逆命题与逆定理(提高)知识讲解
- 格式:doc
- 大小:98.00 KB
- 文档页数:5
初二下册数学逆命题与逆定理知识点引言在初中数学的学习过程中,我们经常会遇到一些逆命题和逆定理。
逆命题是指对于一个命题,将其表述中的“如果……,那么……”反过来,得到的命题就是逆命题。
逆定理则是一些与已知定理相对立的命题。
理解和掌握逆命题和逆定理的知识对于我们解题过程中的推理和证明非常重要。
接下来,我们将介绍初二下册数学中的一些重要的逆命题和逆定理知识点。
逆命题逆命题是对于一个命题,将其表述中的“如果……,那么……”反过来,得到的命题。
逆命题与原命题不一定等价,也就是说,原命题成立并不能保证逆命题成立。
举个例子,假设原命题为“如果一个人是中国人,那么他会说中文”。
那么逆命题为“如果一个人不会说中文,那么他不是中国人”。
显然,原命题成立并不能保证逆命题成立。
因此,在推理过程中,我们通常不能通过逆命题得出与原命题相同的结论。
逆定理逆定理是一些与已知定理相对立的命题。
逆定理的表达形式通常为“不成立”的形式。
逆定理与原定理不一定互为逆命题。
举个例子,已知定理为“两个平行线被一条截线所截,对内相对应的两组对应角相等”。
那么逆定理可以表述为“两个平行线被一条截线所截,对外相对应的两组对应角相等不成立”。
即使逆定理与原定理不一定互为逆命题,但它们之间却具有密切的联系。
数学逆定理的应用在初二下册数学学习中,逆定理的应用非常广泛。
我们以数学中的一些重要定理为例,介绍逆定理的应用。
勾股定理及逆定理勾股定理是我们在初中学习过程中最常见的定理之一。
勾股定理表述为“直角三角形斜边的平方等于两腰的平方和”。
即若已知一个三角形的两边为a和b,斜边为c,且满足c^2 = a^2 + b^2,那么这个三角形一定是直角三角形。
逆定理表述为“如果一个三角形的三边满足c^2 = a^2 + b^2,那么这个三角形一定是直角三角形。
”逆定理与勾股定理之间存在着密切的联系。
作图定理及逆定理作图定理是指根据一个几何条件,我们可以用直尺和圆规画出符合要求的图形。
2.4 逆命题和逆定理(3)举出反例即可.【详解】(1)解:此命题的条件为:a=b,结论为:|a|=|b|;(2)此命题的逆命题为:如果|a|=|b|,那么a=b;(3)此命题的逆命题是假命题,当a,b为相反数时,它们的绝对值相等,但本身不相等,如a=2,b=―2时,|2|=|―2|,而2≠―2.【点睛】本题考查的是命题与定理,用到的知识点是真假命题的定义,正确的命题叫真命题,错误的命题叫做假命题,交换命题的中题设和结论即为原命题的逆命题.考查题型二互逆定理4.下列说法正确的是()A.任何命题都有逆命题B.任何定理都有逆定理C.真命题的逆命题一定是真命题D.定理的逆命题一定是真命题【答案】A【分析】利用逆命题、逆定理的知识对各项进行判断即可得到答案.【详解】解:A.任何命题都有逆命题,故A说法正确,符合题意;B.任何定理不一定有逆定理,故B说法错误,不符合题意;C.真命题的逆命题不一定是真命题,故C说法错误,不符合题意;D. 定理的逆命题不一定是真命题,故D说法错误,不符合题意;故选:A.【点睛】本题考查了命题与定理,判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题,经过推理论证的真命题叫定理,两个命题的题设与结论为互换的命题互为逆命题.5.下列定理中,没有逆定理的是()A.同角的余角相等B.等腰三角形两个底角相等C.线段垂直平分线上的任意一点到这条线段两个端点的距离相等D.两直线平行,同旁内角互补【答案】A【分析】没有逆定理就是逆命题不正确的选项,逐一写出各选项的逆命题,判定即可.【详解】解:A、逆命题是余角相等的两个角是同一个角,不是逆定理;B、逆命题是有两个角相等的三角形是等腰三角形,是逆定理;C、到线段两端点距离相等的点在线段的垂直平分线上,是逆定理;D、逆命题是同旁内角互补,两直线平行,是逆定理;故选A.