概率论与数理统计B试卷7
- 格式:doc
- 大小:168.50 KB
- 文档页数:5
华中农业大学本科课程考试参考答案与评分标准考试课程:概率论与数理统计 学年学期: 试卷类型:B 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
)1. 设随机变量X 的概率密度)1(1)(2x x p +=π,则X Y 2=的分布密度为 . 【 b 】 (a))41(12x +π; (b) )4(22x +π; (c) )1(12x +π; (d) x arctan 1π.2. 设随机变量序列x 1, x 2,…, x n …相互独立,并且都服从参数为1/2的指数分布,则当n 充分大时,随机变量Y n =∑=ni i x n 11的概率分布近似服从 . 【 b 】(a) N(2,4) (b) N(2,4/n) (c) N(1/2,1/4n) (d) N(2n,4n) 3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个 简单随机样本,则下列表达式中不是统计量的是 . 【 C 】(a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在假设检验问题中,检验水平α意义是 . 【 a 】 (a )原假设H 0成立,经检验被拒绝的概率; (b )原假设H 0成立,经检验不能拒绝的概率; (c )原假设H 0不成立,经检验被拒绝的概率; (d )原假设H 0不成立,经检验不能拒绝的概率.5.在线性回归分析中,以下命题中,错误的是 . 【 d 】(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.二、填空题(将答案写在该题横线上。
答案错选或未选者,该题不得分。
每小题2分,共10分。
概率统计考试试卷B(答案)系(院):专业:年级及班级:姓名:学号: .密封线1、五个考签中有⼀个难签,甲、⼄、丙三个考⽣依次从中抽出⼀张考签,设他们抽到难签的概率分别为1p ,2p ,3p ,则( B ) (A)321p p p (B)1p =2p =3p (C)321p p p (D)不能排⼤⼩解:抽签概率均为51,与顺序⽆关。
故选(B )2、同时掷3枚均匀硬币,恰有两枚正⾯向上的概率为(D )(A)0.5 (B)0.25 (C)0.125 (D)0.375解:375.0832121223==??? ????? ??C ,故选(D )3 、设(),,021Φ=A A B P 则( B )成⽴(A)()01 B A P (B)()[]()()B A P B A P B A A P 2121+=+ (C)()02≠B A A P (D)()121=B A A P解:条件概率具有⼀般概率性质,当A 1A 2互斥时,和的条件概率等于条件概率之和。
故选(B )课程名称:《概率论与数理统计》试卷类别:考试形式:开卷考试时间:120 分钟适⽤层次:本科适⽤专业:阅卷须知:阅卷⽤红⾊墨⽔笔书写,⼩题得分写在相应⼩题题号前,⽤正分表⽰;⼤题得分登录在对应的分数框内;考试课程应集体阅卷,流⽔作业。
系(院):专业:年级及班级:姓名:学号: .密封线4、10张奖券中含有3张中奖的奖券,每⼈购买⼀张,则前3个的购买者中恰有1⼈中奖的概率为(D )(A)3.07.02321 解:310272313A A C C P ?==402189106733=,故选(D ) 5、每次试验成功的概率为p ,独⽴重复进⾏试验直到第n 次才取得()n r r ≤≤1次成功的概率为(B )。
(A)()rn rn p p C --1 (B)()rn rr n p p C ----111(C)()rn r p p --1 (D) ()rn r r n p pC -----1111解:rn r r n r n r r n qp C q p C p ---+-----=?1111111,故选(B )第n 次6、设随机变量X 的概率密度为)1(12x +π,则2X 的概率密度为(B ) (A))1(12x +π (B))4(22x +π (C))41(12x +π (D))x +π解:令()x g x y ==2 ()y h y x ==21 ()21='y h ()214112+=y y P Y π=()21442?+y π=()242y +π,故选(B )7、如果随机变量X 的可能值充满区间( A B ),⽽在此区间外等于零,则x sin 可能成为⼀随机变量的概率密度。
