电光效应4.9.1 泡克尔(Pockels)效应和克尔(Kerr)效应1. 电光效应二次电光效应( Kerr 效应):因外加电场使介质的光学性质(折射率)发生变化的效应。
2bE n =Δ线性电光效应( Pockels 效应):aE n =Δ其中:a 为线性电光系数其中:b 为二次电光系数...)(20++=−=ΔbE aE n E n n 若晶体具有对称中心,则无一次电光效应4.9.2电光张量4.9.2 电光张量可以通过晶体的折射率椭球的大小、形状和取向的变化,来描述外电场对晶体光学特性的影响:1323222121=++εεεx x x 逆介电张量:ijij εβ1=(主轴坐标系下,无外电场)1=j i ij x x β外电场作用下:1230322022101=++x x x βββ4.9.2 电光张量可以表示折射率椭球的大小、形状和取向的变化,将其外电场E 为函数展开:ij βΔ...0++=−′=Δq p ijpq k ijk ij ij ij E E h E γβββ--Pockels 表述方法其中:是三阶张量,线性电光系数;是四阶张量,二阶电光系数;ijk γijpq h 线性电光效应:kijk ij E γβ=Δij ij εβ1=是二阶对称张量:1222133132232112233322222111=+++++x x x x x x x x x ββββββ外电场作用下4.9.2 电光张量ij β是二阶对称张量:与未加外电场的情况下比较可得:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=Δ=Δ=Δ−=Δ−=Δ−=Δ121231322323033333022222011111βββββββββββββββ654321123223332211ββββββββββββ二重下标简化为单个下标ji ij ββ=jikijk γγ=ijk γ的独立分量从27个减少到18个jij i E γβ=Δ4.9.2 电光张量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡ΔΔΔΔΔΔ321632661532551432441332331232221131211654321 E E E γγγγγγγγγγγγγγγγγγββββββ是6 x 3的矩阵,有18个独立分量,当晶体具有不同的对称性时,独立分量数目还要减少。
第一章磁光晶体的介绍1.1 磁光晶体材料的发现历史上对光和磁的关系的探索也是一个很重要的问题, 虽则这个问题没有电磁现象那样突出, 但是就其所达到的理论高度和为之所付出的努力而言, 前者是不逊于后者的。
人类对光磁的关系的认识, 是从晶体的自然旋光性现象开始的。
阿喇戈发现的偏振光通过石英晶体时的旋转现象(1811年)和法拉第发现的电磁旋转现象(1821年)是一组类似的现象。
后来经过一系列的实验与实践,磁光材料被开始应用于器件的制作,磁光晶体也在其中逐渐发现并加以应用。
1.2 磁光晶体的定义晶体在外磁场的作用下,线偏振光通过该晶体时光的偏振面发生旋转的现象称为法拉第效应。
此种晶体称为磁旋光晶体,简称磁光晶体。
1.3 磁光晶体的性质磁光晶体具有较大纯法拉第效应并有实用价值的磁光材料都具有磁光效应,而且多种磁光效应会同时存在。
有些晶体效应太复杂,而另一些效应则太小,没有实用价值。
特性在常温下有大而纯的法拉第效应,对使用波长的低吸收系数、大的磁化强度和高的磁导率是磁光晶体的主要性能要求。
这些要求与晶体的组成、结构和磁性能密切相关。
磁光晶体主要应用在光纤通信与集成光学器件、计算机存储、逻辑运算和传输功能、磁光显示、磁光记录、微波新型器件及激光陀螺等领域。
各种器件需要的磁光晶体材料都不同,随着磁光晶体材料的不断发现,可用以器件的范围也在不断扩大。