【点睛】本题考查了命题与定理的知识,解题的关键是了解这些命题的逆命题,然后判断其真假.6.下列定理中,哪些有逆定理?如果有逆定理,写出它的逆定理.(1)同旁内角互补,两直线平行.(2)三角形的两边之和大于第三边.【答案】(1)有,逆定理是:两直线平行,同旁内角互补(2)有,逆定理是:如果三条线段中,任意两条线段长度之和大于第三条线段的长度,那么这三条线段能围成三角形【分析】(1)先写出逆命题,再根据平行线的性质判断逆命题的真假,进而可得出结论;(2)先写出逆命题,再根据三角形的三边关系判断逆命题的真假,进而可得出结论.【详解】(1)解:逆命题是:两直线平行,同旁内角互补,是真命题,故原定理有逆定理:两直线平行,同旁内角互补;(2)解:逆命题为:如果三条线段中,任意两条线段长度之和大于第三条线段的长度,那么这三条线段能围成三角形,是真命题,故原定理有逆定理:如果三条线段中,任意两条线段长度之和大于第三条线段的长度,那么这三条线段能围成三角形.【点睛】本题考查了逆定理的定义、平行线的性质、三角形的三边关系,解答的关键是理解逆定理的定义:如果一个定理的逆命题被证明是真命题,那么就叫它是原定理的逆定理.∠ABC,∴∠CBD=12∴∠CBD=∠BCE,在△BCE和△CBD∠CBE=∠BCDBC=CB∠BCE=∠CBD棍EF,GD组成,D是EF的中点.寻找角的平分线时,需要调整位置,使得所分角的顶点O在GD上,同时保证T形分角仪的E,F两点正好落在所分角的两条边OA,OB上,此时OD就会平分∠AOB.为说明制作原理,请结合下边图形,用数学符号语言补全“已知”、“求证”,并写出证明过程.已知:如图,点E,F分别在∠AOB的边上,DG经过点O,__________,__________.求证:__________.证明:【答案】见解析【分析】根据题意,写出已知、证明、求证,根据垂直平分线的性质得出OE=OF,进而根据等腰三角形的性质得出OD平分∠AOB.【详解】已知:如图,点E,F分别在∠AOB的边上,DG经过点O,DG⊥EF,DE=DF(或D是EF的中点),求证:OD平分∠AOB(或∠AOD=∠BOD).证明:∵DG⊥EF,DE=DF,∴DG垂直平分EF.∴OE=OF.∵DG⊥EF,点O在DG上,∴OD平分∠EOF.即OD平分∠AOB.【点睛】本题考查了垂直平分线的性质,等腰三角形的性质与判定,熟练掌握以上知识是解题的关键.11.如图,有如下四个论断:①AC∥DE;②DC∥EF;③CD平分∠BCA;④EF平分∠BED,请你选择四个论断中的三个作为条件,余下的一个论断作为结论,构成一个正确的数学命题并证明它.【答案】见解析【分析】根据平行线的性质和角平分线的定义即可得到结论.【详解】已知:AC∥DE,DC∥EF,CD平分∠BCA,求证:EF平分∠BED.证明:如图所示,∵AC∥DE,∴∠BCA=∠BED,即∠1+∠2=∠4+∠5,∵DC∥EF,∴∠2=∠5,∵CD平分∠BCA,∴∠1=∠2,∴∠4=∠5,∴EF平分∠BED.【点睛】本题考查了命题与定理,平行线的判定和性质,角平分线的定义,熟练掌握平行线的判定和性质是解题的关键.12.作图:已知直线l1∥l2∥l3,在三条直线上各取一个点作一个等边△ABC.操作:如图,在l1上取点A,D,在l3上取点E,作等边△ADE,DE交l2于点B;在l3上点E的左侧取点C,使CE=BD,连接AC,BC,则△ABC即为所求的等边三角形.(1)完成作图并写出已知,求证;(2)证明△ABC为等边三角形.【答案】(1)见解析(2)见解析【分析】(1)根据题意作图即可;然后写出对应的已知和求证即可;(2)只需要证明△ACE ≌△ADB 得到AC =AB ,∠CAE =∠BAD ,再证∠CAE +∠EAB =∠BAD +∠EAB =60°,即∠CAB =60°,即可证明△ABC 为等边三角形.【详解】(1)解:如图,△ABC 即为完成的图形;已知:如图,已知直线l 1∥l 2∥l 3,在l 1上取点A ,D ,在l 3上取点E ,作等边△ADE ,DE 交l 2于点B ;在l 3上点E 的左侧取点C ,使CE =BD ,连接AC ,BC .