长沙理工大学考试试卷……………………………………………………………………………………………………… 试卷编号 07 拟题教研室(或教师)签名 教研室主任签名……………………………………………………………………………………………………… 课程名称(含档次) 概率论与数理统计B 课程代号专 业 层次(本、专) 本科(城南) 考试方式(开、闭卷) 闭一、填空题(本题总分10分,每小题2分)1 . 连续抛掷三次硬币,用i A 表示事件“第i 次抛掷的结果是正面向,1,2,3i =.则321A A A ⋃⋃表示事件( ).2 . 设随机变量X 的密度函数f(x)=⎩⎨⎧∈其他,0],0[,sin πx x A ,则常数A =( ). 3 . 设(X ,Y)在区域}x y 2,0x 0y){(x,D ≤≤≤≤=上服从均匀分布,则=>)1P (Y ( ).4 . 设随机变量列X 1,X 2,…,X n ,…独立同分布,它们的期望为μ,方差为σ2,Z n =∑=n 1i i Xn 1,则对任意正数ε,有∞→n lim P{|Z n -μ|≥ε}=( ). 5 . 设随机变量X ,Y 都服从区间[0,1]上的均匀分布,则E (X+Y )=( ).二、单项选择题(本题总分20分,每小题5分)1 . 如果两个随机变量X 与Y 满足Y),D(X Y)D(X -=+则X 与Y 必( ). ① 相关 ② 不相关 ③ 不相关但不独立 ④ 不相关且独立2 . 从0,1,…,9十个数字中随机地有放回地接连抽取四个数字,则“8”至少出现一次的概率为( ).① 0.1 ② 0.3439 ③ 0.4 ④ 0.65613 . 若连续型随机变量X 的密度函数p(x)=⎩⎨⎧∈其它,0cos I x x ,则区间I 可以是( ).①[0,2π] ②[0,π] ③[0,23π] ④[-2π,2π] 4 . 设随机变量X 与Y 相互独立,且X ~),(2σμN ,Y ~),(2σμN ,则X +Y 的分布是( ).第 1 页(共 2 页)① ),(2σμN ② )2,(2σμN ③ ),2(2σμN ④ )2,2(2σμN .三、计算题(本题总分60分,每小题12分)1 . 某大学的全体男生中,有60%的人爱好踢足球,50%的人爱好打篮球,30%的人两项运动都爱好,求该校全体男生中:(1) 踢足球或打篮球至少爱好一项运动的概率有多大?(2) 不爱好踢足球,也不爱好打篮球的概率有多大?2 . 对一台仪器进行重复测试,直到发生故障为止,假定测试是独立进行的,每次测试发生故障的概率均为0.1,X 表示测试次数.求:(1)X 的分布列; (2)E (X ).3 . 设二维随机变量()Y X ,的概率密度为22,1(,)0,Cx y x y f x y ⎧≤≤=⎨⎩其它. (1).试确定常数C ;(2).求边缘概率密度;(3)P (X+Y>1).4. 设某公司有100件产品进行拍卖,每件产品的成交价为服从正态分布N(1000,100²)的随机变量,求这100件产品的总成交价不低于9.9万元的概率。
习题7-11. 选择题(1) 设总体X 的均值μ与方差σ2都存在但未知, 而12,,,n X X X L 为来自X 的样本, 则均值μ与方差σ2的矩估计量分别是( ) .(A) X 和S 2. (B) X 和211()nii X nμ=-∑. (C) μ和σ2. (D) X 和211()nii X X n=-∑.解 选(D).(2) 设[0,]X U θ:, 其中θ>0为未知参数, 又12,,,n X X X L 为来自总体X 的样本, 则θ的矩估计量是( ) .(A) X . (B) 2X . (C) 1max{}i i nX ≤≤. (D) 1min{}i i nX ≤≤.解 选(B).2. 设总体X 的分布律为其中0<θ<12n , 试求θ的矩估计量.解 因为E (X )=(-2)×3θ+1×(1-4θ)+5×θ=1-5θ, 令15X θ-=得到θ的矩估计量为ˆ15X θ-=. 3. 设总体X 的概率密度为(1),01,(;)0, x x f x θθθ+<<=⎧⎨⎩其它.其中θ>-1是未知参数, X 1,X 2,…,X n 是来自X 的容量为n 的简单随机样本, 求: (1) θ的矩估计量;(2) θ的极大似然估计量. 解 总体 X 的数学期望为1101()()d (1)d 2E X xf x x x x θθθθ+∞+-∞+==+=+⎰⎰. 