二次根式易错题集锦
- 格式:doc
- 大小:604.00 KB
- 文档页数:7
二次根式十大经典易错题1. 下列说法正确有 个. (1)2(2)若236a =,则6a =±(34=±(4的平方根是10±. (5(6)2a 的算术平方根a .(76=,则6a =. (8)2a -没有平方根. (9)若两个数平方后相等,则这两个数也一定相等.(10)如果两个非负数相等,那么他们各自的算术平方根也相等.2. 下列二次根式中,最简二次根式的个数是( )A .1个B .2个C .3个D .4个3. 实数a ,b ,c 在数轴上的对应点如图所示,化简2c b a a -++的值是( )A .c b --B .b c -C .)(2c b a +-D .c b a ++24.(0)=a >( ) A . B .C .D .5. 已知a ,b 满足11a ab ++=,则ab =________.6. 已知非零实数a ,b 满足a b a b a 24)3(2422=+-+++-,则a b +=________.7. 计算:23)3412(22---÷-.( ) A . B . C . D .ab a 2-ab ab -a ab 2-b b a 2-2-232-32+-322--8. 计算:40282015)32()347(+-的结果为( )A .1B .32+C .347-D .9. 已知0xy >,化简二次根式 )ABC. D.10. 已知2a b +=-,12ab =347+1. 【解析】(2)(10)正确【答案】22. 【解析】此题的关键是看二次根式的被开方数是否满足最简二次根式的两个条166x x -=0.5中的13是分数,它们都不满足条件1中有能开得尽方的因式2b中有能开得尽方的因数22,()22x -,它们都不满足条件2;满足最简二次根式的两个条件.. 点评:要牢记最简二次根式的两个条件,判断时只须看被开方数,注意当被开方数是多项式时要先分解因式,找一找有没有能开得尽方得因式和因数,特别要分清2a 和2b ,但2a 和2b 不是2a +2b 的因式. 【答案】B 3. 【答案】B 4. 【答案】D 5. 【答案】-1 6. 【答案】1 7. 【答案】A 8. 【答案】C9.【解析】解题的关键是确定被开放式字母的符号.由题可知20x >,且20,0yy x-≥∴≤,又0xy >,0x ∴<,∴原式=. 【答案】D10. 【解析】∵102ab =>,∴a b ,同号,又∵2a b +=-,∴00a b <<,,2===【答案】。
八年级数学下册第十六章二次根式易错题集锦单选题1、若x =√2+1,则代数式x 2−2x +2的值为( )A .7B .4C .3D .3−2√2答案:C分析:先将代数式x 2−2x +2变形为(x −1)2+1,再代入即可求解.解:x 2−2x +2=(x −1)2+1=(√2+1−1)2+1=3.故选:C小提示:本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.2、下列计算正确的是( )A .32=6B .(﹣25)3=﹣85C .(﹣2a 2)2=2a 4D .√3+2√3=3√3答案:D分析:由有理数的乘方运算可判断A ,B ,由积的乘方运算与幂的乘方运算可判断C ,由二次根式的加法运算可判断D ,从而可得答案.解:32=9,故A 不符合题意;(−25)3=−8125, 故B 不符合题意;(−2a 2)2=4a 4, 故C 不符合题意;√3+2√3=3√3, 故D 符合题意;故选D小提示:本题考查的是有理数的乘方运算,积的乘方与幂的乘方运算,二次根式的加法运算,掌握以上基础运算是解本题的关键.3、下列各式是二次根式的是( )A .√3B .√−1C .√53D .√π−4答案:A分析:根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.解:A 、符合二次根式有意义条件,符合题意;B 、-1<0,所以√−1无意义,故B 选项不符合题意;C 、是三次根式,所以C 选项不符合题意;D 、π-4<0,所以√π−4无意义,故D 选项不符合题意.故选:A .小提示:本题考查二次根式的定义及有意义的条件:√a 是二次根式,必须有a≥0.4、估计(2√30−√24)⋅√16的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间答案:B分析:先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围. (2√30−√24)⋅√16=2√30×√16−√24×√16,=2√5−2,而2√5=√4×5=√20,4<√20<5,所以2<2√5−2<3,所以估计(2√30−√24)⋅√16的值应在2和3之间, 故选B.小提示:本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.5、对于无理数√3,添加关联的数或者运算符号组成新的式子,其运算结果能成为有理数的是( ).A .2√3−3√2B .√3+√3C .(√3)3D .0×√3答案:D分析:分别计算出各选项的结果再进行判断即可.A .2√3−3√2不能再计算了,是无理数,不符合题意;B .√3+√3=2√3,是无理数,不符合题意;C .(√3)3=3√3,是无理数,不符合题意;D .0×√3=0,是有理数,正确.故选:D .小提示:此题主要考查了二次根式的运算,辨别运算结果,区分运算结果是否是有理数是解题的关键.6、在下列代数式中,不是二次根式的是( )A .√5B .√13C .√x 2+1D .2x 答案:D分析:直接利用二次根式的定义即可解答.解:A 、√5是二次根式,故此选项不合题意;B 、√13是二次根式,故此选项不合题意;C 、√x 2+1是二次根式,故此选项不合题意;D 、2x ,不是二次根式,故此选项符合题意.故答案为D .小提示:本题主要考查了二次根式的定义,一般形如√a (a ≥0)的代数式叫做二次根式,正确把握二次根式的定义是解答本题的关键.7、实数a ,b 在数轴上的位置如图所示,化简(√a)2+√b 2的结果是( ).A .−a +bB .−a −bC .a +bD .a −b答案:D分析:根据题意得出b <0<1<a ,进而化简求出即可.解:由数轴可得:b<0<1<a,则原式=a-b.故选:D.小提示:本题主要考查了二次根式的性质与化简,正确得出a,b的符号是解题关键.8、下列二次根式中,最简二次根式是()D.√a2A.−√2B.√12C.√15答案:A分析:根据最简二次根式的两个条件逐项判定即可.解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选:A.小提示:本题主要考查了最简二次根式,最简二次根式的判定条件为:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9、√(−3)2化简后的结果是()A.√3B.3C.±√3D.±3答案:B试题分析:“√a”表示的是a的算术平方根,“±√a”表示的是a的平方根.√(−3)2=√9=3,故选B.10、从√2,−√3,−√2这三个实数中任选两数相乘,所有积中小于2的有()个.A.0B.1C.2D.3答案:C分析:根据题意分别求出这三个实数中任意两数的积,进而问题可求解.解:由题意得:−√3×√2=−√6,−√2×√2=−2,−√3×(−√2)=√6,∴所有积中小于2的有−√6,−2两个;故选C .小提示:本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键.填空题11、若a >√2a +1,化简|a +√2|−√(a +√2+1)2=_____.答案:1分析:先根据a >√2a +1,判断出a <−1−√2,据此可得a +√2<−1,a +√2+1<0,再依据绝对值性质和二次根式的性质化简可得.解:∵a >√2a +1,∴(1−√2)a >1,则a <1−√2,即a <−1−√2, ∴a +√2<−1,a +√2+1<0,原式=−a −√2+a +√2+1=1,所以答案是:1 .