互逆命题与互逆定理
- 格式:doc
- 大小:67.00 KB
- 文档页数:2
互逆命题与互逆定理-华东师大版八年级数学上册教案一、引入在初中数学中,我们学习了很多命题,比如“若a=b,那么a2=b2”,又比如“对于任意的正整数a,a^2>a”等等。
其中,有一种特殊的命题,叫做“逆命题”。
逆命题指的是,对于一个给定的命题P,将其假设的条件和结论交换位置,并取反形式而得到的命题,比如“若a=b,那么a2=b2”的逆命题是“若a2=b2,那么a=b 或a=-b”。
那么,如果一个命题的逆命题也成立,我们就称这两个命题互为“逆命题”,其中比较重要的是“互为逆命题的命题是等价命题”。
但是,在实际情况下,有一些命题和它的逆命题虽然都是真命题,但它们并不等价。
此时我们就需要引入“互逆定理”,来判断它们的关系。
二、教学内容1. 规律感知首先,让学生自己尝试找出一些互逆命题。
比如,“若x>5,那么x2>25”和“若x2>25,那么x>5或x<-5”就是互逆命题。
在找到互逆命题后,让学生自己分析它们之间的关系。
2. 探索任务接下来,设计一个小组探究任务,让学生自己去探索什么样的条件下能得到互逆命题,以及互逆命题之间的关系。
具体实施时,可以分配几个小组,要求每个小组找出两个互逆命题,并将它们的条件和结论进行比较。
然后,让学生自己汇总每组的成果,分析条件的相同点和不同点,以及结论的相同点和不同点。
最后,让学生自己总结出什么样的条件可以得到互逆命题,以及互逆命题之间的关系。
3. 展示交流在小组任务完成后,组织学生进行展示和交流。
让学生自己介绍自己小组的成果,以及自己对互逆命题和互逆定理的理解。
同时,其他学生可以对其进行提问和补充,以加深理解。
4. 拓展延伸为了让学生更加深入理解互逆命题和互逆定理,可以提供一些案例让学生进行分析。
比如,“若a2+b2=0,那么a=b=0”和“若a=b=0,那么a2+b2=0”就是互逆命题。
通过这些案例的分析,可以帮助学生更好地掌握互逆命题和互逆定理的应用。
数学核心素养包含数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析等六个方面。
数学学科核心素养的培养,要通过学科教学和综合实践活动课程来具体实施。
第一,数学学科教学活动是数学学科素养培养的主要途径。
数学核心素养的六个方面在小学、初中、高中、本专科、研究生教育等五个阶段的内涵、学科价值和教育价值、表现等方面的要求各不相同,要仔细推敲,准确把握,切实贯穿到学科教学活动中去。
第二,研究性学习综合实践活动课程是数学学科素养培养的重要途径。
本课正在基于此,在教学设计与环节的应用上,设计都非常适合学生初学。
这一点在分层教学中也有体现。
13.5.1.互逆命题与互逆定理课时:第一课时课型:新授课编写:毕春友审核:徐轻梅学习目标1.理解互逆命题与互逆定理2.正确应用互逆命题与互逆定理自学指导说出下列命题的题设和结论:1、两直线平行,内错角相等;2、内错角相等,两直线平行;3、全等三角形的对应角相等;4、对应角相等的三角形全等;5、平行四边形的对边互相平行;6、对边互相平行的四边形是平行四边形;观察上面三组命题,你发现了什么?概括:一般来说,在两个命题中,如果第一个命题的是第二个命题的,而第一个命题的是第二个命题的,那么这两个命题叫做。
如果把其中一个命题叫做原命题,那么另一个命题叫做它的。
展示交流在你学过的定理中,有哪些定理的逆命题是真命题?试举出几个例子说明。
(1)、(2)、(3)、归纳:如果一个定理的逆命题也是,那么这两个定理叫做。
其中的一个定理叫做另一个定理的。
疑点点拨注意1:逆命题、互逆命题不一定是真命题,但逆定理、互逆定理,一定是真命题注意2:所有的命题都有逆命题,但不是所有的定理都有逆定理达标测试1、指出下列命题的题设和结论,写出它们的逆命题,并判断真假。
(1)、如果一个三角形是直角三角形,那么它的两个锐角互余.((2)、等边三角形的每个角都等于60°(3)、同旁内角互补,两直线平行.2、写出下列命题的逆命题.并判断原命题逆命题的真假。
互逆命题与互逆定理
在逻辑推理和数学证明中,互逆命题和互逆定理是两个重要的
概念。
它们在推理过程中起着至关重要的作用,帮助我们理清思绪,找到正确的答案。
首先,让我们来了解一下什么是互逆命题。
互逆命题是指两个
命题,它们的否定分别是对方。
换句话说,如果一个命题为真,则
另一个命题必为假,反之亦然。