令()E X X =, 即12X θθ+=+, 得参数θ的矩估计量为21ˆ1X X θ-=-. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… , X n 的一组观测值, 则似然函数为1(1),01,0,n n i i i x x L θθ=⎧⎛⎫+<<⎪ ⎪=⎨⎝⎭⎪⎩∏其它. 当0<x i <1(i =1,2,3,…,n )时, L >0且 ∑=++=ni ixn L 1ln )1ln(ln θθ,令1d ln ln d 1ni i L nx θθ==++∑=0, 得θ的极大似然估计值为 1ˆ1ln nii nxθ==--∑,而θ的极大似然估计量为 1ˆ1ln nii nXθ==--∑.4. 设总体X 服从参数为λ的指数分布, 即X 的概率密度为e ,0,(,)0,0,x x f x x λλλ->=⎧⎨⎩≤ 其中0λ>为未知参数, X 1, X 2, …, X n 为来自总体X 的样本, 试求未知参数λ的矩估计量与极大似然估计量.解 因为E (X )=1λ =X , 所以λ的矩估计量为1ˆXλ=. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… ,X n 的一组观测值, 则似然函数11nii inxx nni L eeλλλλ=--=∑==∏,取对数 1ln ln ()ni i L n x λλ==-∑.令1d ln 0,d ni i L n x λλ==-=∑ 得λ的极大似然估计值为1ˆxλ=,λ的极大似然估计量为1ˆXλ=. 5. 设总体X 的概率密度为,01(,)1,120,x f x x θθθ<<=-⎧⎪⎨⎪⎩,≤≤,其它,其中θ(0<θ<1)是未知参数. X 1, X 2, …, X n 为来自总体的简单随机样本, 记N 为样本值12,,,n x x x L 中小于1的个数. 求: (1) θ的矩估计量; (2) θ的极大似然估计量.解 (1) 1213()d (1)d 2X E X x x x x θθθ==+-=-⎰⎰, 所以32X θ=-矩.(2) 设样本12,,n x x x L 按照从小到大为序(即顺序统计量的观测值)有如下关系:x (1) ≤ x (2) ≤…≤ x (N ) <1≤ x (N +1)≤ x (N +2)≤…≤x (n ) .似然函数为(1)(2)()(1)(2)(1),1()0,,N n N N N N n x x x x x x L θθθ-++-<=⎧⎨⎩L L ≤≤≤≤≤≤≤其它.考虑似然函数非零部分, 得到ln L (θ ) = N ln θ + (n − N ) ln(1−θ ),令d ln ()0d 1L N n N θθθθ-=-=-, 解得θ的极大似然估计值为ˆN nθ=. 习题7-21. 选择题: 设总体X 的均值μ与方差2σ都存在但未知, 而12,,,n X X X L 为X 的样本, 则无论总体X 服从什么分布, ( )是μ和2σ的无偏估计量.(A) 11nii X n=∑和211()nii X X n=-∑. (B)111nii X n =-∑和211()1nii X X n =--∑.(C)111nii X n =-∑和211()1nii X n μ=--∑. (D)11nii X n=∑和211()nii X nμ=-∑.解 选(D).2. 若1X ,2X ,3X 为来自总体2(,)X N μσ:的样本, 且Y 1231134X X kX =++为μ的无偏估计量, 问k 等于多少?解 要求1231111()3434E X X kX k μμμμ++=++=, 解之, k =512.3. 设总体X 的均值为0, 方差2σ存在但未知, 又12,X X 为来自总体X的样本, 试证:2121()2X X -为2σ的无偏估计.证 因为22212112211[()][(2)]22E X X E X X X X -=-+2222112212[()2()()]22E X E X X E X σσ=-+==,所以2121()2X X -为2σ的无偏估计.习题7-31. 选择题(1) 总体未知参数θ的置信水平为0.95的置信区间的意义是指( ). (A) 区间平均含总体95%的值. (B) 区间平均含样本95%的值.(C) 未知参数θ有95%的可靠程度落入此区间. (D) 区间有95%的可靠程度含参数θ的真值. 解 选(D).(2) 对于置信水平1-α(0<α<1), 关于置信区间的可靠程度与精确程度, 下列说法不正确的是( ).