小提示:本题主要考查二次根式的应用,解题的关键是掌握二次根式的性质、绝对值的性质和解一元一次不等式的步骤.12、已知最简二次根式√2a +1a−b−1和√a +3是同类二次根式,则a b =______. 答案:12分析:根据同类二次根式定义:两个被开方数相同的最简二次根式是同类二次根,列出方程组{a −b −1=22a +1=a +3求解,得出a 、b 值,再代入计算即可. 银,根据题意,得{a −b −1=22a +1=a +3,解得:{a =2b =−1, ∴ab =2-1=12,所以答案是:12.小提示:本题考查同类二次根式概念,代数式求值,负整理指数幂的运算,解二元一次方程组,熟练掌握同类二次根式概念是解题的关键.13、计算√5×√15−√12的结果是_______.答案:3√3分析:根据二次根式的运算法则计算即可得出答案.原式=√5×15−2√3=5√3−2√3=3√3,故答案为3√3.小提示:本题考查的是二次根式,比较简单,需要熟练掌握二次根式的运算法则.14、已知a+2a =√20,那么a−2a的值为__________.答案:±2√3分析:根据已知条件求出a2+(2a )2的值,再由:(a−2a)2=a2+(2a)2−4,即可得出答案.解:∵a+2a=√20,得:a2+(2a )2=20−4=16,∴(a−2a )2=a2+(2a)2−4=16−4=12,∴a−2a=±2√3,所以答案是:±2√3.小提示:本题考查完全平方公式的变形运用,能利用已知条件求出a2+(2a )2,再将a−2a化为平方形式,再化回来是关键.15、已知等式√5−xx−3=√5−x√x−3成立,化简|x﹣6|+√(x−2)2的结果为 _____.答案:4分析:直接利用二次根式的除法运算法则得出x的取值范围,进而化简得出答案.解:∵等式√5−xx−3=√5−x√x−3成立,∴{5−x ≥0x −3>0, 解得:3<x ≤5,∴|x ﹣6|+√(x −2)2=6﹣x +x ﹣2=4.所以答案是:4.小提示:此题主要考查了二次根式的除法运算以及非负数的性质,正确得出x 的取值范围是解题关键. 解答题16、计算:(13)﹣1﹣√18×(﹣√3)﹣|√6﹣3|.答案:4√6分析:根据负整数幂运算公式,二次根式的运算,绝对值的运算进行化简运算即可.(13)−1﹣√18×(﹣√3)﹣|√6﹣3|=3+3√6+√6﹣3=4√6.小提示:本题主要考查了负整数指数幂、实数的运算,熟练掌握运算公式和法则是解题的关键.17、已知a =2+√5,b =2−√5,求代数式a 2b +ab 2的值.答案:-4分析:先将代数式因式分解,再代入求值.a 2b +ab 2=ab(a +b)=(2+√5)(2−√5)(2+√5+2−√5)=−1×4=−4.故代数式的值为−4.小提示:本题考查因式分解、二次根式的混合运算,解决本题的关键是熟练进行二次根式的计算.18、计算:(1)3(√2+√3)+2(√2−2√3)3−√2+(√3)2+|1−√2|(2)√8答案:(1)5√2-√3(2)4分析:(1)原式去括号,合并同类二次根式即可得到答案;(2)根据立方根、算术平方根,平方和绝对值的代数意义化简各项后再进行加减运算即可得到答案.(1)原式=3√2+3√3+2√2-4√3=5√2-√3(2)原式=2-√2+3+√2-1=2+3-1=4小提示:此题主要考查了实数的混合运算以及二次根式的加减法,熟练掌握运算法则是解答此题的关键.。
二次根式易错题汇编及答案一、选择题1.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】2a . 2.下列各式计算正确的是( )A 22221081081082-==-= B .()()()()4949236-⨯-=--=-⨯-= C 11111154949236+==+= D .9255116164==- 【答案】D【解析】【分析】根据二次根式的性质对A 、C 、D 进行判断;根据二次根式的乘法法则对B 进行判断.【详解】解:A 、原式36,所以A 选项错误;B 、原式49⨯49,所以B 选项错误;C 、原式6,所以C 选项错误;D 、原式54==-,所以D 选项正确. 故选:D .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.下列计算中,正确的是( )A .=B 1b =(a >0,b >0)C =D .=【答案】B【解析】 【分析】a≥0,b≥0a≥0,b >0)进行计算即可. 【详解】A 、B 1b (a >0,b >0),故原题计算正确;C ,故原题计算错误;D 32故选:B .【点睛】 此题主要考查了二次根式的乘除法,关键是掌握计算法则.4.已知n是整数,则n的最小值是().A.3 B.5 C.15 D.25【答案】C【解析】【分析】【详解】解:135n=也是整数,∴n的最小正整数值是15,故选C.5.在下列算式中:=②=;==;=,其中正确的是()4A.①③B.②④C.③④D.①④【答案】B【解析】【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】①错误;=②正确;==,故③错误;==④正确;故选:B.【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.6.已知n n的最小值是()A.3 B.5 C.15 D.45【答案】B【解析】【分析】由题意可知45n是一个完全平方数,从而可求得答案.【详解】=∵n∴n的最小值为5.故选:B.【点睛】此题考查二次根式的定义,掌握二次根式的定义是解题的关键.7.下列计算结果正确的是()A3B±6CD.3+=【答案】A【解析】【分析】原式各项计算得到结果,即可做出判断.【详解】A、原式=|-3|=3,正确;B、原式=6,错误;C、原式不能合并,错误;D、原式不能合并,错误.故选A.【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.8.)A.±3 B.-3 C.3 D.9【答案】C【解析】【分析】进行计算即可.【详解】,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.9.下列各式中计算正确的是()A+=B.2+=C=D.2=2【答案】C【解析】【分析】结合选项,分别进行二次根式的乘法运算、加法运算、二次根式的化简、二次根式的除法运算,选出正确答案.【详解】解:不是同类二次根式,不能合并,故本选项错误;B.2==1,原式计算错误,故本选项错误.D.2故选:C.【点睛】本题考查二次根式的加减法和乘除法,在进行此类运算时,掌握运算法则是解题的关键.10.下列运算正确的是()A B.1)2=3-1 C D5-3【答案】C【解析】【分析】根据二次根式的加减及乘除的法则分别计算各选项,然后与所给结果进行比较,从而可得出结果.【详解】解:≠,故本选项错误;1)2=3-,故本选项正确;= =4,故本选项错误.故选C.【点睛】本题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.11.x的取值范围在数轴上表示正确的是()A.B.C.D.【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x+∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.12.如果一个三角形的三边长分别为12、k、7221236k k-+|2k﹣5|的结果是()A.﹣k﹣1 B.k+1 C.3k﹣11 D.11﹣3k【答案】D【解析】【分析】求出k的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】∵一个三角形的三边长分别为12、k、72,∴72-12<k<12+72,∴3<k<4,21236k k-+,=()26k--|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k,故选D.