求证:△ABC 为等边三角形.(2)证明:由(1)得:∵△ADE 是等边三角形,∴AD =AE ,∠EAD =∠EDA =∠AED =60°,∵l 1∥l 2∥l 3,∴∠EAD =∠CEA =60°,∴∠AEC =∠EDA ,在△ACE 和△ADB 中,AD =AE ∠AEC =∠ADB BD =CE,∴△ACE ≌△ADB (SAS ),∴AC =AB ,∠CAE =∠BAD ,∴∠CAE +∠EAB =∠BAD +∠EAB =60°,∴∠CAB =60°,∴△ABC 为等边三角形.【点睛】本题主要考查了作等边三角形,全等三角形的性质与判定,等边三角形的性质与判定,平行线的性质,写出一个命题的已知和求证,正确理解题意画出图形是解题的关键.13.写出定理“等腰三角形顶角的角平分线和底边上的高线互相重合”的逆命题,并证明这个命题是真命题.逆命题:______.已知:______.求证:______.【答案】一边上的高线与这边对角的角平分线重合的三角形是等腰三角形;如图所示,AD⊥BC,AD是△ABC的角平分线;△ABC是等腰三角形;证明见解析.【分析】根据逆命题可直接进行解答,然后写出已知求证,进而根据三角形全等进行求证即可.【详解】解:由题意可得,原命题的逆命题为:一边上的高线与这边对角的角平分线重合的三角形是等腰三角形.这个命题是真命题.已知,如图所示:AD⊥BC,AD是△ABC的角平分线,求证△ABC是等腰三角形.证明如下:∵AD⊥BC,∴∠ADB=∠ADC,∵AD是△ABC的角平分线,∴∠DAB=∠DAC,∵AD=AD,∴△ABD≌△ACD,∴AB=AC,∴△ABC是等腰三角形.故答案为:一边上的高线与这边对角的角平分线重合的三角形是等腰三角形;如图所示,AD⊥BC,AD是△ABC的角平分线;△ABC是等腰三角形.【点睛】本题主要考查逆命题、全等三角形的性质与判定及等腰三角形的判定,熟练掌握逆命题、全等三角形的性质与判定及等腰三角形的判定是解题的关键.14.如图所示,AB,CD相交于点E,连接AD,BC,①∠A=∠C,②AD=CB,③AE=CE.以这三个式子中的两个作为命题的条件,另一个作为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)在构成的三个命题中,真命题有________个;(2)请选择其中一个真命题加以证明.【答案】(1)2;(2)选择①②⇒③,见解析.【分析】(1)根据全等三角形的判定定理AAS ,ASA 即可判断;(2)选择①②⇒③,根据全等三角形的判定定理AAS ,得到ΔADE≌ΔCBE (AAS ),然后即可得到AE =CE .【详解】解:(1)①②⇒③,满足全等三角形判定定理AAS ,是真命题;①③⇒②,满足全等三角形判定定理ASA ,是真命题;②③⇒①,是SSA ,不能证明三角形全等,故不能得到①成立,是假命题;故答案为2;(2)选择①②⇒③.证明:在ΔADE 和ΔCBE 中,∠AED =∠CEB (对顶角相等),∠A =∠C (已知),AD =CB (已知),∴ΔADE≌ΔCBE (AAS ).∴AE =CE (全等三角形的对应边相等).【点睛】本题考查了全等三角形的判定定理,掌握、熟练运用全等三角形的证明方法证明全等是解题的关键.。
逆命题和逆定理
(原创版)
目录
1.逆命题和逆定理的定义
2.逆命题和逆定理的区别
3.逆命题和逆定理的应用
正文
一、逆命题和逆定理的定义
在数学中,逆命题和逆定理是两个相关但有所区别的概念。
逆命题指的是,如果一个命题的题设和结论互换位置并且同时取反,那么得到的新命题就是原命题的逆命题。
例如,原命题为“若 A,则 B”,那么逆命题为“若非 B,则非 A”。
逆定理则是指,对于一个定理,如果将其结论和条件互换并且同时取反,得到的新命题称为原定理的逆定理。
二、逆命题和逆定理的区别
逆命题和逆定理在形式上有所不同,但它们之间存在一定的联系。