(A) 若可靠程度越高, 则置信区间包含未知参数真值的可能性越大. (B) 如果α越小, 则可靠程度越高, 精确程度越低. (C) 如果1-α越小, 则可靠程度越高, 精确程度越低. (D) 若精确程度越高, 则可靠程度越低, 而1-α越小. 解 选(C )习题7-41. 某灯泡厂从当天生产的灯泡中随机抽取9只进行寿命测试, 取得数据如下(单位:小时):1050, 1100, 1080, 1120, 1250, 1040, 1130, 1300, 1200. 设灯泡寿命服从正态分布N (μ, 902), 取置信度为0.95, 试求当天生产的全部灯泡的平均寿命的置信区间.解 计算得到1141.11,x = σ2 =902. 对于α = 0.05, 查表可得/20.025 1.96z z ==α.所求置信区间为/2/2(,)(1141.11 1.96,1141.11 1.96)(1082.31,1199.91).x x z +=-=αα2. 为调查某地旅游者的平均消费水平, 随机访问了40名旅游者, 算得平均消费额为105=x 元, 样本标准差28=s 元. 设消费额服从正态分布. 取置信水平为0.95, 求该地旅游者的平均消费额的置信区间.解 计算可得105,x = s 2 =282.对于α = 0.05, 查表可得0.0252(1)(39) 2.0227t n t α-==.所求μ的置信区间为22((1),(1))(105 2.0227,105 2.0227)x n x n αα--+-=+=(96.045, 113.955).3. 假设某种香烟的尼古丁含量服从正态分布. 现随机抽取此种香烟8支为一组样本, 测得其尼古丁平均含量为18.6毫克, 样本标准差s =2.4毫克. 试求此种香烟尼古丁含量的总体方差的置信水平为0.99的置信区间.解 已知n =8, s 2 =2.42, α = 0.01, 查表可得220.0052(1)(7)20.278n αχχ-==, 220.99512(1)(7)0.989n αχχ--==, 所以方差σ 2的置信区间为2222122(1)(1)(,)(1)(1)n S n S n n ααχχ---=--22(81) 2.4(81) 2.4(,)20.2780.989-⨯-⨯=(1.988, 40.768). 4. 某厂利用两条自动化流水线灌装番茄酱, 分别从两条流水线上抽取样本:X 1,X 2,…,X 12及Y 1,Y 2,…,Y 17, 算出221210.6g,9.5g, 2.4, 4.7x y s s ====.假设这两条流水线上装的番茄酱的重量都服从正态分布, 且相互独立, 其均值分别为12,μμ. 又设两总体方差2212σσ=. 求12μμ-置信水平为0.95的置信区间, 并说明该置信区间的实际意义.解 由题设22121210.6,9.5, 2.4, 4.7,12,17,x y s s n n ======2222112212(1)(1)(121) 2.4(171) 4.71.94212172wn s n s s n n -+--⨯+-⨯===+-+-120.0252(2)(27) 2.05181,t n n t α+-==所求置信区间为122(()(2)((10.69.5) 2.05181 1.94x y t n n s α-±+-=-±⨯ =(-0.40,2.60).结论“21μμ-的置信水平为0.95 的置信区间是(-0.40,2.60)”的实际意义是:在两总体方差相等时, 第一个正态总体的均值1μ比第二个正态总体均值2μ大-0.40~2.60,此结论的可靠性达到95%.5. 某商场为了了解居民对某种商品的需求, 调查了100户, 得出每户月平均需求量为10公斤, 方差为9 . 如果这种商品供应10000户, 取置信水平为0.99.(1) 取置信度为0.99,试对居民对此种商品的平均月需求量进行区间估计; (2) 问最少要准备多少这种商品才能以99%的概率满足需要? 解 (1) 每户居民的需求量的置信区间为2222((1),(1))()(10 2.575,10 2.575)(9.2275,10.7725).,x n x n x z x αααα-+-≈+=-=10000户居民对此种商品月需求量的置信度为0.99的置信区间为(92275,107725);(2)最少要准备92275公斤商品才能以99%的概率满足需要.。