【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.13的值是一个整数,则正整数a 的最小值是( )A .1B .2C .3D .5【答案】B【解析】【分析】根据二次根式的乘法法则计算得到a 的最小值即可.【详解】∴正整数a 是最小值是2.故选B.【点睛】本题考查了二次根式的乘除法,二次根式的化简等知识,解题的关键是理解题意,灵活应用二次根式的乘法法则化简.14.一次函数y mx n =-+的结果是( )A .mB .m -C .2m n -D .2m n -【答案】D【解析】【分析】根据题意可得﹣m <0,n <0,再进行化简即可.【详解】∵一次函数y =﹣mx +n 的图象经过第二、三、四象限,∴﹣m <0,n <0,即m >0,n <0,=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n ,故选D .【点睛】本题考查了二次根式的性质与化简以及一次函数的图象与系数的关系,熟练掌握一次函数的图象与性质是解题的关键.15.a 的取值范围为() A .0a >B .0a <C .0a =D .不存在【答案】C【解析】试题解析:根据二次根式的性质,被开方数大于等于0,可知:a≥0,且-a≥0. 所以a=0.故选C .16.下列计算或化简正确的是( )A.=BC 3=-D 3= 【答案】D【解析】解:A .不是同类二次根式,不能合并,故A 错误;B =,故B 错误;C 3=,故C 错误;D 3===,正确.故选D .17.下列各式中,运算正确的是( )A 2=-B 4=C =D .2=【答案】B【解析】【分析】=a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【详解】A 2=,故原题计算错误;B =,故原题计算正确;C =D 、2不能合并,故原题计算错误;故选B .【点睛】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.18.下列运算正确的是( )A =B =C 123=D 2=-【答案】B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A .≠A 错误;B .=,故B 正确;C .=C 错误;D .2=,故D 错误.故选:B .【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.19.如果m 2+m =0,那么代数式(221m m ++1)31m m +÷的值是( )A B . C + 1 D + 2 【答案】A【解析】【分析】先进行分式化简,再把m 2+m =. 【详解】解:(221m m ++1)31m m +÷ 223211m m m m m +++=÷ 232(1)1m m m m +=⋅+ =m 2+m ,∵m 2+m =0,∴m 2+m =∴原式=故选:A .【点睛】 本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=-C .1)4=D .()422a a -=【答案】C【解析】【分析】 根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误;C 、1)514=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.。
a > o 时,式子 a 才是二次根式;若a <o ,则式子 \ a 就不能叫二次根式,即 A /a 无意义。
2 •易把 、a 2 与(\ a)2混淆。
3 •二次根式的乘除法混合运算的顺序,一般从左到右依次进行或先把除法统一成乘法后,再用乘法运算 法则计算。
4 •对同类二次根式的定义理解不透。
针对训练题:6.已知:xy 3,则x 、y y x 的值是 \ x \ y7.若.(x 1)2(x 2) (x 1) \ x 2则x 的取值范围是8.已知a b 3,ab 2,计算“ b的值.14.已知x易错题知识点 二次根式易错题1 •忽略二次根式有意义的条件,只有被开方数 5 •二次根式的混合运算顺序不正确。
1.若..X 1— 2 x (x y),则 x y = 2. .(b 3)3b ,则b 的取值范围是 3. (. a 1)2 1成立的条件是4.计算a 1的结果是 a I ab ------ 2的值为 (a b)29.已知实数 a,b 在数轴上的对应点分别为 A,B,且 A 在原点左侧,B 要原点右侧,如果a b ,则 a b Na10.已知a,b 分别为等腰三角形的两条边长 ,且a,b 满足b 4 ,3a 6 3.2 a ,求此三角形的周长?11.若代数式;m --有意义, Vmn 那么直角坐标系中点 P ( m , n )的位置在( )象限12. 当 1时,化简.(a 1)2 1 2a13.化简1).2). \ 4m 3n(m 0)=15.已知:实数 7 \ 3的整数部分为a,小数部分为b,求代数式ab 的值。
16..若 a,b 为实数,且 4a 2 b 2 4a 10b2619.如图所示的Rt △ ABC 中,/ B=90 ° ,点P 从点B 开始沿BA 边以1厘米/?秒的速度向点 A 移动;同时, 点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点 C 移动.问:几秒后△ PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)17. 已知 i' -~ 2 小 <x 3y x 9 0,求 的值。
(易错题精选)初中数学二次根式易错题汇编附答案一、选择题1.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.2.已知352x x -+-=的结果是( ) A .4B .62x -C .4-D .26x - 【答案】A【解析】由352x x -+-=可得30{50x x -≥-≤ ,∴3≤x ≤5=x-1+5-x=4,故选A.3.m 的值不可以是( )A .18m =B .4m =C .32m =D .627m = 【答案】B【解析】 【分析】【详解】A. 18m =4,是同类二次根式,故此选项不符合题意;B. 4m = ,此选项符合题意C. 32m =,是同类二次根式,故此选项不符合题意;D. 627m =3,是同类二次根式,故此选项不符合题意 故选:B【点睛】本题考查二次根式的化简和同类二次根式的定义,掌握二次根式的化简法则是本题的解题关键.4.下列计算或运算中,正确的是()A .=B =C .=D .-=【答案】B【解析】【分析】 根据二次根性质和运算法则逐一判断即可得.【详解】A 、=BC 、=D 、-=,此选项错误;故选B .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.5.已知3y =,则2xy 的值为( ) A .15-B .15C .152-D .152 【答案】A【解析】试题解析:由3y =,得250{520x x -≥-≥,解得 2.5{3x y ==-.2xy =2×2.5×(-3)=-15,故选A .6.如果一个三角形的三边长分别为12、k 、72|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k 【答案】D【解析】【分析】求出k 的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】 ∵一个三角形的三边长分别为12、k 、72, ∴72-12<k <12+72, ∴3<k <4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.7.有意义,那么直角坐标系中 P(m,n)的位置在( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn>0,解得m<0,n<0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.8x的取值范围是()A.x≥5B.x>-5 C.x≥-5 D.x≤-5【答案】C【解析】【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】Q有意义,∴x+5≥0,解得x≥-5.