首先,逆命题是针对命题而言的,而逆定理是针对定理而言的。
逆命题是对原命题的题设和结论进行交换和取反,而逆定理是对原定理的结论和条件进行交换和取反。
其次,逆命题和逆定理的真假性质并不一定相同。
逆命题的真假与原命题的真假并无必然联系,而逆定理的真假则与原定理的真假密切相关。
三、逆命题和逆定理的应用
逆命题和逆定理在数学中有广泛的应用。
在证明过程中,有时候可以通过逆命题或逆定理来简化证明过程。
例如,在证明某个定理时,如果直接证明较为复杂,可以尝试先证明其逆定理,再通过逆定理与原定理的等价性来得到原定理的证明。
此外,逆命题和逆定理在解决实际问题中也有
一定的应用,例如在逻辑推理、问题求解等方面都可以利用逆命题和逆定理来简化思考过程。
逆命题和逆定理摘要:一、逆命题与逆定理的定义二、逆命题与逆定理的关系三、逆命题与逆定理的应用四、总结正文:逆命题与逆定理是数学中非常重要的概念,它们在数学证明中起着至关重要的作用。
本文将首先介绍逆命题与逆定理的定义,然后讨论它们之间的关系,接着分析它们在数学中的应用,最后进行总结。
一、逆命题与逆定理的定义1.逆命题逆命题是针对一个命题的否定并且交换主语和谓语得到的命题。
设命题P 为“若A,则B”,则逆命题为“若B,则A”。
2.逆定理逆定理是将一个命题的逆命题作为前提,原命题作为结论所得到的命题。
设命题P 为“若A,则B”,则逆定理为“若B,则A”。
二、逆命题与逆定理的关系逆命题与逆定理是相互关联的,它们互为逆否命题。
也就是说,如果一个命题的逆命题为真,那么这个命题的逆定理也为真。
反之,如果一个命题的逆定理为真,那么这个命题的逆命题也为真。
三、逆命题与逆定理的应用1.证明的辅助工具逆命题和逆定理在数学证明中经常被用作辅助工具。
通过证明一个命题的逆命题或逆定理,我们可以得到关于原命题的许多有用信息,从而简化证明过程。
2.构造性证明在一些数学问题中,我们可以通过构造性证明来证明一个命题。
构造性证明通常涉及使用逆命题或逆定理,以帮助我们找到一个合适的构造方法。
3.分析问题逆命题和逆定理可以帮助我们分析问题。
通过研究一个问题的逆命题或逆定理,我们可以更好地理解问题的本质,从而找到解决问题的方法。
总之,逆命题和逆定理是数学中非常关键的概念。
它们在数学证明中起着至关重要的作用,可以作为证明的辅助工具,也可以用于构造性证明和分析问题。
第04讲逆命题与逆定理1.理解定理、命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式;2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对假命题举反例.考点命题、定理、证明【题型1 命题的辨析】【典例1】(2023春•太和县期末)下列语句是命题的是()A.你喜欢数学吗?B.小明是男生C.太和香椿D.加强体育锻炼【变式1-1】(2023春•江都区期末)下列选项是命题的是()A.作直线AB∥CD B.今天的天气好吗?C.连接A、B两点D.同角的余角相等【题型2 命题的改写】【典例2】(2023春•江津区期中)把命题“对顶角相等”改写成“如果…那么…”的形式:.【变式2-1】(2023春•鼓楼区校级期末)把命题“同位角相等”改写成“如果…那么…”的形式为.【变式2-2】(2023春•新华区期末)把命题“在同一平面内,垂直于同一条直线的两条直线互相平行”写出“如果…,那么…”的形式是:在同一平面内,如果,那么.【变式2-3】(2023春•昆明期末)把命题“同角的补角相等”改写成“如果…,那么…”的形式.【题型3 命题真假的判断】【典例3】(2023春•西城区期末)下列命题中,是假命题的是()A.如果两个角相等,那么它们是对顶角B.同旁内角互补,两直线平行C.如果a=b,b=c,那么a=cD.负数没有平方根【变式3-1】(2023春•永川区期末)有下列四个命题,其中所有正确的命题是()①如果两条直线都与第三条直线平行,那么这两条直线也相互平行②两条直线被第三条直线所截同旁内角互补③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直④在同一平面内,过一点由且只有一条直线与已知直线垂直.A.