第七章试题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设总体X服从[0,2θ]上的均匀分布(θ>0),x1, x2, …, x n是来自该总体的样本,x为样本均值,则θ的矩估计 ˆ=()A.x2B.xC.x D.x212答案:B2.设总体nX X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( ) A .∑=--ni iX Xn 12)(11 B .∑=--ni iXn 12)(11μ C .∑=-ni iX Xn12)(1D .∑=-+ni iXn 12)(11μ答案:A3.设总体X ~ N (2,σμ),其中μ未知,x 1,x 2,x 3,x 4为来自总体X 的一个样本,则以下关于μ的四个估计:)(41ˆ43211x x x x +++=μ,3212515151ˆx x x ++=μ,2136261ˆx x +=μ,1471ˆx =μ中,哪一个是无偏估计?( ) A .1ˆμB .2ˆμC .3ˆμD .4ˆμ答案:A4.设(X 1,X 2)是来自总体X 的一个容量为2的样本,则在下列E (X )的无偏估计量中,最有效的估计量是( ) A .)(2121X X + B .213132X X + C .214143X X + D .215253X X + 答案:A二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
4.设总体X 具有区间[0,θ]上的均匀分布(θ>0),x 1,x 2,…,x n 是来自该总体的样本,则θ的矩估计θˆ=___________。
答案:x 25.设总体X 的概率密度为⎩⎨⎧≤>=-0,00,)(x x e x f x αα,x 1,x 2,…x n 为总体X 的一个样本,则未知参数α的矩估计αˆ=___________.答案:x 16.设总体X 服从参数为λ的泊松分布,其中λ为未知参数.X 1,X 2,…,X n 为来自该总体的一个样本,则参数λ的矩估计量为___________. 答案:x7.设总体X~N (μ,σ2),x 1,x 2,x 3为来自X 的样本,则当常数a=____________时,3212141ˆx ax x ++=μ是未知参数μ的无偏估计. 答案:41 8.设总体X ~ N (1,μ),(321,,x x x )为其样本,若估计量3213121ˆkx x x ++=μ为μ的无偏估计量,则k = ___________。
考研数学二(概率论与数理统计)-试卷7(总分60,考试时间90分钟)1. 选择题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1. 设总体X和Y相互独立,且都服从N(μ,σ2),分别为总体X与Y的样本容量为n的样本均值,则当n固定时,概率P{||>σ}的值随σ的增大而( )A. 单调增大.B. 保持不变.C. 单调减少.D. 增减不定.2. 设总体X服从N(μ,σ2),分别是取自总体X的样本容量分别为10和15的两个样本均值,记p1=,则有( )A. p1<p2.B. p1=p2.C. p1>p2;D. p1=μ,p2=6.3. 设总体X服从N(μ,σ2),与S2分别为样本均值和样本方差,n为样本容量,则下面结论不成立的是( )A. B.C. D.4. 设一批零件的长度服从正态分布N(μ,σ2),其中μ,σ2未知.现从中随机抽取16个零件,测得样本均值=20 cm,样本方差S2=1 cm2,则μ的置信水平为0.90的置信区间是( )A. B.C. D.5. 设总体X服从N(μ,σ2),其中σ2未知,假设检验H0:μ≤1,H1:μ>1.当显著性水平α=0.05时,拒绝域为( )A. B.C. D.6. 在假设检验中,记H0为原假设,H1为备择假设,则犯第二类错误是指( )A. 如果H0为真,接受H0B. 如果H0为真,拒绝H0.C. 如果H0不真,接受H0.D. 如果H0不真,拒绝H0.3. 解答题解答题解答应写出文字说明、证明过程或演算步骤。