故答案选:C.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.9.把(a b-根号外的因式移到根号内的结果为().A B C.D.【答案】C【解析】【分析】先判断出a-b的符号,然后解答即可.【详解】∵被开方数1b a≥-,分母0b a-≠,∴0b a->,∴0a b-<,∴原式(b a=--==故选C.【点睛】=|a|.也考查了二次根式的成立的条件以及二次根式的乘法.10.下列各式中,是最简二次根式的是( )A B C D【答案】B【解析】【分析】判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.【详解】(1)A被开方数含分母,错误.(2)B满足条件,正确.(3) C被开方数含能开的尽方的因数或因式,错误.(4) D被开方数含能开的尽方的因数或因式,错误.所以答案选B.【点睛】本题考查最简二次根式的定义,掌握相关知识是解题关键.11.下列各式中,属于同类二次根式的是()A B.C.3D.【答案】C【解析】【分析】化简各选项后根据同类二次根式的定义判断.【详解】A的被开方数不同,所以它们不是同类二次根式;故本选项错误;B、C、3的被开方数相同,所以它们是同类二次根式;故本选项正确;D故选:C.【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.12.有意义时,a的取值范围是()A.a≥2B.a>2 C.a≠2D.a≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a ﹣2≥0,解得:a ≥2,根据分式有意义的条件:a ﹣2≠0,解得:a ≠2,∴a >2.故选B .13.下列各式成立的是( )A .2-= B -=3C .223⎛=- ⎝D 3【答案】D【解析】 分析:各项分别计算得到结果,即可做出判断.详解:A .原式B .原式不能合并,不符合题意;C .原式=23,不符合题意; D .原式=|﹣3|=3,符合题意.故选D .点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.14.a 的取值范围是( )A .a >1B .a ≥1C .a =1D .a ≤1 【答案】B【解析】【分析】根据二次根式有意义的条件可得a ﹣1≥0,再解不等式即可.【详解】由题意得:a ﹣1≥0,解得:a≥1,故选:B .【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.15.下列计算正确的是( )A .=B =C .=D -=【答案】B【解析】【分析】 根据二次根式的加减乘除运算法则逐一计算可得.【详解】A 、-B 、,此选项正确;C 、=(D 、= 故选B【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.16.计算201720192)2)的结果是( )A .B 2C .7D .7- 【答案】C【解析】【分析】先利用积的乘方得到原式= 201722)2)]2)⋅,然后根据平方差公式和完全平方公式计算.【详解】解:原式=201722)2)]2)+⋅=2017(34)(34)-⋅-1(7=-⨯-7=故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.在实数范围内有意义,则x 的取值范围是( )A .3x >B .3x ≠C .3x ≥D .0x ≥【答案】C【解析】【分析】先根据二次根式有意义的条件是被开方式大于等于0,列出关于x 的不等式,求出x 的取值范围即可.【详解】在实数范围内有意义,∴x-3≥0,解得x≥3.故选:C .【点睛】本题考查的是二次根式有意义的条件,即被开方数大于等于0.18.下列二次根式是最简二次根式的是( )A B C D【答案】D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数含分母,故A 不符合题意;B 、被开方数含开的尽的因数,故B 不符合题意;C 、被开方数是小数,故C 不符合题意;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 符合题意. 故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.19.若a b > )A .-B .-C .D .【答案】D【解析】【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可;【详解】∴-a3b≥0∵a>b,∴a>0,b<0=,故选:D.【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.20.在下列各组根式中,是同类二次根式的是()A BC D【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A=不是同类二次根式;B=是同类二次根式;C b==D不是同类二次根式;故选:B.【点睛】本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.。
期末复习- 《二次根式》常考题与易错题精选(45题)一.选择题(共22小题)1.若是整数,则正整数n的最小值是( )A.4B.5C.6D.7【分析】根据二次根式的定义可得答案.【解答】解:∵=3,∴正整数n的最小值是5;故选:B.【点评】本题考查了二次根式的定义,利用二次根式的乘法是解题关键.2.若是整数,则正整数n的最小值是( )A.2B.3C.4D.5【分析】先化简,然后根据二次根式的定义判断即可.【解答】解:∵=2,∴正整数n的最小值是:5,故选:D.【点评】本题考查了二次根式的定义,熟练掌握二次根式的定义是解题的关键.3.下列式子中,一定属于二次根式的是( )A.B.C.D.【分析】根据二次根式的定义,被开方数大于等于0进行判断即可得到结果.【解答】解:被开方数为非负数,所以A不合题意;x≥﹣2时二次根式有意义,x<﹣2时没意义,所以B不合题意;为三次根式,所以C不合题意;满足二次根式的定义,所以D符合题意.故选:D.【点评】本题考查二次根式的定义,注意选项中各式的形式及未知数取值范围是解本题的关键.4.给出下列各式:;②6;;④(m≤0);⑤;⑥.其中二次根式的个数是( )A.2B.3C.4D.5【分析】根据二次根式的定义即可作出判断.【解答】解:①∵3>0,∴是二次根式;②6不是二次根式;②∵﹣12<0,∴不是二次根式;④∵m≤0,∴﹣m≥0,∴是二次根式;⑤∵a2+1>0,∴是二次根式;⑥是三次根式,不是二次根式.所以二次根式有3个.故选:B.【点评】本题考查的是二次根式的定义,解题时,要注意:一般地,我们把形如(a≥0)的式子叫做二次根式.5.下列各式:、,,,,中,一定是二次根式的有( )A.3个B.4个C.5个D.6个【分析】利用二次根式的定义对每个式子进行判断即可.【解答】解:∵式子(a≥0)是二次根式,∴,,(x≥1),是二次根式,无意义,是三次根式,∴一定是二次根式的有:,,(x≥1),,故选:B.【点评】本题主要考查了二次根式的定义,熟练掌握二次根式的意义是解题的关键.6.已知x、y为实数,且,则x+y的值是( )A.10B.8C.5D.3【分析】根据二次根式(a≥0)可得x﹣2≥0且6﹣3x≥0,从而可得x=2,进而可得y=3,然后把x,y的值代入式子中进行计算即可解答.【解答】解:由题意得:x﹣2≥0且6﹣3x≥0,解得:x≥2且x≤2,∴x=2,∴x+y=2+3=5,故选:C.【点评】本题考查了二次根式的有意义的条件,熟练掌握二次根式(a≥0)是解题的关键.7.若代数式在实数范围内有意义,则x的取值范围是( )A.x≠2B.x≥2C.x≤2D.x>2【分析】根据二次根式(a≥0)可得2x﹣4≥0,然后进行计算即可解答.