(易错题)华师大九年级下《第26章二次函数》单元测试卷(学生用)-(数学)
- 格式:docx
- 大小:274.95 KB
- 文档页数:11
二次函数单元练习题一、选择题1.下列函数中是二次函数的是( B )A .y =3x -1B .y =3x 2-1 C.y =(x +1)2-x 2 D .y =x 3+2x -32.将抛物线y =3x 2向右平移两个单位,再向下平移4个单位,所得抛物线是( )(A)y =3(x +2)2+4 (B) y =3(x -2)2+4 (C) y =3(x -2)2-4 (D)y =3(x +2)2-43.二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,则下列结论中正确的是( B )A .a >0B .当-1<x <3时,y >0C .c <0D .当x ≥1时,y 随x 的增大而增大4.二次函数y =x 2-8x +c 的最小值是0,那么c 的值等于( )(A)4 (B)8 (C)-4 (D)165.抛物线y =-2x 2+4x +3的顶点坐标是( )(A)(-1,-5) (B)(1,-5) (C)(-1,-4) (D) (-2,-7)6. 若二次函数=ax 2+c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为( )(A)a +c (B)a -c (C)-c (D)c7.如图,已知:正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE =BF =CG =DH , 设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是( )(A) (B) (C) (D)8.抛物线y =ax 2+bx +c 的顶点为D(-1,2),与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b 2-4ac <0;②a +b +c <0;③c -a =2;④方程ax 2+bx +c -2=0有两个相等的实数根.其中正确的结论的个数为( C )A .1个B .2个C .3个D .4个二、填空题9.已知函数y =ax 2+bx +c ,当x =3时,函数的最大值为4,当x =0时,y =-14,则函数关系式____.10.若二次函数y =-x 2+4x +k 的最大值等于3,则k 的值等于____. .11.函数42-=x y 的图象与y 轴的交点坐标是________. 12.已知抛物线的顶点是(0,1),对称轴是y 轴,且经过(-3,2),则此抛物线的函数关系式为_________,当x >0时,y 随x 的增大而____.13.已知抛物线y =ax 2+bx +c(a≠0)与x 轴的两个交点的坐标是(5,0),(-2,0),则方程ax 2+bx+c=0(a≠0)的解是_______.14.抛物线y=(m-4)x2-2mx-m-6的顶点在x轴上,则m=______.15.若函数y=a(x-h)2+k的图象经过原点,最大值为8,且形状与抛物线y=-2x2-2x+3相同,则此函数关系式______.16.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),如图所示,则使y1>y2成立的x的取值范围是______ __三、解答题17.(8分)已知抛物线y=a(x-h)2-4经过点(1,-3),且与抛物线y=x2的开口方向相同,形状也相同.(1)求a,h的值;(2)求它与x轴的交点,并画出这个二次函数图象的草图;(3)若点A(m,y1),B(n,y2)(m<n<0)都在该抛物线上,试比较y1与y2的大小.y x mx m.18、已知抛物线22(1)求证此抛物线与x轴有两个不同的交点;y x mx m与x轴交于整数点,求m的值;(2)若m是整数,抛物线22(3)在(2)的条件下,设抛物线顶点为A,抛物线与x轴的两个交点中右侧交点为B.若M为坐标轴上一点,且MA=MB,求点M的坐标.19.(8分)如图,已知二次函数y=-x2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,顶点D.(1)求这个二次函数的关系式;(2)求四边形ABDC的面积.20.(12分)(2011·聊城)如图,已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0)、C(0,-3)两点,与x 轴交于另一点B.(1)求这条抛物线所对应的函数解析式;(2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,并求出此时点M 的坐标;(3)设点P 为抛物线的对称轴x =1上的一动点,求使∠PCB =90°的点P 的坐标.参考答案:一、1-5 BCBDB 6-8 DBC .二、9.y =-2(x -3)2+4; 10.-1 ;11.(0.-4) ; 12.y =19x 2+1 ;增大. 13.向上,x =41,(825,41-);14.略. 15.y =-2x 2+8x 或y =-2x 2-8x ; 16.x <-2或x >8; 三、17.解:(1)a =1,h =2 (2)它与x 轴的交点坐标为(0,0),(4,0),图象略 (3)y 1>y 218.由已知,得30423c a b c a b c =-⎧⎪-+=⎨⎪++=-⎩,,解得a =1,b =-2,c =-3.所以y =x 2-2x -3.(2)开口向上,对称轴x =1,顶点(1,-4).19、解:(1)y =-x 2+2x +3 (2)连结OD ,可求得C (0,3),D (1,4),则S 四边形ABDC =S △AOC+S △COD +S △BOD =12×1×3+12×3×1+12×3×4=920、解:(1)根据题意,y =ax 2+bx +c 的对称轴为x =1,且过A(-1,0),C(0,-3),可得⎩⎪⎨⎪⎧ -b 2a =1a -b +c =0,c =-3解得⎩⎨⎧ a =1,b =-2,c =-3.∴抛物线所对应的函数解析式为y =x 2-2x -3.(2)由y =x 2-2x -3可得,抛物线与x 轴的另一交点B(3,0)如图①,连结BC ,交对称轴x =1于点M.因为点M 在对称轴上,MA =MB.所以直线BC 与对称轴x =1的交点即为所求的M 点.设直线BC 的函数关系式为y =kx +b ,由B(3,0),C(0,-3),解得y =x -3,由x =1,解得y =-2.故当点M 的坐标为(1,-2)时,点M 到点A 的距离与到点C 的距离之和最小.(3)如图②,设此时点P 的坐标为(1,m),抛物线的对称轴交x 轴于点F(1,0).连结PC 、PB ,作PD 垂直y 轴于点D ,则D(0,m).。
2022-2023学年华东师大版九年级下册数学《第26章二次函数》单元测试卷一.选择题(共10小题,满分30分)1.下列是二次函数的是()A.y=2﹣x2B.y=x﹣22C.D.y=2x﹣12.一次函数y=ax+b与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的大致图象可能是()A.B.C.D.3.抛物线y=﹣x2﹣2x一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.从地面竖直向上抛出一小球,小球的高度h(米)与运动时间t(秒)之间的解析式是h =﹣5t2+30t(0≤t≤6),则小球到达最高高度时,运动的时间是()A.1秒B.2秒C.3秒D.4秒5.如图是二次函数y=ax2+bx+c(a≠0)的图像,则下列结论正确的有()①abc>0;②2a+b=0;③b2<4ac;④4a+2b+c>0;⑤a+b≥am2+bm(m为任意实数)A.2个B.3个C.4个D.5个6.把函数y=(x﹣2)2+3的图象所在坐标系的坐标轴向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣3)2+3D.y=(x﹣1)2+3 7.小英在用“描点法”探究二次函数性质时,画出了以下表格,不幸的是,部分数据已经遗忘(如表所示),小英只记得遗忘的三个数中(如M,R,A所示),有两个数相同.根据以上信息,小英探究的二次函数解析式可能是()x…﹣10123…y…M R﹣4﹣3A…A.y=x2﹣3x﹣2B.C.y=2x2﹣5x﹣1D.8.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.若关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根的积是()A.0B.﹣8C.﹣15D.﹣249.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,有下列4个结论:①abc>0;②b2﹣4ac>0;③关于x的方程ax2+bx+c=0的两个根是x1=﹣2,x2=3;④关于x的不等式ax2+bx+c>0的解集是x>﹣2.其中正确的结论有()个.A.1B.2C.3D.410.对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y =﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为()A.﹣3<n≤﹣1或1<n≤B.﹣3<n<﹣1或1≤n≤C.n≤﹣1或1<n≤D.﹣3<n<﹣1或n≥1二.填空题(共10小题,满分30分)11.根据下表判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的取值范围是x0.40.50.60.7ax2+bx+c﹣0.64﹣0.250.160.5912.如果函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,那么m的值为.13.在一块底边长为20厘米的等腰直角三角形铁皮上截一块矩形铁皮,如果矩形的一边与等腰三角形的底边重合且长度为x厘米,矩形另两个顶点分别在等腰直角三角形的两腰上,设矩形面积为y平方厘米,那么y关于x的函数解析式是.(不必写定义域)14.二次函数y=﹣x2+4x+a图象上的最高点的横坐标为.15.若点A(3,y1),B(﹣5,y2),C(7,y3)为二次函数y=(x+2)2﹣9的图象上的三点,则y1,y2,y3的大小关系是.16.将二次函数y=x2﹣2x+3化成顶点式为.17.一辆宽为2m的货车要通过跨度为8m,拱高为4m的截面为抛物线的单行隧道(从正中间通过),抛物线满足关系式.为保证安全,车顶离隧道至少要有0.5m的距离,则货车的限高应为m.18.如图所示的抛物线y=x2﹣bx+b2﹣9的图象,那么b的值是.19.二次函数的顶点坐标是.20.已知抛物线y=ax2+bx+3的图象与x轴相交于点A和点B(1,0),与y轴交于点C,连接AC,有一动点D在线段AC上运动,过点D作x轴的垂线,交抛物线于点E,交x 轴于点F,AB=4,设点D的横坐标为m.(1)连接AE,CE则△ACE的最大面积为;(2)当m=﹣2时,在平面内存在点Q,使以B,C,E,Q为顶点的四边形为平行四边形,请写出点Q的坐标.三.解答题(共7小题,满分60分)21.已知函数y=(m﹣1)+4x﹣5是二次函数.