1. 设总体X的概率密度为f(n)=又X1,X2,…,Xn为来自总体X的简单随机样本,为使P{min(X1,X2,…,Xn)<,则样本容量n应满足什么条件?2. 设总体X的概率分布为求θ的矩估计值和最大似然估计值.3. 设某信息台在某一段时间内接到的通话次数服从参数为A的泊松分布,现统计到42个数据如下:由此数据求未知参数λ的最大似然估计值.4. 设总体X的概率密度为其中0<θ<1是未知参数X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值x1,x2,…,xn中小于1的个数,求(1)θ的矩估计;(2)θ的最大似然估计.5. 设连续性总体X的分布函数为其中θ(θ>0)为未知参数,从总体X中抽取样本X1,X2,…,Xn,求(1)θ的矩估计量;(2)θ的最大似然估计量.6. 设总体X的概率分布为其中θ(一10,1)是未知参数,从X中抽取容量为n的一组简单随机样本,以Ni表示样本中等于j的个数(i=1,2,3).(1)求θ的最大似然估计量;(2)E(N2+N3).7. 设随机变量X的分布函数为其中参数α>0,β>1.设X1,X2,…,Xn为来自总体X 的简单随机样本.(1)当α=1时,求未知参数β的矩估计量.(2)当α=1时,求未知参数β的最大似然估计量.(3)当β=2时,求未知参数α的最大似然估计量.8. 设总体X的概率密度为f(x)=,其中一∞<θ1<+∞,0<θ2<+∞,X1,X2,…,Xn为来自总体X的随机样本,试求θ1,θ2的最大似然估计量.9. 设某种元件的使用寿命X的概率密度为其中θ>0为未知参数,X1,X2,…,Xn为来自总体X的简单随机样本,求θ的最大似然估计量,并讨论无偏性.10. 设总体X的概率密度为其中参数θ(01,X2,…,Xn是来自总体X的简单随机样本,是样本均值.(1)求参数θ的矩估计量;(2)判断是否为θ2的无偏估计量,并说明理由.11. 设X1,X2,…,Xn为来自总体N(μ,σ2)的简单随机样本,记,(1)证明T是μ2的无偏估计量;(2)当μ=0,σ=1时,求D(T).12. 设随机变量X服从二次分布,其概率分布为P{X=x}=Cnθ(1一θ)n-x,x=1,2,…,n,求θ2的无偏估计量.13. 设X1,X2,…,Xn是取自总体X的一个简单随机样本,统计量试问上面三个统计量哪些是总体期望μ的无偏估计,并比较哪一个更有效?14. 设总体X在[θ一]上服从均匀分布,X1,X2,…,Xn(n>2)是取自总体X的一个简单随机样本,统计量σi=的无偏估计,并指出哪一个更有效.15. 设总体X服从参数为λ的泊松分布P(λ),X1,X2,…,Xn为来自总体X的简单随机样本,为样本均值.证明T=是P{X=0}的无偏估计量.16. 设总体X服从正态分布N(μ,σ2),S2为样本方差,证明S2是σ2的一致估计量.17. 设从均值为μ,方差为σ2>0的总体中分别抽取容量为n1,n2的两个独立样本,样本均值分别为证明:对于任何满足条件a+b=1的常数a,b,统计量T=是μ的无偏估计量,并确定常数a,b,使方差D(T)达到最小.18. 设总体X服从正态分布N(μ,8),其中μ未知.(1)现有来自总体X的10个观测值,已知=1 500,求μ的置信水平为0.95的置信区间;(2)当置信水平为0.95时,欲使置信区间的长度小于1,则样本容量n至少为多少?(3)当样本容量n=100时,区间(+1)作为μ的置信区间时,置信水平是多少?19. 某车间用一台包装机包装葡萄糖,包得的袋装葡萄糖的净重X(单位kg)是一个随机变量,它服从正态分布N(μ,σ2),当机器工作正常时,其均值为0.5 kg,根据经验知标准差为0.015 kg(保持不变),某日开工后,为检验包装机的工作是否正常,从包装出的葡萄糖中随机地抽取9袋,称得净重为0.497 0.506 0.518 0.524 0.498 0.511 0.520 0.515 0.512试在显著性水平α=0.05下检验机器工作是否正常.20. 设某次考试的考生成绩服从正态分布,从中随机抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平α=0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.21. 设有甲,乙两种零件,彼此可以代用,但乙种零件比甲种零件制造简单,造价低,经过试验获得抗压强度(单位:kg/cm2)为甲种零件:88,87,92,90,91,乙种零件:89,89,90,84,88.假设甲乙两种零件的抗压强度均服从正态分布,且方差相等,试问两种零件的抗压强度有无显著差异(取α=0.05)?22. 某无线电厂生产的一种高频管,其中一项指标服从正态分布N(μ,σ2),从一批产品中抽取8只,测得该指标数据如下:66,43,70,65,55,56,60,72.(1)总体均值μ=60,检验σ2=82(取α=0.05);(2)总体均值μ未知时,检验σ2=82(取α=0.05).。