第二章基本性质的原理2.1 磁光效应磁光效应是指处于磁化状态的物质与光之间发生相互作用而引起的各种光学现象。
包括法拉第效应、克尔磁光效应、塞曼效应和科顿-穆顿效应等。
这些效应均起源于物质的磁化,反映了光与物质磁性间的联系。
本论文着重介绍法拉第效应和克尔磁光效应。
2.1.1 法拉第效应1845年法拉第(Michal Faraday)发现玻璃在强磁场的作用下具有旋光性,加在玻璃棒上的磁场引起了平行于磁场方向传播的线偏振光偏振面的旋转。
此现象被称为法拉第效应。
法拉第效应第一次显示了光和电磁现象之间的联系。
光学教程课程设计(论文)设计(论文)题目蔗糖溶液的旋光效应学院名称核技术与自动化工程学院专业名称学生姓名学生学号任课教师赵晓云设计(论文)成绩教务处制2015年7 月 4 日填写说明专业名称填写为专业全称,有专业方向的用小括号标明;格式要求:格式要求:用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。
打印排版:正文用宋体小四号,倍行距,页边距采取默认形式(上下,左右,页眉,页脚)。
字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。
具体要求:题目(二号黑体居中);摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体);关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体);正文部分采用三级标题;第1章××(小二号黑体居中,段前行)×××××小三号黑体×××××(段前、段后行)小四号黑体(段前、段后行)参考文献(黑体小二号居中,段前行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。
摘要:旋光性菲涅尔假设: 菲涅尔根据振动中的一个原理,即任何一个直线简谐运动可以看作是两个相反方向旋转的同频率的圆周运动的组合,认为:沿晶体光轴方向传播的直线偏振光也可以看作是由两个同频率、旋向相反的原偏振光组成。
在旋光晶体中,这两种偏振光有不同的传播速度。
这样一个假设,虽然不能说明现象的本质,但能令人信服的说明实验结果。
关键词:旋光,偏振,糖浓度1旋光问题的研究背景1811年,阿喇果(Jago)在研究石英晶体的双折射特性时发现:一束线偏振光沿石英晶体的光轴方向传播时,其振动平面会相对原方向转过一个角度。
由于石英晶体是单轴晶体,光沿着光轴方向传播不会发生双折射,因而阿喇果发现的现象应该属于另外一种新现象,这就是晶体中的旋光现象。
旋光效应一、实验原理偏振光通过某种物质后,其振动面将以光的传播方向为轴线转过一定的角度,这种现象叫做旋光现象。
旋转的角度称为旋光度。
凡能使线偏振光通过后将其振动面旋转一定角度的物质,称作旋光性物质。
旋光性物质不仅限于像石英、朱砂等固体,还包括糖溶液、松节油等具有旋光性质的液体。
不同的旋光性物质可使偏振光的振动面向不同方向旋转。
若面对光源,使振动面逆时针旋转的物质称为左旋物质;使振动面顺时针旋转的物质称为右旋物质。
旋光度:平面偏振光通过含有某些光学活性的化合物液体或溶液时,能引起旋光现象,使偏振光的平面向左或向右旋转,旋转的度数,称为旋光度(用α表示)。
比旋度:平面偏振光透过长1dm 并每1ml 中含有旋光性物质1g 的溶液,在一定波长与温度下测得的旋光度称为比旋度(用αD t表示)。
旋光度不仅与化学结构有关,还和测定时溶液的浓度、液层的厚度、温度、光的波长以及溶剂有关。