求m的值.22.已知二次函数y=x2﹣4x+3.(1)求二次函数y=x2﹣4x+3图象的顶点坐标;(2)在平面直角坐标系xOy中,画出二次函数y=x2﹣4x+3的图象.23.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.24.在平面直角坐标系中,已知抛物线C:y=ax2+2x﹣1(a≠0)和直线l:y=kx+b,点A (﹣5,﹣4),B(1,﹣1)均在直线l上.(1)求出直线l的解析式;(2)当a=﹣1,二次函数y=ax2+2x﹣1的自变量x满足m≤x≤m+2时,函数y的最大值为﹣9,求m的值;(3)若抛物线C与线段AB有两个不同的交点,求a的取值范围.25.某商场经调研得出某种商品每天的利润y(元)与销售单价x(元)之间满足关系:y =ax2+bx﹣75,其图象如图所示.(1)求a与b的值;(2)销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(3)销售单价定在多少时,该种商品每天的销售利润为21元?结合图象,直接写出销售单价定在什么范围时,该种商品每天的销售利润不低于21元?26.已知:由函数y=x2﹣2x﹣2的图象知道,当x=0时,y<0,当x=﹣1时,y>0,所以方程x2﹣2x﹣2=0有一个根在﹣1和0之间.(1)参考上面的方法,求方程x2﹣2x﹣2=0的另一个根在哪两个连续整数之间;(2)若方程x2﹣2x+c=0有一个根在0和1之间,求c的取值范围.27.记函数y=x2﹣2x(x≤2)的图象为G1,函数的图象记为G2,图象G1和G2记为图象G.(1)若点(3,m)在图象G上,求m的值.(2)已知直线l与x轴平行,且与图象G有三个交点,从左至右依次为点A,点B,点C,若AB=1,求点C坐标.(3)若当﹣1≤x≤n时,﹣1≤y≤3,求n的取值范围.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:A、y=2﹣x2是二次函数,故此选项符合题意;B、y=x﹣22是一次函数,故此选项不符合题意;C、不是二次函数,故此选项不符合题意;D、y=2x﹣1是一次函数,故此选项不符合题意;故选:A.2.解:A、由一次函数的图象可知,a<0,由二次函数的图象可知,a>0,两结论矛盾,不符合题意;B、由一次函数的图象可知,a<0,b<0,由二次函数的图象可知,a<0,b>0,两结论矛盾,不符合题意;C、由一次函数的图象可知,a<0,b>0,由二次函数的图象可知,a<0,b<0,两结论矛盾,不符合题意;D、由一次函数的图象可知,a>0,b<0,由二次函数的图象可知,a>0,b<0,两结论一致,符合题意.故选:D.3.解:∵a=﹣1,抛物线开口向下,对称轴为x=,与y轴交于(0,),∴抛物线经过一、三、四象限,不经过第二象限.故选:B.4.解:h=30t﹣5t2=﹣5(t﹣3)2+45,∵﹣5<0,0≤t≤6,∴当t=3时,h有最大值,最大值为45,∴小球运动3秒时,小球达到最高高度,故选:C.5.解:由图象可知,抛物线开口向下,∴a<0,∵对称轴为,∴2a=﹣b,∴b>0且2a+b=0,②正确;∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴b2>4ac,③错误;∵2a+b=0,∴4a+2b+c=2(2a+b)+c=c>0,④正确;∵当x=1时,函数取最大值,为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥am2+bm(m为任意实数),⑤正确;综上所述,正确的有3个,故选:B.6.解:二次函数y=(x﹣2)2+3的图象的顶点坐标为(2,3),∴向右平移1个单位长度后的函数图象的顶点坐标为(3,3),∴所得的图象解析式为y=(x﹣3)2+3.故选:C.7.解:A、y=x2﹣3x﹣2的对称轴为直线,B、的对称轴为直线,C、y=2x2﹣5x﹣1的对称轴为直线,D、的对称轴为直线,若M与R相同,则抛物线的对称轴为直线,只有B选项符合,将点(1,﹣4),(2,﹣3)代入解析式,均符合;若M与A相同,则抛物线的对称轴为直线x=1,没有选项符合;若R与A相同,则抛物线的对称轴为直线,选项A、D符合,但将点(1,﹣4),(2,﹣3)代入解析式,却不符合;∴M与R相同,B选项符合,故选:B.8.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3,∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴抛物线y=ax2+bx+c与直线y=﹣n的交点的横坐标在﹣5与﹣3之间和1与3之间,∴关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是﹣4和2,∴两个整数根的积是﹣4×2=﹣8.故选:B.9.解:∵抛物线开口向下,交y轴的正半轴,∴a<0,c>0,∵﹣=,∴b=﹣a>0,∴abc<0,所以①错误;∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,所以②正确;∵抛物线y=ax2+bx+c经过点(﹣2,0),而抛物线的对称轴为直线x=,∴点(﹣2,0)关于直线x=的对称点(3,0)在抛物线上,∴关于x的一元二次方程ax2+bx+c=0的两根是x1=﹣2,x2=3,所以③正确.由图象可知当﹣2<x<3时,y>0,∴不等式ax2+bx+c>0的解集是﹣2<x<3,所以④错误;故选:B.10.解:如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2﹣4x﹣n与y轴交点纵坐标为1,∴﹣n=1,解得:n=﹣1.∴当﹣3<n≤﹣1时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=﹣x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2﹣4x﹣n经过点M(﹣,1),∴+2﹣n=1,解得:n=.∴1<n≤时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是﹣3<n≤﹣1或1<n≤,故选:A.二.填空题(共10小题,满分30分)11.解:∵函数y=ax2+bx+c的图象与x轴交点的横坐标就是方程ax2+bx+c=0的根,x轴上的点的纵坐标为0,由表中数据可知:y=0在y=﹣0.25与y=0.16之间,∴对应的x的值在0.5与0.6之间即0.5<x<0.6.故答案为0.5<x<0.6.12.解:∵函数y=(m﹣3)x|m﹣1|+3x﹣1是二次函数,∴|m﹣1|=2,且m﹣3≠0,解得:m=﹣1.故答案为:﹣1.13.解:∵△ABC是等腰直角三角形,四边形EFGD是矩形,∴△AFE和△DGB都是等腰直角三角形,∴ED=GF=x厘米,AF=BG=(20﹣x)厘米,∴EF=(20﹣x)厘米,∴矩形EFGD的面积y=x•(20﹣x)=﹣x2+10x,∴y关于x的函数关系式是y=﹣x2+10x.故答案为:y=﹣x2+10x.14.解:∵二次函数y=﹣x2+4x+a=﹣(x﹣2)2+4+a,∴二次函数图象上的最高点的横坐标为:﹣2.故答案为:﹣2.15.解:∵y=(x+2)2﹣9,∴图象的开口向上,对称轴是直线x=﹣2,∴B(﹣5,y2)关于直线x=﹣2的对称点是(1,y2),∵1<3<7,∴y2<y1<y3,故答案为:y2<y1<y3.16.解:y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2.故答案为:y=(x﹣1)2+2.17.解:∵车的宽度为2米,车从正中通过,∴x=1时,y=﹣×12+4=,∴货车安全行驶装货的最大高度为﹣0.5=3.25(米),即货车的限高为:3.25;18.解:由图可知,抛物线经过原点(0,0),所以,02﹣b×0+b2﹣9=0,解得b=±3,∵抛物线的对称轴在y轴的右边,∴﹣>0,∴b>0,∴b=3.故答案为:3.19.解:二次函数y =﹣(x ﹣1)2+2的顶点坐标是(1,2),故答案为:(1,2).20.解:(1)∵点B (1,0),AB =4,则点A (﹣3,0),由题意得:,解得:,即抛物线的表达式为:y =﹣x 2﹣2x +3;设直线AC 的表达式为:y =mx +n ,则,解得:,故直线AC 的表达式为:y =x +3;设点D (m ,m +3),则点E (m ,﹣m 2﹣2m +3),则△ACE 的面积=S △EDA +S △EDC =DE ×AO =3×(﹣m 2﹣2m +3﹣m ﹣3)=﹣(m 2+3m )=﹣(m +)2+≤, ∴△ACE 的最大面积为, 故答案为:;(2)当m =﹣2时,﹣m 2﹣2m +3=3,即点E (﹣2,3),设点Q (s ,t ),当BC 是对角线时,由中点坐标公式得:,解得:, 当BE 是对角线时,由中点坐标公式得:,解得:, 当BQ 是对角线时,由中点坐标公式得:,解得:, 即点Q 的坐标为(﹣3,0)或(﹣1,0)或)(﹣3,6),故答案为:(﹣3,0)或(﹣1,0)或)(﹣3,6).三.解答题(共7小题,满分60分)21.解:由题意:,解得m =﹣1,∴m=﹣1时,函数y=(m﹣1)+4x﹣5是二次函数.22.解:(1)y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点为:(2,1);(2)解:该函数过点(0,3),(1,0),(2,﹣1),(3,0),(4,3)这五个点,用五点作图画出图象如下:23.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.24.解:(1)把点A(﹣5,﹣4),B(1,﹣1)代入y=kx+b中,得,解得,∴直线l的解析式为y=x﹣;(2)根据题意可得,y=﹣x2+2x﹣1,∵a<0,∴抛物线开口向下,对称轴x=1,∵m≤x≤m+2时,y有最大值﹣9,∴当y=﹣9时,有﹣x2+2x﹣1=﹣9,∴x=﹣2或x=4,①在x=1左侧,y随x的增大而增大,∴x=m+2=﹣2时,y有最大值﹣4,∴m=﹣4;②在对称轴x=1右侧,y随x最大而减小,∴x=m=4时,y有最大值﹣9;综上所述:m=﹣4或m=4;(3))①a<0时,x=1时,y≤﹣1,即a+1≤﹣1,∴a≤﹣2;②a>0时,x=﹣3时,y≥﹣3,即9a﹣7≥﹣3,∴a≥,直线AB的解析式为y=x﹣;抛物线与直线联立:ax2+2x﹣1=x﹣,∴ax2+x+=0,Δ=﹣2a>0,∴a<,∴a的取值范围为≤a<或a≤﹣2.25.解:(1)y=ax2+bx﹣75图象过点(5,0)、(7,16),∴,解得:;(2)∵y=﹣x2+20x﹣75=﹣(x﹣10)2+25,=25.∴当x=10时,y最大答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元;(3)根据题意,当y=21时,得:﹣x2+20x﹣75=21,解得:x1=8,x2=12,∴x=8或x=12,即销售单价定在8元或12元时,该种商品每天的销售利润为21元;故销售单价在8≤x≤12时,销售利润不低于21元.26.解:(1)利用函数y=x2﹣2x﹣2的图象可知,当x=2时,y<0,当x=3时,y>0,所以方程的另一个根在2和3之间;(2)函数y=x2﹣2x+c的图象的对称轴为直线x=1,由题意,得,解得0<c<1.27.解:(1)∵点(3,m)在图象G上,函数y=x2﹣2x(x≤2)的图象为G1,函数y=﹣x2+2(x>0)的图象记为G2,图象G1和G2记为图象G.∴点(3,m)在图象G2上,将点(3,m)代入y=﹣x2+2得,m=﹣×32+2=﹣,∴m的值﹣;(2)如图,∵直线l与x轴平行且与图象G有三个交点,从左至右依次为点A,点B,点C,由图象得﹣1≤y≤0,设A(a,a2﹣2a),∵y=x2﹣2x的对称轴为直线x=1,顶点为(1,﹣1),∴点B(2﹣a,a2﹣2a),∵AB=1,∴2﹣a﹣a=1,解得a=,∴点C的纵坐标为a2﹣2a=﹣,将y=﹣代入y=﹣x2+2得﹣=﹣x2+2,解得x=±(负值不合题意,舍去),∴点C坐标为(,﹣);(3)∵y=x2﹣2x(x≤2)的对称轴为直线x=1,顶点为(1,﹣1),函数y=﹣x2+2(x>0)的顶点为(0,2),∴当y=3时,3=x2﹣2x,解得x=﹣1或3(舍去),当y=﹣1时,﹣1=﹣x2+2,解得x=或﹣(舍去),∵当﹣1≤x≤n时,﹣1≤y≤3,结合图象得1≤n≤.。