概率论与数理统计第7章参数估计习题及答案第7章参数估计 ----点估计⼀、填空题1、设总体X 服从⼆项分布),(p N B ,10<计量=pXN. 2、设总体)p ,1(B ~X,其中未知参数 01<则 p 的矩估计为_∑=n 1i i X n 1_,样本的似然函数为_ii X 1n1i X )p 1(p -=-∏__。
3、设 12,,,n X X X 是来⾃总体 ),(N ~X 2σµ的样本,则有关于 µ及σ2的似然函数212(,,;,)n L X X X µσ=_2i 2)X (21n1i e21µ-σ-=∏σπ__。
⼆、计算题1、设总体X 具有分布密度(;)(1),01f x x x ααα=+<<,其中1->α是未知参数,n X X X ,,21为⼀个样本,试求参数α的矩估计和极⼤似然估计.解:因?++=+=101α2α1α102++=++=+|a x 令2α1α++==??)(X X EXX --=∴112α为α的矩估计因似然函数1212(,,;)(1)()n n n L x x x x x x ααα=+∑=++=∴ni i X n L 1α1αln )ln(ln ,由∑==++=??ni i X nL 101ααln ln 得,α的极⼤似量估计量为)ln (?∑=+-=ni iXn11α2、设总体X 服从指数分布 ,0()0,x e x f x λλ-?>=??其他,n X X X ,,21是来⾃X 的样本,(1)求未知参数λ的矩估计;(2)求λ的极⼤似然估计.解:(1)由于1()E X λ=,令11X Xλλ=?=i x nn L x x x eλλ=-∑=111ln ln ln 0nii ni ni ii L n x d L n n x d xλλλλλ====-=-=?=∑∑∑故λ的极⼤似然估计仍为1X。
长沙理工大学考试试卷
……………………………………………………………………………………………………… 试卷编号 07 拟题教研室(或教师)签名 教研室主任签名 ……………………………………………………………………………………………………… 课程名称(含档次) 概率论与数理统计B 课程代号
专 业 层次(本、专) 本科(城南) 考试方式(开、闭卷) 闭
一、填空题(本题总分10分,每小题2分) 1 . 连续抛掷三次硬币,用i A 表示事件“第i 次抛掷的结果是正面向,1,2,3i =.
则321A A A ⋃⋃表示事件( ).
2 . 设随机变量X 的密度函数f(x)=⎩⎨⎧∈其他,0],0[,sin πx x A ,则常数A =( ).
3 . 设(X ,Y)在区域}x y 2,0x 0y){(x,D ≤≤≤≤=上服从均匀分布,则
=>)1P(Y ( ).
4 . 设随机变量列X 1,X 2,…,X n ,…独立同分布,它们的期望为μ,方差为σ2,
Z n =∑=n
1
i i
X
n
1
,则对任意正数ε,有∞
→n lim P{|Z n -μ|≥ε}=( ).
5 . 设随机变量X ,Y 都服从区间[0,1]上的均匀分布,则
E (X+Y )=( ).
二、单项选择题(本题总分20分,每小题5分)
1 . 如果两个随机变量X 与Y 满足Y),D(X Y)D(X -=+则X 与Y 必( ). ① 相关 ② 不相关 ③ 不相关但不独立 ④ 不相关且独立
2 . 从0,1,…,9十个数字中随机地有放回地接连抽取四个数字,则“8”
至少出现一次的概率为( ).
① 0.1 ② 0.3439 ③ 0.4 ④ 0.6561
3 . 若连续型随机变量X 的密度函数p(x)=⎩
⎨⎧∈其它,0cos I
x x ,则区间I 可以是
( ).
①[0,2
π
]
②[0,π] ③[0,
2
3
π] ④[-
2π,2
π] 4 . 设随机变量X 与Y 相互独立,且X ~),(2σμN ,Y ~),(2σμN ,则X +Y 的
分布是( ).
第 1 页(共 2 页)
① ),(2σμN ② )2,(2σμN ③ ),2(2σμN ④ )2,2(2σμN .
三、计算题(本题总分60分,每小题12分)
1 . 某大学的全体男生中,有60%的人爱好踢足球,50%的人爱好打篮球,30%的人两项运动都爱好,求该校全体男生中:
(1) 踢足球或打篮球至少爱好一项运动的概率有多大? (2) 不爱好踢足球,也不爱好打篮球的概率有多大?
2 . 对一台仪器进行重复测试,直到发生故障为止,假定测试是独立进行的,每次测试发生故障的概率均为0.1,X 表示测试次数.求:
(1)X 的分布列; (2)E (X ).