例如,命题A,“今天是晴天”,
其互逆命题为命题B,“今天不是晴天”。
这两个命题互为对立命题,其真假情况完全相反。
接下来,我们来看一下互逆定理。
互逆定理是指在数学或逻辑
推理中,如果一个定理成立,那么它的互逆定理也必然成立。
互逆
定理通常用于证明或推导过程中,帮助我们简化问题,找到解决方案。
例如,在数学中,如果一个定理表明“如果A成立,则B成立”,那么它的互逆定理表明“如果B不成立,则A不成立”。
互逆命题和互逆定理在逻辑推理和数学证明中都具有重要的意义。
它们帮助我们理清思路,找到正确的答案,同时也提醒我们在
推理过程中要注意对立命题和定理的关系。
通过理解和运用互逆命
题和互逆定理,我们可以更好地进行逻辑推理和数学证明,提高解决问题的能力和效率。
总之,互逆命题和互逆定理是逻辑推理和数学证明中不可或缺的概念,它们帮助我们理清思路,简化问题,找到正确的答案。
通过深入理解和灵活运用这两个概念,我们可以更好地进行推理和证明,提高解决问题的能力,为学习和研究打下坚实的基础。
1 19.4.1《互逆命题与互逆定理》学案学习目标:1.理解互逆命题、互逆定理的概念,通过比较,提高辨析能力;2.会举反例说明一个命题是假命题,能正确应用互逆命题与互逆定理解决有关问题. 学习过程:一.导入新课,自学反馈.1.一般来说,在两个命题中,如果第一个命题的题设是第二个命题的____________,而第一个命题的结论是第二个命题的______________,那么这两个命题叫做______________. 如果把其中一个命题叫做原命题,那么另一命题就叫做它的______________.2.说出下列命题的题设和结论,并说出它们的逆命题: ①如果一个三角形是直角三角形,那么它的两个锐角互余; ②等边三角形的每个角都等于60°; ③全等三角形的对应角相等; ④到一个角的两边距离相等的点,在这个角的平分线上;3.每一个命题都有__________,一个真命题的逆命题________真命题,一个假命题的逆命题____________假命题.(填“一定是”、“不一定是”、“一定不是”)4.如是一个定理的逆命题也是__________,那么称它们叫做_______________.其中的一个定理叫做另一个定理的_____________.5.等腰三角形的性质:如果一个三角形有两条边相等,那么这两条边所对的角也相等.(简写为“等边对等角”)它的逆命题是: (简写为“___________________”),这是_______命题,它们互为___________.6.“两直线平行,内错角相等.”的逆定理是:_______________________________________.7.“线段的垂直平分线上的点到这条线段的两个端点的距离相等.”的逆定理是:____________________________________________________________________________.二、自我探究,判断正误.1.任何命题都有逆命题,任何定理都有逆定理. ( )2.“若x=y ,则x 2=y 2”的逆命题是假命题. ( )3.一个假命题的逆命题一定是错误的. ( )4.写出下列命题的逆命题,并判断真假:(1)如果∠α与∠β是邻补角,那么∠α+∠β=180°;(2)如果一个三角形的两个内角相等,那么这两个内角所对的边相等.三、合作探究,综合运用. 1.如图1,已知E 、F 分别是矩形ABCD 的边BC 、CD 上两点,连接AE 、BF.请你从下面四个反映图中边角关系的式子(1)AB=BC;(2)BE=CF;(3)AE=BF;(4)∠AEB=∠BFC 中选两个作为已知条件,选一个作为结论,组成一个真命题,并证明这个命题.E ABD C F四、中考链接,接受考验1.下列命题中,真命题是().(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等;(C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等.2. 下列命题中,其逆.命题成立的是______________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果三角形的三边长a,b,c满足222+=,那么这个三角形是直角三角形;a b c④.如果两个实数相等,那么它们的平方相等五.