华东师大版九年级数学下册第26章 二次函数 单元测试题(时间:100分钟 满分:100分)一、选择题(每小题4分,共32分)1.二次函数y =(x -2)2+7的顶点坐标是(B)A.(-2,7)B.(2,7)C.(-2,-7)D.(2,-7)2.下列各点不在抛物线y =-x 2+4x -1上的是(B)A.(-2,-13)B.(-1,-4)C.(-1,-6)D.(2,3)3.二次函数y =x 2+bx +c 的图象上有两点(3,4)和(-5,4),则此拋物线的对称轴是直线(A)A.x =-1B.x =1C.x =2D.x =34.顶点为(-5,0),且开口方向、形状与函数y =-13x 2的图象相同的抛物线是(C) A.y =13(x -5)2 B.y =-13x 2-5 C.y =-13(x +5)2 D.y =13(x +5)2 5.已知二次函数y =a(x -1)2+2,当x <1时,y 随x 的增大而增大,则a 的取值范围是(B)A.a >0B.a <0C.a≥0D.a≤06.对于函数y =-2(x -m)2-1的图象,下列说法中不正确的是(D)A.开口方向向下B.对称轴是直线x =mC.最大值是-1D.与y 轴不相交7.若二次函数y =x 2+2x +kb +1的图象与x 轴有两个交点,则一次函数y =kx +b 的大致图象可能是(A)8.如图,一段抛物线:y =-x(x -2)(0≤x≤2)记为C 1,它与x 轴交于两点O ,A 1.将C 1绕A 1旋转180°得到C 2,交x 轴于A 2;将C 2绕A 2旋转180°得到C 3,交x 轴于A 3;…,如此进行下去,得到C n .若点P(2 019,m)在抛物线C n 上,则m 为(A)A.-1B.1C.2D.3二、填空题(每小题5分,共25分)9.二次函数y =x 2-4x +2的最小值为-2.10.请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的函数表达式:y =x 2+1(答案不唯一).11.已知抛物线y =ax 2+bx +c(a >0)过A(-2,0),O(0,0),B(-3,y 1),C(3,y 2)四点,则y 1与y 2的大小关系是y 1<y 2.12.如图,隧道的截面由抛物线和长方形构成.长方形的长为12 m ,宽为5 m ,抛物线的最高点C 离路面AA 1的距离为8 m ,过AA 1的中点O 建立如图所示的平面直角坐标系,则该抛物线的函数表达式为y =-112x 2+8.13.在平面直角坐标系xOy 中,若抛物线y =ax 2上的两点A ,B 满足OA =OB ,且tan∠OAB=12,则称线段AB 为该抛物线的通径.那么抛物线y =12x 2的通径长为2.三、解答题(共43分)14.(9分)已知抛物线y =-2x 2-4x +1.(1)求这个抛物线的对称轴和顶点坐标;(2)将这个抛物线平移,使顶点移到点P(2,0)的位置,写出所得新抛物线的表达式和平移的过程.解:(1)y =-2x 2-4x +1=-2(x 2+2x +1)+2+1=-2(x +1)2+3,∴对称轴是直线x =-1,顶点坐标为(-1,3).(2)∵新顶点坐标为P(2,0),∴新抛物线的表达式为y=-2(x-2)2.∴平移过程为向右平移3个单位长度,向下平移3个单位长度.15.(10分)已知抛物线y=mx2-2mx-3.(1)若抛物线的顶点的纵坐标是-2,求此时m的值;(2)已知当m≠0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,求出这两个定点的坐标. 解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,抛物线的顶点的纵坐标是-2,∴-m-3=-2,解得m=-1,即m的值是-1.(2)∵当m≠0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,当m=1时,y=x2-2x-3;当m=2时,y=2x2-4x-3,∴x2-2x-3=2x2-4x-3.∴x2-2x=0.∴x1=0,x2=2.∴这两个定点为(0,-3)与(2,-3).16.(12分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m.(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384 m2,求x的值;(3)求菜园的最大面积.解:(1)根据题意知,y =10 000-200x 2×150=-23x +1003. (2)根据题意,得(-23x +1003)x =384, 解得x =18或x =32.∵墙的长度为24 m ,∴x=18.(3)设菜园的面积是S ,则S =(-23x +1003)x =-23x 2+1003x =-23(x -25)2+1 2503. ∵-23<0,∴当x <25时,S 随x 的增大而增大. ∵x≤24,∴当x =24时,S 取得最大值,最大值为416.答:菜园的最大面积为416 m 2.17.(12分)如图,抛物线y =ax 2+bx -3a 经过A(-1,0),C(0,-3)两点,与x 轴交于另一点B.(1)求此抛物线的表达式;(2)已知点D(m ,-m -1)在第四象限的抛物线上,求点D 关于直线BC 对称的点D′的坐标;(3)在(2)的条件下,连结BD.问在x 轴上是否存在点P ,使∠PCB=∠CBD?若存在,请求出P 点的坐标;若不存在,请说明理由.解:(1)将A(-1,0),C(0,-3)代入抛物线y =ax 2+bx -3a 中,得⎩⎪⎨⎪⎧a -b -3a =0,-3a =-3.解得⎩⎪⎨⎪⎧a =1,b =-2. ∴y=x 2-2x -3.(2)将点D(m ,-m -1)代入y =x 2-2x -3中,得 m 2-2m -3=-m -1.解得m =2或-1.∵点D(m ,-m -1)在第四象限,∴D(2,-3).∵B(3,0),C(0,-3),∴∠BCD=∠BCO=45°,CD′=CD =2,OD′=3-2=1. ∴点D 关于直线BC 对称的点D′的坐标为(0,-1).(3)存在.满足条件的点P 有两个.①过点C 作CP∥BD,交x 轴于点P ,则∠PCB=∠CBD. ∵直线BD 的表达式为y =3x -9,直线CP 过点C , ∴直线CP 的表达式为y =3x -3.∴点P 的坐标为(1,0);②连结BD′,过点C 作CP′∥BD′,交x 轴于点P′, 则∠P′CB=∠D′BC.根据对称性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD.∵直线BD′的表达式为y =13x -1,直线CP′过点C ,∴直线CP′的表达式为y =13x -3. ∴点P′的坐标为(9,0).综上所述,满足条件的点P 的坐标为(1,0)或(9,0).。
华师大版九年级数学下册第26章二次函数单元检测试卷一、单选题(共10题;共30分)1.将二次函数y=x2−4x−1化为y=(x−ℎ)2+k的形式,结果为( )A. y=(x+2)2+5B. y=(x+2)2−5C. y=(x−2)2+5D. y=(x−2)2−52.把抛物线y=x2向右平移1个单位,再向上平移3个单位,得到抛物线的解析式为()A. y=(x−1)2+3B. y=(x+1)2−3C. y=(x−1)2−3D. y=(x+1)2+33.函数y=(x+1)2-2的最小值是()A. 1B. -1C. 2D. -24.如图,抛物线y=ax2+bx+c(a>0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是()A. -1<P<0B. -2<P<0C. -4<P<-2D. -4<P<05.抛物线y=-(x+2)2-3的顶点坐标是()A. (-2,3)B. (2,3)C. (-2,-3)D. (2,-3)6.把抛物线y=ax2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b+c的值为()A. 9B. 12C. -14D. 107.在下列函数关系式中,y是x的二次函数的是()A. x y=6B. xy=−6C. y+x2=6D. y=−6x8.下列关系中,是二次函数关系的是()A. 当距离S一定时,汽车行驶的时间t与速度v之间的关系。
B. 在弹性限度时,弹簧的长度y与所挂物体的质量x之间的关系。
C. 圆的面积S与圆的半径r之间的关系。
D. 正方形的周长C与边长a之间的关系。