αDt L C100α=×D 为钠光谱的D 线 t 为测定时的温度 α为测得的旋光度 L 为测定管的长度(dm )C 为每100ml 溶液中含被测物质的重量(g,按干燥品或无水物计算) 二、实验仪器WXG-4型圆盘旋光仪样品管:钠光灯源焦距调节旋钮样品管放置处调节旋光度数值旋钮调节旋光度数值旋钮 三分视场观察窗口示数刻度窗旋光仪的基本部件:单色光源、起偏镜、测定管、检偏镜、检测器等五个部分。
原理:在起偏镜与检偏镜之间未放入旋光物质之间,如起偏镜与检偏镜允许通过的偏振光方向相同,则在检偏镜后面观察的视野是明亮的;如在起偏镜与检偏镜之间放入旋光物质,则由于物质 旋光作用,使原来由起偏镜出来的偏振光方向旋转了一个角度α,结果在检偏镜后面观察时,视野就变得暗一些。
若把检偏镜旋转某个角度,使恢复原来的亮度,这时检偏镜旋转的解度及方向即是被测供试品的旋光度。
构造原理:晶轴晶轴目镜αα光源 起偏镜 偏振光 盛液管旋转后的 检偏镜 通过检偏镜 偏振光 的偏振光三分视场:旋光仪的起偏片后中部位置会安装有一个劳伦特石英片,穿过它的光大概占视野的三分之一,因为石英片在中部所以这束光出现在视野的中间位置。
液晶电光效应实验报告————————————————————————————————作者:————————————————————————————————日期:液晶电光效应实验报告——应物02陈忠旺10093026一:基本要求1、了解液晶的特性和基本工作原理;2、掌握一些特性的常用测试方法;3、了解液晶的应用和局限。
二:实验原理:液晶是介于液体与晶体之间的一种物质状态。
一般的液体内部分子排列是无序的,而液晶既具有液体的流动性,其分子又按一定规律有序排列,使它呈现晶体的各向异性。
当光通过液晶时,会产生偏振面旋转,双折射等效应。
液晶分子的形状如同火柴一样,为棍状。
棍的长度在十几埃,直径为4~6埃,液晶层厚度一般为5-8微米。
列方式和天然胆甾(音同淄)相液晶的主要区别是:扭曲向列的扭曲角是人为可控的,且“螺距”与两个基片的间距和扭曲角有关。
而天然胆甾相液晶的螺距一般不足1um,不能人为控制。
扭曲向列排列的液晶对入射光会有一个重要的作用,他会使入射的线偏振光的偏振方向顺着分子的扭曲方向旋转,类似于物质的旋光效应。
在一般条件下旋转的角度(扭曲角)等于两基片之间的取向夹角。
由于液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出各向异性的特点。
如果我们对液晶物质施加电场,就可能改变分子排列的规律。
从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。
这就是液晶的的电光效应。
为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。
我们将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。
当我们在液晶盒的两个电极之间加上一个适当的电压时我们来看一下液晶分子会发生什么变化。
根据液晶分子的结构特点。
我们假定液晶分子没有固定的电极。
但可被外电场极化形成一种感生电极矩。
这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。
当左、右旋圆偏振光在置于磁场中的媒质内传播而有不同的吸收系数时,入射的线偏振光传播一段距离后会变为椭圆偏振光,这个效应叫法拉第椭圆度效应或磁圆二向色性效应,简记为MCD。
法拉第椭圆度和法拉第旋转均由媒质的介电张量非对角组元的实部和虚部决定。
科顿-穆顿效应又称磁双折射效应,简记为MLB。
基于磁介质听传输短的边界矩阵处理方法,建立了多层旋磁介质材料耦合法拉第角计算模型,分析了BiDyIG多层石榴石旋磁薄法拉第角频谱、结果表明分层「Bi:DyIG/Al」材料在300-580nm波长范围具有中的法拉第效应,这有有利于短波高密度磁光记录和微波法拉第器件性能改善。