3 . 设二维随机变量()Y X ,的概率密度为22,1
(,)0,
Cx y x y f x y ⎧≤≤=⎨⎩其它.
(1).试确定常数C ;(2).求边缘概率密度;(3)P (X+Y>1).
4. 设某公司有100件产品进行拍卖,每件产品的成交价为服从正态分布N(1000,100²)的随机变量,求这100件产品的总成交价不低于9.9万元的概率。
((1)0.8413Φ=)
5 . 设总体X 服从几何分布: ,2,1,)1()(1=-==-k p p k X P k ,其中p 是未知参数,,1x ,2x …,n x 是总体X 的样本.求参数p 的极大似然估计量.
四、应用题(10分)
拟通过饲料A 的实验,为在某地区推广这种饲料提供依据。
取该地区有代表性的仔猪10头,测得其增重数,并算得:
44.47=X (公斤), 2.182
=S
.
试在置信度95%下估计饲料A 所引起的增重μ所在的范围.
(已知t 0.025(9)=2.262,t 0.025(10)=2.228)
第 2 页(共 2 页)
长沙理工大学试卷标准答案
课程名称:概率统计B 试卷编号:07
一、填空题(本题总分10分,每小题2分)
1. 没有一次正面向上;
2. 1/2;
3. 1/4;
4. 0;
5. 1. 二、单项选择题(本题总分20分,每小题5分)
1. ② 不相关;
2. ② 0.3439;
3. ①[0,2
π
]; 4. ④ )2,2(2σμN .
三、计算题(本题总分60分,每小题12分) 1. 令A=“爱好踢足球者”,B=“爱好打篮球者”,则P (A )=0.6,
P (B )=0.5,P (AB )=0.3. ………………(.4分) (1) 由公式P (A ∪B )=P (A )+P (B )—P (AB )可得所求概率为80%.
…………………………(4分)
(2) P(AB )=1-P (A ∪B )=20%. ….. …(4分) 2. (1)P (X=k )=0.91-k ×0.1; ……………(6分)
(2) E(X)=∑∞
=-⨯111.09.0k k =1. ……………(6分)
3. .(1)首先指出
221
x y Cx ydxdy ≤≤⎰⎰
=1. ……………….. (1分).
C 21
1
21
x
x dx ydy -⎰⎰=1. ………(1分)
解出C=21/4 . ……………(2分).
(2)()(,)X f x f x y dy ∞
-∞
=
⎰
=
21
4
2
1
2x x ydy ⎰. ……(1分)
解出)1(2
1)(42
x x x f X -=
(-1≦x ≦1); ………(1分) ()Y f y =
(,)f x y dx ∞
-∞
⎰
=
21
4
2x ydx . ………(1分)
解出25
2
7
)(y y f Y = (0≦y ≦1). ………………. (1分)
(3) P (X+Y>1)=
214
21
x y x ydxdy +>⎰⎰
. …………(2分)
第 1 页(共 2 页)
最后计算得
21-217251⎪⎪⎭⎫ ⎝⎛+-+2075251⎪⎪⎭⎫ ⎝⎛+--1674
251⎪⎪⎭
⎫ ⎝⎛+-. …………(2分) 4、设第i 件产品的成交价为i X ,则i X ~N(1000,1002),i=1,2,…100 (2分)
由于i X ( i=1,2,…100)相互独立,总成交价100
1
i
i X X ==
∑~56
(10,10)N , (6分) 故有45
4
3
9.91010(9.910)1()(1)0.841310P X φφ⨯-≥⨯=-== (12分)
故总成交价不低于9.9万元的概率为84.13% 5、似然函数L (12,,,n x x x ⋅⋅⋅)=1
(1)n
i i X n
n
p p =-∑-. …….. (4分)
对数似然函数lnL=nlnp+(1
n
i i x n =-∑)ln(1-p). …….. (4分)
由
ln d L
dp
=0解出p
ˆ=∑-+n
i
x n 111. ………….. (4分)
四、应用题(10分)
公式(,)
1(2
n
s n t X --αn
s n t X )
1(2
-+α)………….. (5分),
数值计算正确得区间(47.44-3.052,47.44+3.052). ……….. (5分)
第 2 页(共 2 页)。