9.抛物线y=ax2+bx+c的图角如图,则下列结论:①abc>0;②a+b+c=2;③a>1;④b<1.2其中正确的结论是()A. ①②B. ②③C. ②④D. ③④10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共30分)11.二次函数y=x2+4x+5中,当x=________时,y有最小值.12.若将二次函数y=x2-2x+3配方为y=(x-h)2 +k的形式,则y=________.13.已知抛物线y=2x2−bx+3的对称轴是直线x=1,则b的值为________.14.将函数y=−x2所在的坐标系先向左平移2个单位再向下平移3个单位,则函数在新坐标系中的函数关系式是________.15.把抛物线y=x2向右平移3个单位,再向下平移1个单位,则得到抛物线________.16.如图.已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(﹣2,4),B(8,2),根据图象能使y1>y2成立的x取值范围是________.17.张力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离x(m)的关系式为h=﹣148x2+ 4648x+2,则大力同学投掷标枪的成绩是________m.18.已知点A(−3,m)和点B(1,m)是抛物线y=2x2+bx+3图象上的两点,则b=________.19.二次函数y=ax+bx+c的图像如图所示,则不等式ax+bx+c>0的解集是________ .20.二次函数y=ax2+bx+c(a≠0)的部分图像如图所示,图像过点(−1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)若点A(−3,y1)、点B(−12,y2)、点C(72,y3)在该函数图像上,则y1<y3<y2;(4)若方程a(x+1)(x−5)=−3的两根为x1和x2,且x1<x2,则x1<−1<5<x2.其中正确结论的序号是________.三、解答题(共8题;共60分)21.如图,在平面直角坐标系中,点A,B,C的坐标分别为(0,2),(3,2),(2,3).(1)请在图中画出△ABC向下平移3个单位的像△A′B′C′;(2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式.22.如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.23.已知抛物线y=x2+(m+4)x-2(m+6)(m是常数,m≠-8)与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C.(1)此抛物线的解析式;(2)求点A、B、C的坐标.24.向上抛掷一个小球,小球在运行过程中,离地面的距离为y(m),运行时间为x(s),y与x之间存在的关系x2+3x+2.问:小球能达到的最大高度是多少?为y=-1225.(1)已知y=(m2+m)x m2−2m−1+(m﹣3)x+m2是x的二次函数,求出它的解析式.(2)用配方法求二次函数y=﹣x2+5x﹣7的顶点坐标并求出函数的最大值或最小值.26.永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?27.如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB 于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?x2+bx+c经过A、B两点,与x轴的28.如图,直线y=x−4与x轴、y轴分别交于A、B两点,抛物线y=13另一个交点为C,连接BC.(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45∘时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由.答案解析部分一、单选题1.【答案】D【考点】二次函数的三种形式【解析】【分析】y=x2−4x−1=(x−2)2−5.故选D.2.【答案】D【考点】二次函数图象的几何变换【解析】【解答】抛物线y=x2先向右平移1个单位所得抛物线的解析式为y=(x−1)2,抛物线y=(x−1)2再向上平移3个单位所得抛物线的解析式为y=(x−1)2+3,故答案为:D.【分析】根据函数图象平移的法则即可得到结果.3.【答案】D【考点】二次函数的最值【解析】【分析】此函数的最小值,在x=-1时,y=-2,此时取最小值。
第26章二次函数单元检测卷姓名:__________ 班级:_________题号一二三总分评分1.在下列关于x的函数中,一定是二次函数的是()A. y=x2B. y=ax2+bx+cC. y=8xD. y=x2(1+x)2.二次函数y=x2+2x﹣7的函数值是8,那么对应的x的值是()A. 3B. 5C. ﹣3和5D. 3和﹣53.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线()A. x=1B. x=﹣1C. x=﹣3D. x=34.已知二次函数y=x2+bx+3如图所示,那么函数y=x2+(b﹣1)x+3的图象可能是()A. B. C. D.5.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A. B. C. D.6.二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A. x<﹣1B. x>3C. ﹣1<x<3D. x<﹣1或x>37.如图,函数y=﹣2x2的图象是()A. ①B. ②C. ③D. ④8.如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A. (,)B. (2,2)C. (,2)D. (2,)9.如图,抛物线y1=a(x+2)2-3与y2= (x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是()A. ①②B. ②③C. ③④D. ①④10.如果a、b同号,那么二次函数y=ax2+bx+1的大致图象是()A. B.C. D.11.函数y=ax2+bx+a+b(a≠0)的图象可能是()A. B. C. D.二、填空题(共10题;共3分)12.方程2x﹣x2=的正实数根有________ 个13.点A(﹣3,y1),B(2,y2)在抛物线y=x2﹣5x上,则y1________y2.(填“>”,“<”或“=”)14.若函数y=(m+2)是关于x的二次函数,则满足条件的m的值为________.15.当m________ 时,y=(m﹣2)是二次函数.16.若直线y=m(m为常数)与函数y=的图象有三个不同的交点,则常数m的取值范围________17.若y与x的函数是二次函数,则________ .18.若函数y=(m﹣2)x|m|是二次函数,则m=________.19.如图为函数:y=x2﹣1,y=x2+6x+8,y=x2﹣6x+8,y=x2﹣12x+35在同一平面直角坐标系中的图象,其中最有可能是y=x2﹣6x+8的图象的序号是________.20.若函数是二次函数,则m的值为________.21.二次函数y=3x﹣5x2+1的二次项系数、一次项系数、常数项分别为________.三、解答题(共3题;共37分)22.用一根长为800cm的木条做一个长方形窗框,若宽为x cm,写出它的面积y与x之间的函数关系式,并判断y是x的二次函数吗?23.一个二次函数y=(k﹣1)+2x﹣1.(1)求k值.(2)求当x=0.5时y的值?24.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线经过A(﹣1,0),C(0,﹣5)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)设点P为抛物线上的一个动点,连接PB、PC,若△BPC是以BC为直角边的直角三角形,求此时点P 的坐标;(3)在抛物线上BC段有另一个动点Q,以点Q为圆心作⊙Q,使得⊙Q与直线BC相切,在运动的过程中是否存在一个最大⊙Q?若存在,请直接写出最大⊙Q的半径;若不存在,请说明理由.参考答案一、选择题A D A C A C C C D D C二、填空题12.013.>14.115.﹣216.0<m<417.m=﹣118.-219.第三个20.-321.﹣5、3、1三、解答题22.解:设宽为xcm,由题意得,矩形的周长为800cm,∴矩形的长为cm,∴y=x×=﹣x2+400x(0<x<400).y是x的二次函数.23.解:(1)由题意得:k2﹣3k+4=2,且k﹣1≠0,解得:k=2;(2)把k=2代入y=(k﹣1)+2x﹣1得:y=x2+2x﹣1,当x=0.5时,y=.24.(1)解:∵对称轴为x=2,且抛物线经过A(﹣1,0),∴B(5,0).把B(5,0),C(0,﹣5)分别代入y=mx+n得,解得:,∴直线BC的解析式为y=x﹣5.设y=a(x﹣5)(x+1),把点C的坐标代入得:﹣5a=﹣5,解得:a=1,∴抛物线的解析式为:y=x2﹣4x﹣5(2)解:①过点C作CP1⊥BC,交抛物线于点P1,如图,则直线CP1的解析式为y=﹣x﹣5,由,解得:(舍去),,∴P1(3,﹣8);②过点B作BP2⊥BC,交抛物线于P2,如图,则BP2的解析式为y=﹣x+5,由,解得:(舍去),,∴P2(﹣2,7)(3)解:由题意可知,Q点距离BC最远时,半径最大.平移直线BC,使其与抛物线只有一个公共点Q(即相切),设平移后的直线解析式为y=x+t,由,消去y整理得x2﹣5x﹣5﹣t=0,△=25+4(5+t)=0,解得t=﹣,∴平移后与抛物线相切时的直线解析式为y=x﹣,且Q(,﹣),连接QC、QB,作QE⊥BC于E,如图,设直线y=x﹣与y轴的交点为H,连接HB,则,∵CH=﹣5﹣(﹣)= ,∴= ,∴,∵,BC= ,∴QE= ,即最大半径为。
华师大版九年级数学下册第26章二次函数单元检测试卷一、单选题(共10题;共30分)1.将二次函数y=x2−4x−1化为y= x−ℎ2+k的形式,结果为( )A. y=x+22+5B. y=x+22−5C. y=x−22+5D. y=x−22−52.把抛物线y=x2向右平移1个单位,再向上平移3个单位,得到抛物线的解析式为()A. y=(x−1)2+3B. y=(x+1)2−3C. y=(x−1)2−3D. y=(x+1)2+33.函数y=(x+1)2-2的最小值是()A. 1B. -1C. 2D. -24.如图,抛物线y=ax2+bx+c(a>0)过点(1,0)和点(0,-2),且顶点在第三象限,设P=a-b+c,则P的取值范围是()A. -1<P<0B. -2<P<0C. -4<P<-2D. -4<P<05.抛物线y=-(x+2)2-3的顶点坐标是()A. (-2,3)B. (2,3)C. (-2,-3)D. (2,-3)6.把抛物线y=ax2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b+c的值为()A. 9B. 12C. -14D. 107.在下列函数关系式中,y是x的二次函数的是()A. x y=6B. xy=−6C. y+x2=6D. y=−6x8.下列关系中,是二次函数关系的是()A. 当距离S一定时,汽车行驶的时间t与速度v之间的关系。
B. 在弹性限度时,弹簧的长度y与所挂物体的质量x之间的关系。
C. 圆的面积S与圆的半径r之间的关系。
D. 正方形的周长C与边长a之间的关系。