光与磁场中的物质,或光与具有自发磁化强度的物质之间相互作用所产生的各种现象,主要包括法拉第效应、科顿-穆顿效应、克尔磁光效应、塞曼效应和光磁效应。
法拉第效应线偏振光透过放置磁场中的物质,沿着磁场方向传播时,光的偏振面发生旋转的现象。
也称法拉第旋转或磁圆双折射效应,简记为MCB。
一般材料中,法拉第旋转(用旋转角θF表示)和样品长度l、磁感应强度B有以下关系θF=VlB,V是与物质性质、光的频率有关的常数,称为费尔德常数。
因为磁场下电子的运动总附加有右旋的拉莫尔进动,当光的传播方向相反时,偏振面旋转角方向不倒转,所以法拉第效应是非互易效应。
这种非互易的本质在微波和光的通信中是很重要的。
许多微波、光的隔离器、环行器、开关就是用旋转角大的磁性材料制作的。
图1是隔离器的原理。
利用法拉第效应,还可实现光的显示、调制等许多重要应用。
当左、右旋圆偏振光在置于磁场中的媒质内传播而有不同的吸收系数时,入射的线偏振光传播一段距离后会变为椭圆偏振光,这个效应叫法拉第椭圆度效应或磁圆二向色性效应,简记为MCD。
法拉第椭圆度和法拉第旋转均由媒质的介电张量非对角组元的实部和虚部决定。
科顿-穆顿效应又称磁双折射效应,简记为MLB。
是1907年A.科顿和H.穆顿发现的。
W.佛克脱对它进行了较仔细的研究,故也称佛克脱效应。
克尔效应介质因电场作用而引起折射率变化的现象称为电光效应,介质折射率和电场的关系可表示为:+++=20bE aE n n 式中n 0是没有外加电场(E =0)时的折射率,a 和b 是常数,其中电场一次项引起的变化称为线性电光效应,由Pokels 于1893年发现,故也称为Pokels 效应;由电场的二次项引起的变化称为二次电光效应,也称为Kerr 效应,是由Kerr 在1875年发现。
电光效应的特点是几乎没有延迟时间,能几乎同步地随电场快速变化,其响应频率可达1010Hz 。
所以,“光开关”、“光调制器”、“光断续器”有极快的速度启闭光路或调制光强,目前广泛应用于高速摄影、电影、电视和激光通讯等许多领域。
一、实验目的1.学习克尔效应的原理;2.测量光通过克尔介质的双折射率随外加电场的变化规律。
二、实验仪器光具导轨(带有刻度),一对偏振器,卤灯及其支架,克尔盒,高压供电电源(10Kv ),函数发生器,一个半透明屏,型号为BPY47型光电池,莱宝多功能夹具,f=100mm 透镜滞支座。
三、实验原理光进入某些晶体后,会按光矢量振动方向不同而出现两束沿不同方向传播的折射光,这种现象称为双折射。
一些晶体之所以能产生双折射现象,是由于媒质(晶体)对光矢量振动方向不同的光波表现出不同的折射率,也就是媒质的光学各向异性。
一些晶体或光学材料在外加电场的影响下,它们的光学性质会发生改变,这种现象称为电光效应。
而一些具有对称中心的晶体和各向同性煤质,在外电场作用下也能产生感应双折射,其双折射率与外加电场的电场强度的平方成正比,所以称为二次电光效应,又以其发现者 J.keer 的名字命名,称为克尔效应。
将上所媒质置于电场中,线偏振光沿垂直电场方向通过媒质时,将被分解为沿电场方向振动和垂直电场方向振动的两束线偏振光,以n e 和n o 分别表示平行和垂直于电场的光振动的折射率,实验规律表明:(1)200kE n n e λ=-λo 是其真空中的波长,k 是克尔常数,单位为cm/v 2。
电光效应和电光调制当给晶体或液体加上电场后,该晶体或液体的折射率发生变化,这种现象成为电光效应。
1875年克尔(Kerr)发现了第一个电光效应。
即某些各向同性的透明介质在外电场作用下变为各向异性,表现出双折射现象,介质具有单轴晶体的特性,并且其光轴在电场的方向上,人们称这种光电效应为克尔效应。
1893年普克尔斯(Pokells)发现,有些晶体,特别是压电晶体,在加了外电场后,也能改变它们的各向异性性质,人们称此种电光效应为普克尔斯效应。