【解答】解:由题意得:2x﹣4≥0,解得:x≥2,故选:B.【点评】本题考查了二次根式有意义的条件,熟练掌握二次根式(a≥0)是解题的关键.8.已知x,y为实数,且满足++2,则x y的值为( )A.4B.6C.9D.16【分析】根据二次根式(a≥0),可得x=3,从而可得y=2,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:由题意得:x﹣3≥0,3﹣x≥0,∴x=3,∴y=2,∴x y=32=9,故选:C.【点评】本题考查了二次根式有意义的条件,熟练掌握二次根式(a≥0)是解题的关键.9.若分式有意义,则x的取值范围是( )A.x≠4B.x>C.x≥2且x≠4D.x>2且x≠4【分析】根据分式和二次根式有意义的条件即可得出答案.【解答】解:∵x﹣2≥0,x﹣4≠0,∴x≥2且x≠4.【点评】本题考查了分式和二次根式有意义的条件,掌握分式有意义的条件是分母不等于0,二次根式有意义的条件是被开方数是非负数是解题的关键.10.若x,y为实数,且y=2++,则|x+y|的值是( )A.5B.3C.2D.1【分析】根据二次根式有意义的条件列不等式,求出x,代入y=2++求出y,把x、y的值代入|﹣x+y|计算.【解答】解:∵,∴,∴x=3,∴y=2,∴|x+y|=|3+2|=5,故选:A.【点评】本题主要考查了解不等式组、代数式求值、二次根式有意义的条件,掌握根据二次根式有意义的条件列不等式,是解题关键.11.下列各式中,正确的是( )A.B.﹣C.D.【分析】利用二次根式的性质对每个选项进行逐一判断即可得出结论.【解答】解:∵=|﹣3|=3,∴A选项的结论不正确;∵﹣=﹣3,∴B选项的结论正确;∵=|﹣3|=3,∴C选项的结论不正确;∵=3,∴D选项的结论不正确,故选:B.【点评】本题主要考查了二次根式的性质,正确利用二次根式的性质对每个选项进行判断是解题的关键.12.化简得( )A.B.C.D.【分析】根据二次根式的性质化简即可.【解答】解:原式=a•=﹣.故选:D.【点评】本题考查了二次根式的运算,掌握商的算术平方根的性质是解决本题的关键.13.已知|a|=3,=5,且|a+b|=a+b,那么a+b的值是( )A.2或8B.2或﹣8C.﹣2或8D.﹣2或﹣8【分析】根据二次根式的性质与化简,立方根的意义,进行计算逐一判断即可解答.【解答】解:∵|a|=3,=5,∴a=±3,b=±5,∵|a+b|=a+b,∴a+b≥0,∴当a=3,b=5时,a+b=3+5=8,当a=﹣3,b=5时,a+b=﹣3+5=2,综上所述:a+b的值是2或8,故选:A.【点评】本题考查了二次根式的性质与化简,准确熟练地进行计算是解题的关键.14.下列二次根式是最简二次根式的是( )A.B.C.D.【分析】根据最简二次根式的定义,逐一判断即可解答.【解答】解:A、=2,故A不符合题意;B、==,故B不符合题意;C、=2,故C不符合题意;D、是最简二次根式,故D符合题意;故选:D.【点评】本题考查了最简二次根式,熟练掌握最简二次根式的定义是解题的关键.15.已知1<p<2,化简+()2=( )A.1B.3C.3﹣2p D.1﹣2p【分析】根据二次根式的性质进行化简即可.【解答】解:∵1<p<2,∴1﹣p<0,2﹣p>0,∴原式=|1﹣p|+2﹣p=p﹣1+2﹣p=1.故选:A.【点评】本题考查了二次根式的性质与化简,解决本题的关键是掌握二次根式的性质.16.如果ab>0,a+b<0,那么下列各式:①;②;③;④.其中正确的个数是( )A.1个B.2个C.3个D.4个【分析】先根据ab>0,a+b<0得到a<0,b<0,然后利用二次根式的性质和二次根式的乘除运算法则逐个作出判断即可.【解答】解:∵ab>0,a+b<0,∴a<0,b<0.∴,无意义,①错误;,②正确;,③正确;,④错误;正确的有2个,故选:B.【点评】本题主要考查了二次根式的性质和二次根式的乘除法,熟练掌握运算法则是解题的关键.17.下列各式中是﹣a﹣b有理化因式的是( )A.a+b B.b﹣a C.a﹣b D.b﹣a 【分析】利用平方差公式,进行计算即可解答.【解答】解:(﹣a﹣b)(b﹣a)=﹣(b+a)(b﹣a)=﹣(b2x﹣a2y)=﹣b2x+a2y,故选:B.【点评】本题考查了分母有理化,熟练掌握平方差公式是解题的关键.18.计算:的值为( )A.B.3C.D.9【分析】直接利用二次根式的乘除运算法则化简,进而得出答案.【解答】解:=×===.故选:A.【点评】此题主要考查了二次根式的乘除运算,正确掌握相关运算法则是解题关键.19.若最简二次根式与是同类二次根式,则a的值为( )A.0B.8C.2D.2或8【分析】根据同类二次根式的定义,可得2a﹣1=9﹣3a,然后进行计算即可解答.【解答】解:由题意得:2a﹣1=9﹣3a,2a+3a=9+1,5a=10,a=2,故选:C.【点评】本题考查了同类二次根式,熟练掌握同类二次根式的定义是解题的关键.20.下列二次根式中,与是同类二次根式的是( )A.B.C.D.【分析】先把每一个选项的二次根式化成最简二次根式,然后根据同类二次根式的定义,逐一判断即可解答.【解答】解:A、=3,与不是同类二次根式,故A不符合题意;B、=2,与不是同类二次根式,故B不符合题意;C、=,与是同类二次根式,故C符合题意;D、=,与不是同类二次根式,故D不符合题意;故选:C.【点评】本题考查了同类二次根式,熟练掌握同类二次根式的定义是解题的关键.21.下列二次根式中、是同类二次根式的一组是( )A.和B.和C.和D.和【分析】根据二次根式的性质把各个二次根式化为最简二次根式,再根据同类二次根式的概念判断即可.【解答】解:A、=2,与不是同类二次根式,本选项不符合题意;B、=,与是同类二次根式,本选项符合题意;C、=|a|,=|b|,∴与不是同类二次根式,本选项不符合题意;D、与不是同类二次根式,本选项不符合题意;故选:B.【点评】本题考查的是最简二次根式的、同类二次根式,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.22.下列运算正确的是( )A.(﹣x2)3=﹣x6B.C.D.2﹣1+(π﹣3.14)0=2【分析】利用二次根式的加减法的法则,幂的乘方的法则,分式的除法的法则,负整数指数幂对各项进行运算即可.【解答】解:A、(﹣x2)3=﹣x6,故A符合题意;B、,故B不符合题意;C、与2不属于同类二次根式,不能运算,故C不符合题意;D、2﹣1+(π﹣3.14)0=,故D不符合题意;故选:A.【点评】本题主要考查二次根式的加减法,幂的乘方,分式的除法,解答的关键是对相应的运算法则的掌握.二.解答题(共23小题)23.已知y=++3且与互为相反数,求yz﹣x的平方根.【分析】根据算术平方根的非负性及互为相反数的特点列不等式组和方程,确定x,y,z的值,从而结合平方根的概念求解.【解答】解:∵y=++3,∴,解得:x=2,∴y=3,∵与互为相反数,∴1﹣2z+3z﹣5=0,解得:z=4,∴yz﹣x=3×4﹣2=10,∴yz﹣x的平方根为±.【点评】本题考查二次根式有意义的条件,理解二次根式的非负性,掌握立方根和平方根的概念是解题关键.24.已知y=.【分析】根据二次根式的定义,可得x=2,可求得y的值,进而可得x+y的值与它的平方根.【解答】解:∵y=++5有意义,∴,解得x=2,故y=5;则x+y=7,故x+y的平方根为±.【点评】本题考查二次根式的意义,平方根的概念.此类题目是常见的考题,应特别注意.25.计算:= 3 ,= 0.7 ,= 0 ,= 6 ,= ,(1)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来;(2)利用你总结的规律,计算.【分析】根据二次根式的性质=|a|,进行计算即可解答.【解答】解:计算:=3,=0.7,=0,=6,=,故答案为:3;0.7;0;6;;(1)不一定等于a,发现的规律是:=|a|;(2)=|3.14﹣π|=π﹣3.14.【点评】本题考查了二次根式的性质与化简,熟练掌握二次根式的性质=|a|是解题的关键.26.已知数a,b,c在数轴上的位置如图所示:化简:.