①②B.①④C.②③D.③④【变式3-2】(2023春•广陵区期末)下列命题是真命题的是()A.同角的补角相等B.三角形的一个外角等于两个内角的和C.若a2=b2,则a=bD.同位角相等【变式3-3】(2023春•顺义区期末)下列命题是真命题的是()A.一个正数与一个负数的和是负数B.两个锐角的和是钝角C.同角(或等角)的余角相等D.有理数的绝对值是正数【变式3-4】(2023春•沙坪坝区校级期末)下列语句:①在同一平面内,若三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A.①②是真命题B.②③是真命题C.①③是真命题D.以上结论皆是假命题【题型4 命题的解答题综合】【典例4】(2023春•盐山县期末)图形的世界丰富且充满变化,用数学的眼光观察它们,奇妙无比.(1)如图,EF∥CD,数学课上,老师请同学们根据图形特征添加一个关于角的条件,使得∠BEF=∠CDG,并给出证明过程.小丽添加的条件:∠B+∠BDG=180°.请你帮小丽将下面的证明过程补充完整.证明:∵EF∥CD(已知)∴∠BEF=()∵∠B+∠BDG=180°(已知)∴BC∥()∴∠CDG=()∴∠BEF=∠CDG(等量代换)(2)拓展:如图,请你从三个选项①DG∥BC,②DG平分∠ADC,③∠B=∠BCD中任选出两个作为条件,另一个作为结论,组成一个真命题,并加以证明.①条件:,结论:(填序号).②证明:.【变式4-1】(2023春•吉林月考)如图,在三角形ABC中,点D在边BC的延长线上,射线CE在∠DCA的内部.给出下列信息:①AB∥CE;②CE平分∠DCA;③∠A=∠B.请选择其中的两条信息作为条件,余下的一条信息作为结论组成一个真命题,并说明理由.【变式4-2】(2022秋•惠济区校级期末)如图,在△AFD和△CEB中,点A、E、F、C在同一条直线上,有下面四个选项:①AD=CB;②AE=CF;③DF=BE;④AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道真命题.并写出证明过程.条件为:(填序号).结论为:(填序号).【变式4-3】(2023春•双辽市期中)(1)如图,DE∥BC,∠1=∠3,CD⊥AB,试说明FG⊥AB;(2)若把(1)中的题设中的“DE∥BC”与结论“FG⊥AB”对调,所得命题是否为真命题?试说明理由.【题型5 判断逆命题的真假判】【典例5-1】(2023春•南山区期中)下列命题的逆命题正确的是()A.两条直线平行,内错角相等B.若两个实数相等,则它们的绝对值相等C.全等三角形的对应角相等D.若两个实数相等,则它们的平方也相等【典例5-2】(2023春•泉州期末)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,说明它是假命题的反例可以是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=40°,∠2=40°D.∠1=∠2=45°【变式5-1】(2023•凤台县校级三模)若实数a,b,c(a,b,c均不为0)满足a+c=b.且bc+ac﹣ab=0.则下列命题为假命题的是()A.若b>c>0.则a>0B.若c=1.则a(a﹣1)=1C.若a2﹣c2=2,则ac=2D.若bc=1,则a=1【变式5-2】(2022秋•宁波期末)能说明命题“一个钝角与一个锐角的差一定是锐角”是假命题的反例是()A.∠1=91°,∠2=50°B.∠1=89°,∠2=1°C.∠1=120°,∠2=40°D.∠1=102°,∠2=2°【变式5-3】(2023春•浦城县期中)下列各命题的逆命题成立的是()A.对顶角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是90°,那么这两个角相等1.