电光效应在工程技术和科学研究中有许多重要应用,它有很短的响应时间(可以跟上频率为1010Hz的电场变化),因此被广泛用于高速摄影中的快门,光速测量中的光束斩波器等。
由于激光的出现,电光效应的应用和研究得到了迅速发展,如激光通信、激光测量、激光数据处理等。
一.实验目的1.掌握晶体电光效应和电光调制的原理和实验方法。
2.观察电光效应所引起的晶体光性的变化和会聚偏振光的干涉现象。
3.学会用简单的实验装置测量LN(LiNbO3铌酸锂)晶体半波电压。
观察电光调制的工作性质。
二.仪器用具电光效应实验仪,电光调制电源,LN晶体横向电光调制器,接收放大器,He-Ne激光器,二踪示波器和万用表。
三.实验装置与原理(一)实验装置(1)电光效应实验仪面板如图所示。
(2)晶体电光调制电源:调制电源由-200V—+200V之间连续可调的直流电源、单一频率振荡器(振荡频率约为1kHz)、音乐片和放大器组成,电源面板上有三位半数字面板表,可显示直流电压值。
晶体上加的直流电压的极性可以通过面板上的“极性”键改变,直流电压的大小用“偏压”旋钮调节。
调制信号可由机内振荡器或音乐片提供,此调制信号是用装在面板上的“信号选择”键来选择三个信号中的任意一个信号。
所有的调制信号的大小是通过“幅度”旋钮控制的。
通过前面板上的“输出”插孔输出的参考信号,接到二踪示波器的一个通道与被调制后的接收信号比较,观察调制器的输出特性。
·爱里斑:圆孔夫琅禾费衍射图样的中央亮斑称作爱里斑。
其大小(角半径) 与波长成正比,与圆孔的直径成反比。
·磁致双折射:在强磁场的作用下,非晶体也能产生双折射现象,称作磁致双折射效应。
·分波面法:从同一个波面上提取相干的次波源(如双缝干涉实验中的两条缝)的方法称作分波面法。
·分振幅法:在薄膜干涉中,由于膜的两个表面的反射和折射,同一条入射光线可分为两条(或多条)相干的反射光线(也可分为相干的透射光线)。
因为波的能量和振幅有关,所以这种获得相干光的方法称作分振幅法。
·干涉条纹的级次:条纹的级次是该条纹相应的光程差与波长的比值(即光程差是波长的多少倍的那个倍数)。
明条纹的级次是整数;暗条纹的级次是半整数。
·晶体起偏器件:用双折射晶体可以作成各种偏振棱镜(如格兰⋅汤姆孙棱镜;尼科耳棱镜等),用来产生线偏振光,这些偏振棱镜称作晶体起偏器件。
·晶体相移器件:用双折射晶体可以做成波(晶)片,它可使晶体内的两束折射光产生一定的相位差,这样的波(晶)片称作晶体相移器件。
如果波(晶)片有特定的厚度,则可产生特定的相位差,这样的波(晶)片称作波片(如1/2波片;1/4波片等)。
·空间相干性:讨论当光源S具有一定的宽度时,在S的波面上多大范围内提取的两个次波源还能相干(有可观测的条纹,即衬比度V~ 1 )。
·相干间隔:干涉条纹刚好消失时两个次波源间的距离d0称作相干间隔。
·相干孔径:相干间隔对光源中心所张的角称作相干孔径。
·相干面积:波面上线度为d0(相干间隔) 的区域的面积称作相干面积。
·准单色光:在某个中心频率(波长)附近有一定频率(波长)范围的光称作准单色光。
·谱线宽度:对一条谱线,最大光强的一半处的谱线的波长(或频率)的范围称作该谱线的谱线宽度。
·最大光程差:干涉条纹第一次完全消失时所对应的相干光的光程差 L max叫作最大光程差,通常把它当作实际光源能否产生干涉的界限。
塞曼效应引言电磁场与光的相互作用一直是物理学家研究的重要课题。
1845年法拉第 (Michael Faraday,1791-1867)发现了磁场能改变偏振光的偏振方向,即磁致旋光效应。
1875年克尔(J.Kerr,1824-1907)发现各向同性的介质如玻璃等,在强电场作用下会表现出各向异性的光学性质,出现双折射现象,即电光效应。