【分析】先化简各式,然后再进行计算即可.【解答】解:由题意得:c<b<0<a,∴a﹣b>0,c﹣a<0,∴=﹣b﹣(a﹣b)+a﹣c﹣(﹣c)=﹣b﹣a+b+a﹣c+c=0.【点评】本题考查了实数与数轴,二次根式的性质与化简,准确熟练地化简各式是解题的关键.27.数a,b在数轴上的位置如图所示,化简.【分析】根据数轴可得出a,b的取值范围,再化简即可.【解答】解:如图得,﹣2<a<﹣1,1<b<2,∴a﹣b<0,b﹣1>0,a+1<0,∴.=b﹣a+b﹣1﹣(﹣a﹣1),=2b﹣a﹣1+a+1,=2b.【点评】本题考查了二次根式的性质与化简以及实数与数轴,掌握二次根式的化简是解题的关键.28.把二次根式(x﹣1)化为最简二次根式.【分析】根据题意可得:1﹣x>0,从而可得x﹣1<0,然后进行计算即可解答.【解答】解:由题意得:1﹣x>0,∴x﹣1<0,∴(x﹣1)=﹣(1﹣x)=﹣=﹣.【点评】本题考查了最简二次根式,准确熟练地进行计算是解题的关键.29.计算:.【分析】系数先除后乘,被开方数也是按这个顺序运算,把除法化为乘法求出最后结果.【解答】解:原式=12a÷3b2===4.【点评】本题考查了二次根式的乘除法、二次根式的性质与化简,掌握计算时先乘除,后化简,运算顺序是解题关键.30.计算:.【分析】根据二次根式的乘法、除法法则运算,注意结果是最简二次根式.【解答】解:原式===.【点评】本题主要考查了二次根式的乘除法,掌握二次根式的乘除法法则是解题关键.31.已知:m=,n=,求的值.【分析】将m和n的式子分母有理化,在代入所求式子,利用完全平方公式和平方差公式计算即可.【解答】解:∵m===2﹣,n===2+,∴,=,=,=.【点评】本题考查了二次根式的化简求值,掌握运算法则,平方差公式与完全平方公式是解题的关键.32.计算:(1)+()﹣2﹣|﹣2|;(2)+2﹣(﹣).【分析】(1)先化简各式,然后再进行计算即可解答;(2)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答.【解答】解:(1)+()﹣2﹣|﹣2|=2+9﹣(2﹣)=2+9﹣2+=3+7;(2)+2﹣(﹣)=2+2﹣3+=3﹣.【点评】本题考查了实数的运算,二次根式的加减法,负整数指数幂,准确熟练地进行计算是解题的关键.33.计算:(1);(2)[(﹣ab2)2﹣2b⋅a2b3]÷a2b.【分析】(1)先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变;(2)先算中括号乘方与乘法.再合括号内并同类项,最后算除法.【解答】解:(1)原式=﹣+2﹣5+=﹣6+3;(2)原式=(a2b4﹣2a2b4)÷a2b=﹣a2b4÷a2b=﹣b3.【点评】本题主要考查了二次根式的加减法、幂的乘方与积的乘方、单项式与单项式相乘,掌握这三种运算法则是解题关键.34.计算:(1);(2);(3);(4).【分析】(1)利用分母有理化进行计算,即可解答;(2)先化简各式,然后再进行计算即可解答;(3)先把每一个二次根式化成最简二次根式,然后再进行计算即可解答;(4)先计算二次根式的乘除法,再算加减,即可解答.【解答】解:(1)==﹣;(2)=1+(﹣2)+﹣5﹣2=1﹣2+3﹣5﹣2=﹣6;(3)=3﹣2+=;(4)=﹣(5﹣2)=﹣3=1﹣3=﹣2.【点评】本题考查了二次根式的混合运算,零指数幂,负整数指数幂,分母有理化,平方差公式,准确熟练地进行计算是解题的关键.35.已知A,B都是关于x的多项式,且A=2x2﹣5x+4,A﹣B=2x+1.(1)求B;(2)若,求B的值.【分析】(1)根据已知可得B=A﹣(2x+1),然后把A=2x2﹣5x+4代入式子中,进行计算即可解答;(2)根据已知可得2x+1=,从而可得:x=,然后把x的值代入(1)的结论进行计算,即可解答.【解答】解:(1)∵A=2x2﹣5x+4,A﹣B=2x+1,∴B=A﹣(2x+1)=2x2﹣5x+4﹣(2x+1)=2x2﹣5x+4﹣2x﹣1=2x2﹣7x+3;(2)∵,∴2x+1=,解得:x=,当x=时,B=2×()2﹣7×+3=﹣+3=,∴B的值为.【点评】本题考查了二次根式的混合运算,整式的加减,准确熟练地进行计算是解题的关键.36.计算:.【分析】先计算二次根式的乘法,再算加减,即可解答.【解答】解:=4﹣2+3+(﹣1)=3+.【点评】本题考查了二次根式的混合运算,准确熟练地进行计算是解题的关键.37.已知x=+1,y=﹣1,求x2+xy的值.【分析】利用因式分解进行计算,即可解答.【解答】解:∵x=+1,y=﹣1,∴x2+xy=x(x+y)=(+1)(+1+﹣1)=(+1)×2=10+2,∴x2+xy的值为10+2.【点评】本题考查了二次根式的化简求值,准确熟练地进行计算是解题的关键.38.(1)先化简,再求值:(﹣)÷,其中m=+1,n=﹣1;(2)已知a=,b=,求值:+.【分析】(1)先利用异分母分式加减法法则计算括号里,再算括号外,然后把m,n的值代入化简后的式子进行计算,即可解答;(2)先利用分母有理化化简a,b的值,然后再求出a+b与ab的值,从而利用完全平方公式进行计算即可解答.【解答】解:(1)(﹣)÷=•=•=•=,当m=+1,n=﹣1时,原式===;(2)∵a===﹣,b===+,∴a+b=﹣++=2,ab=(﹣)(+)=7﹣5=2,∴+======12.【点评】本题考查了二次根式的化简求值,分式的化简求值,分母有理化,准确熟练地进行计算是解题的关键.39.已知x=2+,y=2﹣,求代数式x2+2xy+y2的值.【分析】根据二次根式的加法法则求出x+y,根据完全平方公式把原式变形,把x+y的值代入计算即可.【解答】解:∵x=2+,y=2﹣,∴x+y=2++2﹣=4,∴x2+2xy+y2=(x+y)2=42=16.【点评】本题考查的是二次根式的化简求值,掌握二次根式的加法法则、完全平方公式是解题的关键.40.已知a=3+2,b=3﹣2,求a2b﹣ab2的值.【分析】利用因式分解,进行计算即可解答.【解答】解:∵a=3+2,b=3﹣2,∴ab=(3+2)(3﹣2)=(3)2﹣(2)2=18﹣12=6,a﹣b=3+2﹣(3﹣2)=3+2﹣3+2=4,∴a2b﹣ab2=ab(a﹣b)=6×4=24.【点评】本题考查了二次根式的化简求值,熟练掌握因式分解是解题的关键.41.如图,从一个大正方形中裁去面积为4cm2和25cm2的两个小正方形,求留下的阴影部分的面积.【分析】根据开方运算,可得阴影的边长,根据乘方,可得大正方形的面积,根据面积的和差,可得答案.【解答】解:∵大正方形的边长=,∴大正方形的面积为49cm2,∴阴影部分的面积=49﹣4﹣25=20(cm2).【点评】本题考查了算术平方根,根据小正方形的面积得到边长,进而得到大正方形的边长是解题的关键.42.如图,正方形ABCD的面积为8,正方形ECFG的面积为32.(1)求正方形ABCD和正方形ECFG的边长;(2)求阴影部分的面积.【分析】(1)根据正方形的面积公式求得边长;(2)先求出直角三角形BFG、ABD的面积,然后用两个正方形的面积减去两个直角三角形的面积,这就是阴影部分的面积.【解答】解:(1)正方形ABCD的边长为:BC=,正方形ECFG的边长为:CF=;(2)∵BF=BC+CF,BC=2,CF=4,∴BF=6;∴S△BFG=GF•BF=24;又S△ABD=AB•AD=4,∴S阴影=S正方形ABCD+S正方形ECFG﹣S△BFG﹣S△ABD=8+32﹣24﹣4,=12.【点评】本题主要考查了二次根式的应用,正方形的性质,三角形的面积.第(2)题关键是把阴影部分面积转化为正方形与三角形的面积进行计算.43.据研究,从高空抛物时间t(秒)和高度h(米)近似满足公式(不考虑风速影响).(1)从50米高空抛物到落地所需时间t1的值是多少?(2)从100米高空抛物到落地所需时间t2的值是多少?(3)t2是t1的多少倍?【分析】(1)将h=50代入t1=进行计算即可;(2)将h=100代入t2=进行计算即可;(3)计算的值即可得出结论.【解答】解:(1)当h=50时,t1=(秒);(2)当h=100时,t2=(秒);(3)∵,∴t2是t1的倍.