9.抛物线y=ax2+bx+c的图角如图,则下列结论:①abc>0;②a+b+c=2;③a>1;④b<1.2其中正确的结论是()A. ①②B. ②③C. ②④D. ③④10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(共10题;共30分)11.二次函数y=x2+4x+5中,当x=________时,y有最小值.12.若将二次函数y=x2-2x+3配方为y=(x-h)2 +k的形式,则y=________.13.已知抛物线y=2x2−bx+3的对称轴是直线x=1,则b的值为________.14.将函数y=−x2所在的坐标系先向左平移2个单位再向下平移3个单位,则函数在新坐标系中的函数关系式是________.15.把抛物线y=x2向右平移3个单位,再向下平移1个单位,则得到抛物线________.16.如图.已知二次函数y1=ax2+bx+c与一次函数y2=kx+m的图象相交于点A(﹣2,4),B(8,2),根据图象能使y1>y2成立的x取值范围是________.x2+ 17.张力同学在校运动会上投掷标枪,标枪运行的高度h(m)与水平距离x(m)的关系式为h=﹣14846x+2,则大力同学投掷标枪的成绩是________m.4818.已知点A(−3,m)和点B(1,m)是抛物线y=2x2+bx+3图象上的两点,则b=________.19.二次函数y=ax+bx+c的图像如图所示,则不等式ax+bx+c>0的解集是________ .20.二次函数y=ax2+bx+c(a≠0)的部分图像如图所示,图像过点(−1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)若点A(−3,y1)、点B(−12,y2)、点C(72,y3)在该函数图像上,则y1<y3<y2;(4)若方程a(x+1)(x−5)=−3的两根为x1和x2,且x1<x2,则x1<−1<5<x2.其中正确结论的序号是________.三、解答题(共8题;共60分)21.如图,在平面直角坐标系中,点A,B,C的坐标分别为(0,2),(3,2),(2,3).(1)请在图中画出△ABC向下平移3个单位的像△A′B′C′;(2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式.22.如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.23.已知抛物线y=x2+(m+4)x-2(m+6)(m是常数,m≠-8)与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C.(1)此抛物线的解析式;(2)求点A、B、C的坐标.24.向上抛掷一个小球,小球在运行过程中,离地面的距离为y(m),运行时间为x(s),y与x之间存在的关x2+3x+2.问:小球能达到的最大高度是多少?系为y=-1225.(1)已知y=(m2+m)x m2−2m−1+(m﹣3)x+m2是x的二次函数,求出它的解析式.(2)用配方法求二次函数y=﹣x2+5x﹣7的顶点坐标并求出函数的最大值或最小值.26.永嘉某商店试销一种新型节能灯,每盏节能灯进价为18元,试销过程中发现,每周销量y(盏)与销售单价x(元)之间关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣进价)(1)写出每周的利润w(元)与销售单价x(元)之间函数解析式;(2)当销售单价定为多少元时,这种节能灯每周能够获得最大利润?最大利润是多少元?(3)物价部门规定,这种节能灯的销售单价不得高于30元.若商店想要这种节能灯每周获得350元的利润,则销售单价应定为多少元?27.如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB 于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?x2+bx+c经过A、28.如图,直线y=x−4与x轴、y轴分别交于A、B两点,抛物线y=13B两点,与x轴的另一个交点为C,连接BC.(1)求抛物线的解析式及点C的坐标;(2)点M在抛物线上,连接MB,当∠MBA+∠CBO=45∘时,求点M的坐标;(3)点P从点C出发,沿线段CA由C向A运动,同时点Q从点B出发,沿线段BC由B向C运动,P、Q的运动速度都是每秒1个单位长度,当Q点到达C点时,P、Q同时停止运动,试问在坐标平面内是否存在点D,使P、Q运动过程中的某一时刻,以C、D、P、Q为顶点的四边形为菱形?若存在,直接写出点D的坐标;若不存在,说明理由.答案解析部分一、单选题1.【答案】D【考点】二次函数的三种形式【解析】【分析】y=x2−4x−1=x−22−5.故选D.2.【答案】D【考点】二次函数图象的几何变换【解析】【解答】抛物线y=x2先向右平移1个单位所得抛物线的解析式为y=(x−1)2,抛物线y=(x−1)2再向上平移3个单位所得抛物线的解析式为y=(x−1)2+3,故答案为:D.【分析】根据函数图象平移的法则即可得到结果.3.【答案】D【考点】二次函数的最值【解析】【分析】此函数的最小值,在x=-1时,y=-2,此时取最小值。
第26章二次函数单元测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下列函数是二次函数的是( )A. B. C. D.2. 已知正方形,设,则正方形的面积与之间的函数关系式为()A. B. C. D.3. 与的图象的不同之处是()A.对称轴B.开口方向C.顶点D.形状4. 对抛物线:而言,下列结论正确的是()A.与轴有两个交点B.开口向上C.与轴的交点坐标是D.顶点坐标是5. 抛物线的顶点坐标一定位于( )A.轴的负半轴上B.第二象限C.第三象限D.第二象限或第三象限6. 二次函数的顶点坐标是A. B. C. D.7. 对于二次函数,下列说法错误的是A.对称轴为直线B.其图象一定经过点C.当时,随的增大而增大D.当时,将抛物线先向上平移个单位,再向左平移个单位,得到抛物线.8. 已知二次函数,当时,随的增大而增大,当时,随的增大而减小,当时,的值为( )A. B. C. D.9. 在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是,设金色纸边的宽度为,那么关于的函数是()A. B.C. D.10. 如图所示的抛物线=的对称轴为直线=,则下列结论中错误的是()A. B. C.= D.=二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 若抛物线经过原点,则________.12. 抛物线=开口向上,对称轴是直线=,,,在该抛物线上,则,,大小的关系是________.13. 将二次函数的图象绕着它与轴的交点旋转所得到新抛物线表达式为________.14. 将抛物线向下平移,若平移后的抛物线经过点,则平移后的抛物线的解析式为________.15. 抛物线的对称轴是直线,那么抛物线的解析式是________.16. 已知抛物线的顶点坐标为,且过点,则该抛物线的表达式为________.17. 已知,点,,都在函数的图象上,则,,的大小关系是________.18. 把二次函数化成的形式是________.19. 有一种产品的质量要求从低到高分为,,,共四种不同的档次.若工时不变,车间每天可生产最低档次(即第一档次)的产品件,生产每件产品的利润为元;如果每提高一个档次,每件产品利润可增加元,但每天少生产件产品.现在车间计划只生产一种档次的产品.要使利润最大,车间应生产第________种档次的产品.20. 已知二次函数的图象如图所示,则这个二次函数的表达式是________.三、解答题(本题共计6 小题,共计60分,)21. 已知二次函数和函数.(1)你能用图象法求出方程的解吗?试试看;(2)请通过解方程的方法验证(1)问的解.22. 抛物线与轴交于,,与轴交于,且(1)求,的坐标;(2)到,,距离相等,在抛物线上求点,使,,,为顶点的四边形为平行四边形.23. 如图,二次函数的图象与轴相交于、两点,与轴相交于点.、是二次函数图象上的一对对称点,一次函数的图象过点、.(1)求二次函数的表达式;(2)根据图象写出使一次函数值大于二次函数值的的取值范围.24. 某商场购进一批换季衣服,进价为每件元.市场调研发现,以单价元出售,平均月销售量为件.在此基础上,若单价每降低元,则平均月销售量增加件.(1)商场想要这种衣服平均月销售量至少件,那么单价至多为多少元?(2)当单价定为多少元时,商场卖这批衣服的月销售利润达到最大?最大月销售利润为多少元?25. 某商场要经营一种新上市的文具,进价为元/件,试营销阶段发现;当销售单价元/件时,每天的销售量是件,销售单价每上涨元,每天的销售量就减少件.(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?26. 如图,在平面直角坐标系中,抛物线与轴的交点为点和点,与轴的交点为,对称轴是,对称轴与轴交于点.(1)求抛物线的函数表达式;(2)点为对称轴上一个动点,当的值最小时,求点的坐标;(3)在第一象限内的抛物线上是否存在点,使得?若存在,直接写出点的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】A【解答】解:,是二次函数;,,是一次函数;,,不是含自变量的整式,不是二次函数;,,二次项系数不能确定是否为,不是二次函数.故选.2.【答案】B【解答】解:由正方形面积公式得:.故选.3.【答案】C【解答】解:函数的对称轴是轴,开口向上,顶点;函数的对称轴是轴,开口向上,顶点;这两个函数的二次项系数都是,则它们的形状相同.故选.4.【答案】D【解答】解:,∵,抛物线与轴无交点,本选项错误;,∵二次项系数,抛物线开口向下,本选项错误;,当时,,抛物线与轴交点坐标为,本选项错误;,∵,∴抛物线顶点坐标为,本选项正确.故选.5.【答案】B【解答】此题暂无解答6.【答案】C【解答】解:∵∴抛物线顶点坐标为,故选.7.【答案】C【解答】解:、对称轴为直线,正确;、当时,,正确;、当时,,将抛物线先向上平移个单位,再向左平移个单位,得到抛物线,正确. 故选.8.【答案】B【解答】解:由题意得:二次函数的对称轴为,故,把代入二次函数可得,当时,.故选.9.【答案】A【解答】解:长是:,宽是:,由矩形的面积公式得则.故选.10.【答案】【解答】解:、由抛物线可知,.故正确;、…二次函数的图象与轴有两个交点,∴即…故正确;、由对称轴可知,∴,故错误;、关于的对称点为…当时,,故正确;故选:.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:把代入得,解得.故答案为.12.【答案】=【解答】∵抛物线=开口向上,对称轴是直线=,∴抛物线上的点离对称轴越远,对应的函数值就越大,∵取时所对应的点离对称轴最远,取与时所对应的点离对称轴一样近,∴=.13.【答案】【解答】解:因为二次函数的图象绕它与轴的交点旋转后,其对称轴不变,只是图象开口向下,因此二次函数新抛物线表达式为故答案为:.14.【答案】【解答】解:设平移后抛物线的表达式为,把代入,得,解得.所以平移后的抛物线的解析式是.故答案为:.15.【答案】【解答】解:∵抛物线的对称轴是直线,∴,解得:,∴,故答案为:.16.【答案】.【解答】解:设函数的解析式是.把代入函数解析式得,解得:,则抛物线的解析式是.17.【答案】【解答】解:∵当时,,而抛物线的对称轴为直线,开口向上,∴三点都在对称轴的左边,随的增大而减小,∴.故本题答案为:.18.【答案】【解答】解:.故答案为.19.【答案】【解答】解:设生产档的产品.利润,∴时,利润最大为,故答案为.20.【答案】【解答】解:根据图象可知顶点坐标,设函数解析式是:,把点代入解析式,得:,即,∴解析式为,即.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)如图在平面直角坐标系内画出和函数的图象,图象交点的横坐标是,的解是,;(2)化简得,因式分解,得.解得,.【解答】解:(1)如图在平面直角坐标系内画出和函数的图象,图象交点的横坐标是,的解是,;(2)化简得,因式分解,得.解得,.22.【答案】解:(1)∵抛物线与轴交于,,与轴交于,且,∴,∴的坐标,,代入得,解得,,∴抛物线为,令,则,解得,,,∴的坐标为.(2)如图,∵到,,距离相等,∴是直线和的交点,∴,∵使,,,为顶点的四边形为平行四边形,,,∴,,.