1896年荷兰塞曼(Pieter Zeeman ,1865~1943)研究电磁场对光的影响,他把钠光源置于强磁场中,发现钠的谱线出现了加宽现象,即谱线发生了分裂,后称为正常塞曼效应。
著名物理学家洛仑兹(Hendrik Antoon Lorentz,1853~1928)用经典电子论对这种现象进行了解释。
他认为电子存在轨道磁矩,并且磁矩在空间的取向是量子化的,因此在磁场作用下能级发生分裂,谱线分裂成间隔相等的3条谱线。
用正常塞曼效应测出电子荷质比,与1897年汤姆逊(Joseph John Thomson 1856-1940) 测量阴极射线的结果相同。
由于塞曼效应的发现,塞曼和洛仑兹分享了1902年诺贝尔物理学奖。
1897年英国普雷斯顿(Preston) ,美国的迈克耳孙(1897) ,德国的龙格(Runge ,1902)和帕邢(Friedrich Paschen ,1912) 都观察到光谱线有时分裂多于3条,称为反常塞曼效应。
反常塞曼效应在很长时间里一直没能得到很好的解释。
1921年,德国朗德(Landé)发表《论反常塞曼效应》的论文,引进朗德因子g 表示原子能级在磁场作用下的能量改变比值,这一因子只与能级的量子数有关。
1925年,荷兰乌仑贝克(G.E.Uhlenbeck,1900-1974)和古德斯米特(S.A.Goudsmit,1902-1978)提出了电子自旋假设,很好地解释了反常塞曼效应。
塞曼效应证实了原子具有磁矩和空间取向量子化。
根据光谱线分裂的数目可知总角动量量子数J ,根据光谱线分裂的间隔可以测量g 因子,近而确定原子总轨道角动量量子数L 和总自旋量子数S 的数值,因此,塞曼效应是研究原子结构的重要方法之一。
传感器的基础效应物联网工程专业2011班目录光电效应邹烈勇泡克耳斯效应陈黎妮克尔效应陈萍电致发光效应黄慧莹电致发光效应黄慧莹法拉第效应谢晓君磁光克尔效应李菁雯科顿-穆顿效应杨紫霜塞曼效应陈丹光磁效应王行健霍尔效应陈昊磁阻效应董扬帆巨磁阻效应董扬帆塞贝克效应时红杰珀尔帖效应陈霖汤姆逊效应陈天恒压电效应谢榕声音的多普勒效应陶焕声电效应刘进声光效应董涛磁声效应柯奕佳纳米效应余耀光弹效应戴敬禹光电效应邹烈勇中文名称:光电效应英文名称:photoelectric effect外光电效应现象物质吸收光子并激发出自由电子的行为。
历史光电效应由德国物理学家赫兹于1887年发现,对发展量子理论起了根本性作用。
大约1900年,马克思·普朗克(Max Planck)对光电效应作出最初解释,并引出了光具有的能量包裹式能量(quantised)这一理论。
1902年,勒纳(Lenard)也对其进行了研究,指出光电效应是金属中的电子吸收了入射光的能量而从表面逸出的现象。
但无法根据当时的理论加以解释。
1905年,爱因斯坦26岁时提出光子假设,成功解释了光电效应。
基本原理外光电效应是指物质吸收光子并激发出自由电子的行为。
当金属表面在特定的光辐照作用下,金属会吸收光子并发射电子。
材料Ag-O-Cs,Cs-Sb应用传感器上的应用:制成光电管,光电倍增管生活中的应用:发光二极管(LED)泡克耳斯效应陈黎妮英文名称Pockels effect理论来源1893年由德国物理学家F.C.A.泡克耳斯发现。
一些晶体在纵向电场(电场方向与光的传播方向一致)作用下会改变其各向异性性质,产生附加的双折射效应,称为电致双折射。
例如把磷酸二氢钾晶体放置在两块平行的导电玻璃之间,导电玻璃板构成能产生电场的电容器,晶体的不加电场时,入射光在晶体内不发生双折,加电场时。
晶体发生双折射。
泡克耳斯效应与所加电场强度的一次方成正比。
基本定义耳斯效应(Pockels):平面偏振光沿着处在外电场内的压电晶体的光轴传播时发生双折射现象,且两个主折射率之差与外电场强度成正比,这种电光效应即为泡克耳斯效应。