【点评】本题主要考查了二次根式的应用,二次根式的应用主要是在解决实际问题的过程中用到有关二次根式的概念、性质和运算的方法.44.某居民小区有块形状为矩形ABCD的绿地,长BC为米,宽AB为米,现在要矩形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为米,宽为米.(1)求矩形ABCD的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?【分析】(1)根据矩形的周长=(长+宽)×2计算即可;(2)先求出通道的面积,再算钱数即可.【解答】解:(1)(+)×2=(8+5)×2=13×2=26(米),答:矩形ABCD的周长为26米;(2)×﹣2×(+1)×(﹣1)=8×5﹣2×(13﹣1)=80﹣24=56(平方米),6×56=336(元),答:购买地砖需要花费336元.【点评】本题考查了二次根式的应用,最简二次根式,掌握=•(a≥0,b≥0)是解题的关键.45.阅读材料:如果一个三角形的三边长分别为a,b,c,记p=,那么这个三角形的面积S=.这个公式叫“海伦公式”,它是利用三角形三条边的边长直接求三角形面积的公式.中国的秦九韶也得出了类似的公式,称三斜求积术,故这个公式又被称为“海伦秦﹣﹣﹣九韶公式”完成下列问题:如图,在△ABC中,a=7,b=5,c=6.(1)求△ABC的面积;(2)设AB边上的高为h1,AC边上的高为h2,求h1+h2的值.【分析】(1)根据题意先求p,再将p,a,b,c的值代入题中所列面积公式计算即可;(2)按照三角形的面积等于×底×高分别计算出h1和h2的值,再求和即可.【解答】解.(1)根据题意知p==9所以S===6∴△ABC的面积为6;(2)∵S=ch1=bh2=6∴×6h1=×5h2=6∴h1=2,h2=∴h1+h2=.【点评】本题考查了二次根式在三角形面积计算中的应用,读懂题中所列的海伦公式并正确运用,是解题的关键.。
(易错题精选)初中数学二次根式全集汇编及解析一、选择题1.下列计算正确的是( )A .3=B =C .1=D 2= 【答案】D【解析】【分析】根据合并同类二次根式的法则及二次根式的乘除运算法则计算可得.【详解】A 、=,错误;BC 、22=⨯=D 2==,正确; 故选:D .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握合并同类二次根式的法则及二次根式的乘除运算法则.2.若代数式y =有意义,则实数x 的取值范围是( ) A .0x ≥B .0x ≥且1x ≠C .0x >D .0x >且1x ≠【答案】B【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】 根据题意得:010x x ≥⎧⎨-≠⎩, 解得:x≥0且x≠1.故选:B .【点睛】此题考查分式有意义的条件,二次根式有意义的条件,解题关键在于掌握分母不为0;二次根式的被开方数是非负数.3.如果•6(6)x x x x -=-,那么( ) A .0x ≥B .6x ≥C .06x ≤≤D .x 为一切实数 【答案】B【解析】∵()x ?x 6x x 6-=-,∴x ≥0,x-6≥0,∴x 6≥.故选B.4.下列运算正确的是( )A .1233x x -=B .()326a aa ⋅-=- C .(51)(51)4-+=D .()422a a -=【答案】C【解析】【分析】 根据合并同类项,单项式相乘,平方差公式和幂的乘方法进行判断.【详解】解:A 、1233x x x -=,故本选项错误; B 、()325a a a ⋅-=-,故本选项错误;C 、(51)(51)514-+=-=,故本选项正确;D 、()422a a -=-,故本选项错误;故选:C .【点睛】本题考查的是实数的计算,熟练掌握合并同类项,单项式相乘,平方差公式和幂的乘方法是解题的关键.5.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b【答案】C【解析】试题分析:利用数轴得出a+b 的符号,进而利用绝对值和二次根式的性质得出即可: ∵由数轴可知,b >0>a ,且 |a|>|b|,()a b a a b b +=-++=.故选C .考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.6.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .=D =【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.【详解】解:A 、a 6÷a 3=a 3,故不对;B 、(a 3)2=a 6,故不对;C 、和不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确.故选D .7.的结果是 A .-2B .2C .-4D .4【答案】B【解析】22=-=故选:B8.x 的取值范围是( )A .1x >-B .0x ≥C .1x ≥-D .任意实数【答案】C【解析】【分析】a 必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围.【详解】有意义,则10x +≥,故1x ≥-故选:C考核知识点:二次根式有意义条件.理解二次根式定义是关键.9.下列各式中计算正确的是()A+=B.2+=C=D2=【答案】C【解析】【分析】结合选项,分别进行二次根式的乘法运算、加法运算、二次根式的化简、二次根式的除法运算,选出正确答案.【详解】解:不是同类二次根式,不能合并,故本选项错误;B.2=,原式计算错误,故本选项错误.故选:C.【点睛】本题考查二次根式的加减法和乘除法,在进行此类运算时,掌握运算法则是解题的关键.10.在下列各组根式中,是同类二次根式的是()A BC D【答案】B【解析】【分析】根据二次根式的性质化简,根据同类二次根式的概念判断即可.【详解】A=不是同类二次根式;=是同类二次根式;B2C b==D不是同类二次根式;故选:B.本题考查的是同类二次根式的概念、二次根式的化简,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.11.下列运算正确的是()A.B.C.(a﹣3)2=a2﹣9 D.(﹣2a2)3=﹣6a6【答案】B【解析】【分析】各式计算得到结果,即可做出判断.【详解】解:A、原式不能合并,不符合题意;B、原式=,符合题意;C、原式=a2﹣6a+9,不符合题意;D、原式=﹣8a6,不符合题意,故选:B.【点睛】考查了二次根式的加减法,幂的乘方与积的乘方,完全平方公式,以及分式的加减法,熟练掌握运算法则是解本题的关键.12.下列计算错误的是( )A.22B82C236D82-2【答案】A【解析】【分析】【详解】选项A,不是同类二次根式,不能够合并;选项B,原式=2222÷=选项C,原式236⨯=选项D,原式=2222=.故选A.13.362g在哪两个整数之间()A.4和5 B.5和6 C.6和7 D.7和8【解析】【分析】== 1.414222≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C.【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.14.下列各式中是二次根式的是()A B C D x<0)【答案】C【解析】【分析】根据二次根式的定义逐一判断即可.【详解】A3,不是二次根式;B1<0,无意义;C的根指数为2,且被开方数2>0,是二次根式;D的被开方数x<0,无意义;故选:C.【点睛】a≥0)叫二次根式.15.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知积为()A.B.C.D.【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.故选:D.【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.16.