∴当的坐标为或或时,使,,,为顶点的四边形为平行四边形.【解答】解:(1)∵抛物线与轴交于,,与轴交于,且,∴,∴的坐标,,代入得,解得,,∴抛物线为,令,则,解得,,,∴的坐标为.(2)如图,∵到,,距离相等,∴是直线和的交点,∴,∵使,,,为顶点的四边形为平行四边形,,,∴,,.∴当的坐标为或或时,使,,,为顶点的四边形为平行四边形.23.【答案】解:(1)设抛物线的解析式为,由函数图象,得,解得:,,.∴二次函数的表达式为:;(2)设直线的解析式为,由直线经过和,得,解得:,一次函数的解析式为:.,解得:,故抛物线与轴的加点坐标为:或.由函数图象得:当或时,一次函数值大于二次函数值.【解答】解:(1)设抛物线的解析式为,由函数图象,得,解得:,,.∴二次函数的表达式为:;(2)设直线的解析式为,由直线经过和,得,解得:,一次函数的解析式为:.,解得:,故抛物线与轴的加点坐标为:或.由函数图象得:当或时,一次函数值大于二次函数值.24.【答案】解;(1)设单价定为元,,解得,即单价至少为元;(2)设单价定为元,销售利润为元,,∴时,取得最大值,此时,即当单价定为元时,商场卖这批衣服的月销售利润达到最大,最大月销售利润为元.【解答】解;(1)设单价定为元,,解得,即单价至少为元;(2)设单价定为元,销售利润为元,,∴时,取得最大值,此时,即当单价定为元时,商场卖这批衣服的月销售利润达到最大,最大月销售利润为元.25.【答案】解:(1)由题意可得:;(2)∵,∴当时,取到最大值,即销售单价为元时,每天销售利润最大,最大利润为元.【解答】解:(1)由题意可得:;(2)∵,∴当时,取到最大值,即销售单价为元时,每天销售利润最大,最大利润为元.26.【答案】解:(1)∵抛物线交轴于,∴,∵对称轴是,∴,即,两关于、的方程联立解得,,∴抛物线为.(2)由得到:,如图,点关于对称轴对称的点的坐标为:.连接交于点,此时的值最小.设直线方程为:,则,解得.故直线的方程为:.当时,,所以;(3)∵,,∴.如果,那么,∵在轴上,∴为或.①当为时,连接,过作直线平分交于,交抛物线于,,连接、,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得,或,则,.②当为时,连接,过作直线平分交于,交抛物线于,,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得或,则,.综上所述,点的坐标为或或或.【解答】解:(1)∵抛物线交轴于,∴,∵对称轴是,∴,即,两关于、的方程联立解得,,∴抛物线为.(2)由得到:,如图,点关于对称轴对称的点的坐标为:.连接交于点,此时的值最小.设直线方程为:,则,解得.故直线的方程为:.当时,,所以;(3)∵,,∴.如果,那么,∵在轴上,∴为或.①当为时,连接,过作直线平分交于,交抛物线于,,连接、,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得,或,则,.②当为时,连接,过作直线平分交于,交抛物线于,,如图所示,此时,,∵,∴为的中点,即,设过,的直线为,则,解得,∴.设,则有,解得或,则,.综上所述,点的坐标为或或或.。
【易错题解析】华师大版九年级数学下册第26章二次函数单元测试卷一、单选题(共10题;共30分)1.二次函数y=x2-2x+3顶点坐标是()A. (-1,-2)B. (1,2)C. (-1,2)D. (0,2)2.要从抛物线y=-2x2的图象得到y=-2x2-1的图象,则抛物线y=-2x2必须( )A. 向上平移1个单位;B. 向下平移1个单位;C. 向左平移1个单位;D. 向右平移1个单位.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,以下结论:①abc>0;②b2﹣4ac<0;③9a+3b+c>0;④c+8a<0,其中正确的个数是()A. 1B. 2C. 3 D . 44.如图,在同一直角坐标系中,一次函数和二次函数的图象大致为()A.B C D5.关于抛物线y=x2﹣2x+1,下列说法错误的是()A. 开口向上B. 与x轴有一个交点C. 对称轴是直线x=1D. 当x>1时,y随x 的增大而减小6.如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A. y=B. y=C. y=2D. y=37.二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t值的变化范围是()A. 0<t<2B. 0<t<1C. 1<t<2D. ﹣1<t<18.设A(﹣2,y1),B(﹣1,y2),C(2,y3)是抛物线y=﹣2(x﹣1)2+k(k为常数)上的三点,则y1,y2,y3的大小关系为()A. y3>y2>y1B. y1>y2>y3C. y3>y1>y2D. y2>y3>y19.已知二次函数y=ax2+bx+c中,自变量x与函数y之间的部分对应值如下表:在该函数的图象上有A(x1,y1)和B(x2,y2)两点,且-1<x1<0,3<x2<4,y1与y2的大小关系正确的是()A. y1≥y2B. y1>y2C. y1≤y2D. y1<y210.(2015•巴彦淖尔)如图1,E为矩形ABCD边AD上的一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是2cm/s.若P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t的函数关系图象如图2,则下列结论错误的是()A. AE=12cmB. sin∠EBC=C. 当0<t≤8时,y=t2D. 当t=9s时,△PBQ是等腰三角形二、填空题(共10题;共30分)11.抛物线y=(x-1)2-2与y轴的交点坐标是________12.已知二次函数y=-x2-2x+3的图象上有两点A(-8,y1),B(-5,y2),则y1________y2.(填“>”“<”或“=”)13.将抛物线y=x2﹣2向左平移1个单位后所得抛物线的表达式为________.14.已知二次函数y=x2+bx+c的图象过点A(1,0)且关于直线x=2对称,则这个二次函数关系式是________.15.若二次函数y=x2+2m﹣1的图像经过原点,则m的值是________.16.将抛物线向左平移2个单位,再向下平移3个单位后,所得抛物线的解析式为y=x2﹣1,则原抛物线的解析式为________.y=ax2+bx+c中,函数y与自变量x的部分对应值如表:则当y<5时,x的取值范围是________.18.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,有下列结论:①abc >0;②b>a+c;③4a+2b+c<0;④a+b≥m(am+b);⑤2c<3b.其中正确的结论有________(填序号).19.如图,已知抛物线y=-x2-2x+3与坐标轴分别交于A,B,C三点,在抛物线上找到一点D,使得∠DCB=∠ACO,则D点坐标为________20.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,与x轴的一个交点为(1,0),与y轴的交点为(0,3),则方程ax2+bx+c=0(a≠0)的解为________.三、解答题(共8题;共60分)21.已知二次函数的顶点坐标为(3,-1),且其图象经过点(4,1),求此二次函数的解析式.22.如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.23.某工厂准备翻建新的大门,厂门要求设计成轴对称的拱形曲线.已知厂门的最大宽度AB=12m,最大高度OC=4m,工厂的运输卡车的高度是3m,宽度是5.8m.现设计了两种方案.方案一:建成抛物线形状(如图1);方案二:建成圆弧形状(如图2).为确保工厂的卡车在通过厂门时更安全,你认为应采用哪种设计方案?请说明理由.24.已知函数y=(m+2)+1是关于x的二次函数.(1)满足条件的m的值;(2)m为何值时,抛物线有最低点?求出这个最低点,这时当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是多少?这时当x为何值时,y随x的增大而减小?25.某产品每件成本28元,在试销阶段产品的日销售量y(件)与每件产品的日销售价x(元)之间的关系如图中的折线所示.为维持市场物价平衡,最高售价不得高出83元.(1)求y与x之间的函数关系式;(2)要使每日的销售利润w最大,每件产品的日销售价应定为多少元?此时每日销售利润是多少元?26.如图,扇形OAB的半径为4,圆心角∠AOB=90°,点C是上异于点A、B的一动点,过点C作CD⊥OB于点D,作CE⊥OA于点E,联结DE,过O点作OF⊥DE于点F,点M为线段OD上一动点,联结MF,过点F作NF⊥MF,交OA于点N.(1)当tan MOF=时,求的值;(2)设OM=x,ON=y,当时,求y关于x 的函数解析式,并写出它的定义域;(3)在(2)的条件下,联结CF,当△ECF与△OFN相似时,求OD的长.27.(2017·金华)如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别O(0,0),A(3,3),B(9,5 ),C(14,0).动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线OA−AB−BC运动,在OA,AB,BC上运动的速度分别为3,,(单位长度/秒)﹒当P,Q中的一点到达C点时,两点同时停止运动.(1)求AB所在直线的函数表达式.(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值.(3)在P,Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.28.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过M作x轴的垂线,与直线AC 交于点E,与抛物线交于点P,过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方),若FG=2 DQ,求点F的坐标.答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】A4.【答案】D5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】D10.【答案】D二、填空题11.【答案】(0,-1)12.【答案】<13.【答案】y=(x+1)2﹣214.【答案】y=x2﹣4x+315.【答案】16.【答案】y=(x﹣2)2+217.【答案】0<x<418.【答案】①②④⑤19.【答案】或(-4,-5)20.【答案】x1=1,x2=﹣3三、解答题21.【答案】解:设此二次函数的解析式为y=a(x-3)2-1;∵二次函数图象经过点(4,1),∴a(4-3)2-1=1,∴a=2,∴y=2(x-3)2-1。