总结反思,归纳升华通过本节课的学习,你有哪些感悟和收获,与同学交流一下:六、达标检测体验成功(时间6分钟,共100分)1.下列命题的逆命题是假命题的是( )A.两直线平行,同位角相等B.全等三角形的对应边相等C.直角三角形两锐角互余D.全等三角形对应角相等2.下列说法错误的是( )A.任何命题都有逆命题 B.任何定理都有逆定理C.真命题的逆命题不一定是真命题D.定理的逆定理一定是真命题3.下列的真命题中,它的逆命题也是真命题的有( )①两直线平行,同旁内角互补;②等边三角形是锐角三角形;③两个图形关于某直线成轴对称,则这两个图形是全等图形;④若a=b,则a2=b2;⑤平行四边形的对边相等A.1个B.2个C.3个D.4个4.举例说明下列命题的逆命题是假命题:(1)如果一个整数的个位数字是5,那么这个整数能被5整除;(2)如果两个角都是直角,那么这两个角相等.6.已知点O到△ABC的两边AB、AC所在直线的距离相等,且OB=OC.①如图3,若点O在BC上,求证:AB=AC②如图4,若点O在△ABC的内部,求证:AB=AC③若点O在△ABC的外部,AB=AC成立吗?请画图表示.七、小结与作业课本89页练习第1,2题;课本94页习题19.4第1题。
编号
036 2015年秋期 八年级数学导学案
互逆命题与互逆定理 1课时
主备教师:王新园 组审:陈娟 张耀坤 班级________ 姓名_________
学习目标
11.理解互逆命题与互逆定理 2.正确应用互逆命题与互逆定理
学习重点、难点:区分互逆命题与互逆定理
学习过程:
一、知识回顾:
1、 命题的概念:
几何作图,祈使句号、疑问句都不命题。
2、命题都有两部分:
3、命题分为 和 两 种.
4、判断下列命题真假并说出下列命题的题设和结论: (1)平行四边形的对边互相平行
(2)如果两个角相等,那么这两个角是对顶角
(3)等腰三角形顶角的平分线垂直平分底边 二、新知导入:
说出下列命题的题设和结论:
1、两直线平行,内错角相等;
2、内错角相等,两直线平行;
,你发现了什么?
是第二个命题,而第一个命题的 是第二个命题的 ,那么这两个命题叫
如果把其中一个命题叫做原命题,那么另一个命题叫做它的 。
第一个命题 题设(条件) 结论
第二个命题 题设(条件) 结论
将原命题的条件与结论互换
. 60° .
如果一个定理的逆命题也是 ,那么这两个定理叫做 。
其中的一个定理叫做另一个定理的 。
.
练习.写出下列命题的逆命题.并判断原命题逆命题的真假。
(1)如果a+b >0,那么a >0,b >0.
(2)如果a >0,那么a 2
>0.
(3)等角的补角相等.
(4)、若|a|=|b|,则a =b ; (5)、若a =b ,则3
3
a b
=;
(6)、若x =a ,则2
()0x
a b x ab -++=;
这节课我们学到了什么?①逆命题、逆定理的概念。
②能写出一个命题的逆命题。
③在证明假命题时会用举反例说明。
课后检测
1.已知等腰△ABC 的底边BC=8cm ,且|AC-BC|=2cm ,则腰AC 的长为( )
A .10cm 或6cm
B .10cm
C .6cm
D .8cm 或6cm
2.下 列 这 些 真 命 题 中,其 逆 命 题 也 真 的 是 ( ) A .全 等 三 角 形 的 对 应 角 相 等 B .两 个 图 形 关 于 轴 对 称,则 这 两 个 图 形 是 全 等 形 C .等 边 三 角 形 是 锐 角 三 角 形 3.如上图中所示,在△ABC 中,AB=AC ,∠BAC=90°,
直角∠EPF 的顶点P 是BC 的中点,两边PE 、PF 分别 交AB 、AC 于点E 、F .给出以下四个结论:①AE=CF ; ②△EPF 是等腰直角三角形; ③S 四边形AEPF =
2
1
S △ABC ;④EF=AP.当∠EPF 在△ABC 内 绕顶点P 旋转时(点E 不与A 、B 重合),上述结论始终正确的有( ) A .1个 B .2个
C .3个
D .4个
4.如右图右所示,△ABC 中,AB=AC ,要使AD=AE ,
需要添加的一个条件是 .
5.若等腰三角形的一个底角是30°,则这个等腰三角形的顶角是
.
6.如右图,AM 是△ABC 的角平分线,N 为BM 的中点,
NE ∥AM ,交AB 于D ,交CA 的延长线于E ,下列结论正确的是( )
A .BM=MC
B .AE=BD
C .AM=DE
D .DN=BN
学习反思
请你对照学习目标,谈一下这节课的收获及困惑。