计算201720192)2)的结果是( )A.B2C.7D.7-【答案】C【解析】【分析】先利用积的乘方得到原式= 201722)2)]2)⋅,然后根据平方差公式和完全平方公式计算.【详解】解:原式=201722)2)]2)+⋅=2017(34)(34)-⋅-1(7=-⨯-7=故选:C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.2a=-,那么()A.2x<B.2x≤C.2x>D.2x≥【答案】B【解析】(0)0(0)(0)a aa aa a><⎧⎪===⎨⎪-⎩,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质2(0) 0(0)(0)a aa a aa a><⎧⎪===⎨⎪-⎩可求解.18.实数,a b在数轴上对应的点位置如图所示,则化简22||a ab b+++的结果是()A.2a-B.2b-C.2a b+D.2a b-【答案】A【解析】【分析】2,a a=再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】解:0,,a b a bQ<<>0,a b∴+<22||a ab b a a b b∴++=+++()a ab b=--++a ab b=---+2.a=-故选A.【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.19.2x-有意义的x的取值范围()A.x>2 B.x≥2C.x>3 D.x≥2且x≠3【答案】D【解析】试题分析:分式有意义:分母不为0;二次根式有意义,被开方数是非负数.根据题意,得20{30xx-≥-≠解得,x≥2且x≠3.考点:(1)、二次根式有意义的条件;(2)、分式有意义的条件20.2(1)1x x-=-,那么x的取值范围是()A.x≥1B.x>1 C.x≤1D.x<16【答案】A【解析】【分析】根据等式的左边为算术平方根,结果为非负数,即x-1≥0求解即可.【详解】由于二次根式的结果为非负数可知:x-1≥0,解得,x≥1,故选A.【点睛】本题利用了二次根式的结果为非负数求x的取值范围.。
二次根式易错题集锦
1. 有意义的条件是 。
2. 当__________
3. 1
1
m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:4
29__________,2__________x
x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤
5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 11x =
+成立的条件是 。
12. 若
1a b -+()
2005
_____________a b -=。
)()()230,2,12,20,3,1,x y y x x
x x y +=--++中,二次根式有( )
A. 2个
B. 3个
C. 4个
D. 5个
14. 下列各式一定是二次根式的是( )
15. 若23a )
A. 52a -
B. 12a -
C. 25a -
D. 21a -
16. 若A =
=( )A. 24a + B. 22a + C. ()
2
2
2a + D.
()
2
24a +
17. 若1a ≤
)
A.
(1a -
B. (1a -
C.
(1a -
D. (1a -
18.
=成立的x 的取值范围是( )A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥
19.
( )A. 0 B. 42a - C. 24a - D. 24a -或42a -
20. 下面的推导中开始出错的步骤是( )
(
)
()()()
23123322
4==-=
=
∴=-∴=- A. ()1 B. ()2 C. ()3 D. (
)4 21. 2440y y
-+=,求xy 的值。
22. 当a 1
取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:
())10x ()
)21x 24. 已知2
3
10x x -+
=
25. 已知,a b (
10b -=,求2005
2006a b -的值。
二次根式的乘除1. 当0a ≤
,0b __________=。
2.
_____,______m n ==。
3. __________==。
4. 计算:
_____________=。
5. ,面积为,则长方形的长约为 (精确到
0.01)。
6. 下列各式不是最简二
次根式的是( )
7. 已知0xy
,
化简二次根式( ) C. D.
8. 对于所有实数,a b ,下列等式总能成立的是( )
A.
2
a b =+a b =+
22a b =+a b =+
9. -- )
A. 32--
B. 32--
C. -=-不能确定
10. )
A. 它是一个非负数
B. 它是一个无理数
C. 它是最简二次根式
D. 它的最小值为3
11. 计算:()1()2
()(()
30,0a b -≥≥ ())40,0a
b
()5()6⎛÷ ⎝
12. 化简:
())10,0a b ≥≥()2
()3a
13. 把根号外的因式移到根号内:
()1.-()(2.1x -
二次根式的加减
1. )
2. 下面说法正确的是( )
A. 被开方数相同的二次根式一定是同类二次根式
D. 同类二次根式是根指数为2的根式
3. )
4. 下列根式中,是最简二次根式的是( )
5. 若1
2x
)
A. 21x -
B. 21x -+
C. 3
D. -3
6. 10=,则x 的值等于( ) A. 4 B. 2± C. 2 D. 4±
7. x ,小数部分为y y -的值是( )
A. 3 C. 1 D. 3
8下列式子中正确的是( )=a b =-
8. C. (a b =-2==
9. 是同类二次根式的是 。
10.若最简二次根式
____,____a b ==。
11. ,则它的周长是 cm 。
12. ______a =。
13. 已知x
y ==33_________x y xy +=。
14. 已知
x =
2
1________x x -+=。
15.
)(
)
2000
2001
2
32
______________+=。
16. 计算:
⑴
⑵(231⎛
+ ⎝
(()2
771
+--
17. 计算及化简:
⑴. 22
- ⑵
⑶
⑷
18.
已知:x y ==
32
432232x xy x y x y x y -++的值。
19.
已知:11a a +=+221
a a
+的值。
20. 已知:,x y
为实数,且13y
x -+
,化简:3y -
21. 已知()1
1
039
32
2++=+-+-y x x x y x ,求
的值。
答案:
21.1 二次根式: 1. 4x ≥; 2. 1
22
x -≤
≤
; 3. 01m m ≤≠-且;
4. 任意实数;
5.
(
)(
(2
2
3;x
x x x +-; 6. 0x ≥;7. 2x ≤; 8. 1
x -;
9. 4; 10. 11. 1x ≥; 12. -1;
13——20:CCCABCDB
21. 4; 22. 1
2a =-,最小值为1; 23. ()()3121x x +;
25. -2
21.2 二次根式的乘除:
1. -
2. 1、2;
3. 18;
4. -5;
5. 2.83;6——10: DDCAB
11.
()()()()()()2221.6,2.15,3.20,4.5.1,6.x a b ab a --
12.
()()()123.0ab ;
13. ()()1.2.
21.3 二次根式的加减:1——8:BAACCCCC
; 10. 1、1; 11. (; 12. 1; 13. 10;
14. 42+;
16.
()()()()122,3.454.4-+;
17. ()()()()
()21.4,23.
,4.1x y y x
-+-;
18. 5; 19. 9+ 20. -1; 21. 2。