华师大版九年级下册26章二次函数单元考试题姓名: ;成绩: ;一、选择题(每题4分,共48分)1、已知函数 y=(m+2)是二次函数,则m 等于( ) A .±2 B .2 C .﹣2 D .±12、图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图(2)建立平面直角坐标系,则抛物线的关系式是( )A . y=﹣2x 2B .y=2x 2C .y=﹣x 2D . y=x 23、若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+- 的图象上的三点,则1,y 2,y 3y 的大小关系是( )A 、123y y y <<B 、213y y y <<C 、312y y y <<D 、132y y y <<4、如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为( )A. 0B. -1C. 1D. 2第4题 第6题 第9题5、下列表格是二次函数2y ax bx c =++的自变量x 与函数值y 的对应值,判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A .6x <<C .6.18 6.19x << D .6.19 6.20x <<6、已知二次函数y=ax 2+bx+c(a ≠0)的图象如图5所示,有下列4个结论:①0abc >;②b ac <+;③420a b c ++>;④240b ac ->;其中正确的结论有( )A .1个B .2个C .3个D .4个7、若函数y=mx 2+(m+2)x+m+1的图象与x 轴只有一个交点,那么m 的值为( )A . 0B .0或2C .2或﹣2D .0,2或﹣28、下列图形中阴影部分的面积相等的是( )A . ②③B .③④C .①②D . ①④9、如图,已知二次函数y=﹣x 2+2x ,当﹣1<x <a 时,y 随x 的增大而增大,则实数a 的取值范围是( )A . a >1B .﹣1<a ≤1C .a >0D . ﹣1<a <2 10、向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y=ax 2+bx .若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )A . 第9.5秒B .第10秒C .第10.5秒D . 第11秒11、如图,直角梯形ABCD 中,∠A=90°,∠B=45°,底边AB=5,高AD=3,点E 由B 沿折线BCD 向点D 移动,EM ⊥AB 于M ,EN ⊥AD 于N ,设BM=x ,矩形AMEN 的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .12、如图,点A(a,b)是抛物线上一动点,OB⊥OA交抛物线于点B(c,d).当点A在抛物线上运动的过程中(点A不与坐标原点O重合),以下结论:①ac为定值;②ac=﹣bd;③△AOB的面积为定值;④直线AB必过一定点.正确的有()A.1个B.2个C.3个D.4个二、填空题(每题4分,共24分)13、如图,李大爷要借助院墙围成一个矩形菜园ABCD,用篱笆围成的另外三边总长为24m,设BC的长为x m,矩形的面积为y m2,则y与x之间的函数表达式为.第13题第14题第15题14、如图,抛物线y=ax2+bx与直线y=kx相交于O(0,0)和A(3,2)两点,则不等式ax2+bx<kx的解集为.15、如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.16、如图,将2个正方形并排组成矩形OABC,OA和OC分别落在x轴和y轴的正半轴上.正方形EFMN 的边EF落在线段CB上,过点M、N的二次函数的图象也过矩形的顶点B、C,若三个正方形边长均为1,则此二次函数的关系式为.17、二次函数y=x2+(2+k)x+2k与x轴交于A,B两点,其中点A是个定点,A,B分别在原点的两侧,且OA+OB=6,则直线y=kx+1与x轴的交点坐标为.18、已知有9张卡片,分别写有1到9这就个数字,将它们的背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,若数a使关于x不等式组有解,且使函数在的范围内y随着x的增大而增大,则这9个数中满足条件的a的值的概率是;三、解答题(6分+8分=14分)19、通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标(1)y=x2-4x+5 (2) y=-3x2+2x-120、求下列函数的解析式(1)抛物线y=x2-2x-4向左平移5个单位长度,再向上平移3个单位长度;(2)抛物线经过点(2,0),(0,-2),(-2,3)三点。
第26章二次函数单元评估检测试卷一、单选题(共10题;共30分)1.已知抛物线y=(m+1)x2+2的顶点是此抛物线的最高点,那么m的取值范围是()A. m≠0B. m≠﹣1C. m>﹣1D. m<﹣12.下列函数是二次函数的是()A. y=2x+2B. y=﹣2xC. y=x2+2D. y=x﹣23.二次函数的最小值是A. B. 1 C. D. 24.要得到二次函数y=﹣2(x﹣1)2﹣1的图象,需将y=﹣2x2的图象()A. 向左平移2个单位,再向下平移3个单位B. 向右平移2个单位,再向上平移1个单位C. 向右平移1个单位,再向下平移1个单位D. 向左平称1个单位,再向上平移3个单位5.若抛物线y=x2﹣x﹣1与x轴的交点坐标为(m,0),则代数式m2﹣m+2013的值为()A. 2012B. 2013C. 2014D. 20156.抛物线y=(x+2)2﹣1可以由抛物线y=x2平移得到,下列平移方法中正确的是()A. 先向左平移2个单位,再向上平移1个单位B. 先向左平移2个单位,再向下平移1个单位C. 先向右平移2个单位,再向上平移1个单位D. 先向右平移2个单位,再向下平移1个单位7.二次函数y=ax2+bx+c的图象如图所示,则在下列说法中,与此函数的系数相关的一元二次方程ax2+bx+c=0的根的情况,说法正确的是()A. 方程有两个相等的实数根B. 方程的实数根的积为负数C. 方程有两个正的实数根D. 方程没有实数根8.已知b>0时,二次函数y=ax2+bx+a2-1的图象如下列四个图之一所示。
根据图象分析,a的值等于()A. -2B. -1C. 1D. 29.二次函数y=ax2+bx+c(a≠0)的图象如图,以下结论正确的是()A. abc>0B. 方程ax2+bx+c=0有两个实数根分别为-2和6C. a-b+c<0D. 当y=4时,x的取值只能为010.已知二次函数y=ax2+bx+c(a≠0)的图象如图,其对称轴为直线x=﹣1,给出下列结果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.则正确的结论是()A. (1)(2)(3)(4)B. (2)(4)(5)C. (2)(3)(4)D. (1)(4)(5)二、填空题(共10题;共33分)11.抛物线向左平移2个单位长度,得到新抛物线的表达式为________.12.二次函数,当x=________时,y的值最大。
【易错题解析】华师大版九年级数学下册第26章二次函数单元测试卷一、单选题(共10题;共30分)1.二次函数y=x2-2x+3顶点坐标是()A. (-1,-2)B. (1,2)C. (-1,2)D. (0,2)2.要从抛物线y=-2x2的图象得到y=-2x2-1的图象,则抛物线y=-2x2必须( )A. 向上平移1个单位;B. 向下平移1个单位;C. 向左平移1个单位;D. 向右平移1个单位.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,以下结论:①abc>0;②b2﹣4ac<0;③9a+3b+c>0;④c+8a<0,其中正确的个数是()A. 1B. 2C. 3D. 44.如图,在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B C D5.关于抛物线y=x2﹣2x+1,下列说法错误的是()A. 开口向上B. 与x轴有一个交点C. 对称轴是直线x=1D. 当x>1时,y随x的增大而减小6.如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x 之间的函数关系式是()x2 B. y= √3x2 C. y=2 √3x2 D. y=3 √3x2A. y= √327.二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t值的变化范围是()A. 0<t<2B. 0<t<1C. 1<t<2D. ﹣1<t<18.设A(﹣2,y1),B(﹣1,y2),C(2,y3)是抛物线y=﹣2(x﹣1)2+k(k为常数)上的三点,则y1,y2,y3的大小关系为()A. y3>y2>y1B. y1>y2>y3C. y3>y1>y2D. y2>y3>y19.已知二次函数y =ax 2+bx +c 中,自变量x 与函数y 之间的部分对应值如下表:在该函数的图象上有A (x 1, y 1)和B (x 2, y 2)两点,且-1<x 1<0,3<x 2<4,y 1与y 2的大小关系正确的是( )A. y 1≥y 2B. y 1>y 2C. y 1≤y 2D. y 1<y 210.(2015•巴彦淖尔)如图1,E 为矩形ABCD 边AD 上的一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是2cm/s .若P 、Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 的函数关系图象如图2,则下列结论错误的是( )A. AE=12cmB. sin ∠EBC=√74C. 当0<t≤8时,y=516t 2 D. 当t=9s 时,△PBQ 是等腰三角形二、填空题(共10题;共30分)11.抛物线y=(x-1)2-2与y 轴的交点坐标是________12.已知二次函数y=-x 2-2x+3的图象上有两点A (-8,y 1),B (-5,y 2),则y 1________y 2.(填“>”“<”或“=”)13.将抛物线y=x 2﹣2向左平移1个单位后所得抛物线的表达式为________.14.已知二次函数y=x 2+bx+c 的图象过点A (1,0)且关于直线x=2对称,则这个二次函数关系式是________. 15.若二次函数y=x 2+2m ﹣1的图像经过原点,则m 的值是________.16.将抛物线向左平移2个单位,再向下平移3个单位后,所得抛物线的解析式为y=x 2﹣1,则原抛物线的解析式为________.17.已知二次函数y=ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表:________.18.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,其对称轴为x=1,有下列结论: ①abc >0; ②b >a+c ;③4a+2b+c <0;④a+b≥m (am+b );⑤2c <3b .其中正确的结论有________(填序号).19.如图,已知抛物线y=-x2-2x+3与坐标轴分别交于A,B,C三点,在抛物线上找到一点D,使得∠DCB=∠ACO,则D 点坐标为________20.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,与x轴的一个交点为(1,0),与y轴的交点为(0,3),则方程ax2+bx+c=0(a≠0)的解为________.三、解答题(共8题;共60分)21.已知二次函数的顶点坐标为(3,-1),且其图象经过点(4,1),求此二次函数的解析式.22.如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.23.某工厂准备翻建新的大门,厂门要求设计成轴对称的拱形曲线.已知厂门的最大宽度AB=12m,最大高度OC=4m,工厂的运输卡车的高度是3m,宽度是5.8m.现设计了两种方案.方案一:建成抛物线形状(如图1);方案二:建成圆弧形状(如图2).为确保工厂的卡车在通过厂门时更安全,你认为应采用哪种设计方案?请说明理由.24.已知函数y=(m+2)x m2+m−4+1是关于x 的二次函数.(1)满足条件的m 的值;(2)m 为何值时,抛物线有最低点?求出这个最低点,这时当x 为何值时,y 随x 的增大而增大? (3)m 为何值时,函数有最大值?最大值是多少?这时当x 为何值时,y 随x 的增大而减小?25.某产品每件成本28元,在试销阶段产品的日销售量y (件)与每件产品的日销售价x (元)之间的关系如图中的折线所示.为维持市场物价平衡,最高售价不得高出83元. (1)求y 与x 之间的函数关系式;(2)要使每日的销售利润w 最大,每件产品的日销售价应定为多少元?此时每日销售利润是多少元?26.如图,扇形OAB 的半径为4,圆心角∠AOB=90°,点C 是上异于点A 、B 的一动点,过点C 作CD ⊥OB于点D ,作CE ⊥OA 于点E ,联结DE ,过O 点作OF ⊥DE 于点F ,点M 为线段OD 上一动点,联结MF ,过点F 作NF ⊥MF ,交OA 于点N . (1)当tan ∠MOF=13时,求OMNE 的值;(2)设OM=x ,ON=y ,当OMOD =12时,求y 关于x 的函数解析式,并写出它的定义域; (3)在(2)的条件下,联结CF ,当△ECF 与△OFN 相似时,求OD 的长.27.(2017·金华)如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别O(0,0),A(3,3 √3),B(9,5 √3),C(14,0).动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,(单位长度/秒)﹒当P,Q中的一点Q沿折线OA−AB−BC运动,在OA,AB,BC上运动的速度分别为3,√3,52点到达C点时,两点同时停止运动.(1)求AB所在直线的函数表达式.(2)如图2,当点Q在AB上运动时,求△CPQ的面积S关于t的函数表达式及S的最大值.(3)在P,Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值.28.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交A、B两点,与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方),若FG=2 √2DQ,求点F的坐标.答案解析部分一、单选题1.【答案】B2.【答案】B3.【答案】A4.【答案】D5.【答案】D6.【答案】B7.【答案】A8.【答案】A9.【答案】D10.【答案】D二、填空题11.【答案】(0,-1)12.【答案】<13.【答案】y=(x+1)2﹣214.【答案】y=x2﹣4x+315.【答案】1216.【答案】y=(x﹣2)2+217.【答案】0<x<418.【答案】①②④⑤19.【答案】(−52,74)或(-4,-5)20.【答案】x1=1,x2=﹣3三、解答题21.【答案】解:设此二次函数的解析式为y=a(x-3)2-1;∵二次函数图象经过点(4,1),∴a(4-3)2-1=1,∴a=2,∴y=2(x-3)2-1。
22.【答案】解:∵与墙平行的边的长为x(m),则垂直于墙的边长为: =(25﹣0.5x)m,根据题意得出:y=x(25﹣0.5x)=﹣0.5x2+25x23.【答案】解:第一方案:设抛物线的表达式是y=a(x+6)(x−6),因C(0,4)在抛物线的图象上,代入表达式,得a=− 19.故抛物线的表达式是y=− 19x2+4.把第一象限的点(t,3)代入函数,得3=− 19t2+4,∴t=3,∴当高度是3m时,最大宽度是6m. 第二方案:由垂径定理得:圆心O′在y 轴上(原点的下方)设圆的半径是R ,在Rt △OAO′中,由勾股定理得:62+(R−4)2=R 2, 解得R=6.5,当高度是3m 时,最大宽度= 2√R 2−5.52 =4 √3 ≈6.9m根据上面的计算得:为了工厂的特种卡车通过厂门更安全,所以采用第二种方案更合理. 24.【答案】解:(1)∵函数y=(m+2)x m 2+m−4+1是关于x 的二次函数,∴m 2+m ﹣4=2, 解得:m 1=2,m 2=﹣3;(2)当m=2时,抛物线有最低点, 此时y=4x 2+1,则最低点为:(0,1),当x >0时,y 随x 的增大而增大; (3)当m=﹣3时,函数有最大值, 此时y=﹣x 2+1,故此函数有最大值为1, 当x >0时,y 随x 的增大而减小.25.【答案】解:(1)当30<x≤40时,设此段的函数解析式为:y=kx+b ,{30k +b =6640k +b =36解得,k=﹣3,b=156∴当30<x≤40时,函数的解析式为:y=﹣3x+156;当40<x≤80时,设此段函数的解析式为:y=mx+n ,{40m +n =3680m +n =16解得,m=−12,n=56,∴当40<x≤80时,函数的解析式为:y=−12x +56; 当80<x≤83时,y=16;由上可得,y 与x 之间的函数关系式是:y={−3x +15630<x ≤40−12x +5640<x ≤801680<x ≤83;(2)当30<x≤40时, w=(x ﹣28)y=(x ﹣28)(﹣3x+156) =﹣3x 2+240x ﹣4368 =﹣3(x ﹣40)2+432∴当x=40时取得最大值,最大值为w=432元; 当40<x≤80时, w=(x ﹣28)y=(x ﹣28)(−12x +56)=−12x2+70−1586=−12(x−70)2+882,∴当x=70时,取得最大值,最大值为w=882元;当80<x≤83时,w=(x﹣28)×16∴当x=83时,取得最大值,最大值为w=880元;由上可得,当x=70时,每日点的销售利润最大,最大为882元,即要使每日的销售利润w最大,每件产品的日销售价应定为70元,此时每日销售利润是882元.26.【答案】解:(1)由题意,得:∠MOF+∠FOE=90°,∠FEN+∠FOE="90°" ,∴∠MOF=∠FEN .由题意,得:∠MFO+∠OFN=90°,∠EFN+∠OFN="90°" ,∴∠MFO=∠NFE.∴△MFO∽△NFE.∴OMNE =OFEF.由∠FEN=∠MOF可得:tan∠FEN=tan∠MOF,∴OFEF =13, ∴OMNE=13.(2)∵△MFO∽△NFE , ∴OMNE =OFEF.又易证得:△ODF∽△EOF ,∴ODOE =OFEF.∴ODOE =OMNE,∴NEOE=OMOD=12.如图,连接MN,则ME=12DE.由题意,得四边形ODCE为矩形,∴DE=OC=4 .∴MN=2. 在Rt△MON中,OM2+ON2=MN2,即x2+y2=4.∴y关于x 的函数解析式为y=√4−x2(0<x<2).(3)由题意,可得:OE=2y,CE=OD=2x.∴由题意,可得:OE2=EF·DE ,∴EF=(2y)24=y2.∵又OFEF =ODOE,∴OFy2=2x2y,∴OF=xy.由题意,可得:∠NOF=∠FEC ,∴由△ECF与△OFN相似,可得:OFON =EFEC或OFON=ECEF.当OFON =EFEC时,xyy=y22x,∴y2=2x2.又x2+y2=4,∴x2+2x2=4,解得:x1=23√3,x2=−23√3(舍去).∴OD=43√3.②当OFON =ECEF时,xyy=2xy2,∴y2=2,又x2+y2=4,∴x2=2,∴解得:x1=√2,x2=−√2(舍去)∴OD=2√2.综上所述,OD=43√3或2√2 .27.【答案】(1)解:把A (3,3√3),B (9,5 )代入y=kx+b, 得{3k +b =3√39k +b =5√3;解得:{k =√33b =2√3 ; ∴y= √33x+2√3 ;(2)解:在△PQC 中,PC=14-t,PC 边上的高线长为√32t +2√3 ;∴S =12(14−t )(√32t +2√3)=−√34t 2+5√32t +14√3(2≤t ≤6)∴当t=5时,S 有最大值;最大值为81√34.(3)解: a.当0<t≤2时,线段PQ 的中垂线经过点C (如图1); 可得方程(3√32t)2+(14−32t)2=(14−t )2解得:t 1=74,t 2=0(舍去),此时t=74.b.当2<t≤6时,线段PQ 的中垂线经过点A (如图2) 可得方程(3√3)2+(t −3)2=[√3(t −2)]2, 解得:t 1=3+√572;t 2=3−√572(舍去),此时t =3+√572;c.当6<t≤10时,①线段PQ 的中垂线经过点C (如图3) 可得方程14-t=25-52t ; 解得:t=223.②线段PQ 的中垂线经过点B (如图4) 可得方程(5√3)2+(t −9)2=[52(t −6)]2;解得t 1=38+20√27,t 2=38−20√27(舍去); 此时t =38+20√27;综上所述:t 的值为74,3+√572,223,38+20√27.28.【答案】(1)解:当y=0时,﹣x 2﹣2x+3=0,解得x 1=1,x 2=﹣3,则A (﹣3,0),B (1,0);当x=0时,y=﹣x 2﹣2x+3=3,则C (0,3); (2)解:抛物线的对称轴为直线x=﹣1,设M (x ,0),则点P (x ,﹣x 2﹣2x+3),(﹣3<x <﹣1), ∵点P 与点Q 关于直线=﹣1对称, ∴点Q (﹣2﹣x ,﹣x 2﹣2x+3), ∴PQ=﹣2﹣x ﹣x=﹣2﹣2x ,∴矩形PMNQ 的周长=2(﹣2﹣2x ﹣x 2﹣2x+3)=﹣2x 2﹣8x+2=﹣2(x+2)2+10, 当x=﹣2时,矩形PMNQ 的周长最大,此时M (﹣2,0), 设直线AC 的解析式为y=kx+b ,把A (﹣3,0),C (0,3)代入得{−3k +b =0b =3,解得{k =1b =3,∴直线AC 的解析式为y=3x+3, 当x=﹣2时,y=x+3=1, ∴E (﹣2,1),∴△AEM 的面积= 12 ×(﹣2+3)×1= 12;(3)解:当x=﹣2时,Q (0,3),即点C 与点Q 重合, 当x=﹣1时,y=﹣x 2﹣2x+3=4,则D (﹣1,4), ∴DQ= √12+(3−4)2 = √2, ∴FG=2 √2 DQ=2 √2 × √2 =4, 设F (t ,﹣t 2﹣2t+3),则G (t ,t+3), ∴GF=t+3﹣(﹣t 2﹣2t+3)=t 2+3t ,∴t2+3t=4,解得t1=﹣4,t2=1,∴F点坐标为(﹣4,﹣5)或(1,0).4。