(2022•上海)下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题2.(2022•无锡)下列命题中,是真命题的有()①对角线相等且互相平分的四边形是矩形②对角线互相垂直的四边形是菱形③四边相等的四边形是正方形④四边相等的四边形是菱形A.①②B.①④C.②③D.③④3.(2022•梧州)下列命题中,假命题是()A.﹣2的绝对值是﹣2B.对顶角相等C.平行四边形是中心对称图形D.如果直线a∥c,b∥c,那么直线a∥b4.(2022•盘锦)下列命题不正确的是()A.经过直线外一点,有且只有一条直线与这条直线平行B.负数的立方根是负数C.对角线互相垂直的四边形是菱形D.五边形的外角和是360°5.(2022•台州)如图,点D在△ABC的边BC上,点P在射线AD上(不与点A,D重合),连接PB,PC.下列命题中,假命题是()A.若AB=AC,AD⊥BC,则PB=PCB.若PB=PC,AD⊥BC,则AB=ACC.若AB=AC,∠1=∠2,则PB=PCD.若PB=PC,∠1=∠2,则AB=AC6.(2021•浙江)能说明命题“若x为无理数,则x2也是无理数”是假命题的反例是()A.x=﹣1B.x=+1C.x=3D.x=﹣7.(2022•无锡)请写出命题“如果a>b,那么b﹣a<0”的逆命题:.1.(2023•吉阳区一模)下列命题是真命题的是()A.邻补角相等B.两直线平行,同旁内角互补C.内错角相等D.垂直于同一条直线的两直线平行2.(2023春•大名县期末)对于命题“如果a2>b2,那么a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=4,b=﹣3B.a=﹣3,b=4C.a=﹣4,b=3D.a=4,b=3 3.(2023春•红安县期末)下列命题中是假命题的是()A.两点的所有连线中,线段最短B.两条直线被第三条直线所截,同位角相等C.等式两边加同一个数,结果仍相等D.不等式两边加同一个数,不等号的方向不变4.(2023春•盐山县期末)下列命题:①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③同旁内角互补;④垂直于同一条直线的两条直线垂直.其中的假命题有()A.4个B.3个C.2个D.1个5.(2023春•鼓楼区校级期末)下列命题属于真命题的是()A.同旁内角相等,两直线平行B.相等的角是对顶角C.平行于同一条直线的两条直线平行D.同位角相等6.(2023春•清丰县校级期末)下列命题中:①两个角的和等于平角时,这两个角互为补角,②同位角相等,③两条平行线被第三条直线所截,内错角相等,其中是真命题的个数是()A.0个B.1个C.2个D.3个7.(2023春•郾城区期末)下列命题中是真命题的是()A.在同一平面内的三条直线a、b、c,若a⊥b,b∥c,则a⊥cB.过一点有且只有一条直线与已知直线平行C.平行于同一条直线的两条直线互相垂直D.垂直于同一条直线的两条直线互相平行8.(2022秋•李沧区期末)要说明命题“若|a|>5,则a>5”是假命题,可以举的一个反例是()A.a=5B.a=﹣5C.a=6D.a=﹣6 9.(2023春•舞阳县期中)如图,下列命题:①若∠1=∠2,则∠D=∠4;②若∠C=∠D,则∠4=∠C;③若∠A=∠F,则∠1=∠2;④若∠1=∠2,∠C=∠D,则∠A=∠F;⑤若∠C=∠D,∠A=∠F,则∠1=∠2.其中正确的个数有()个.A.1B.2C.3D.4 10.(2023春•盐城期末)“对顶角相等”的逆命题是.(用“如果…那么…”的形式写出)11.(2022秋•宁德期末)“两条直线被第三条直线所截,内错角相等”是命题.(填“真”或“假”)12.(2023春•东海县期末)命题“直角三角形的两个锐角互余”的逆命题是命题.(填“真”或“假”)13.(2023春•吴忠期末)命题“等角的余角相等”的题设是,结论是.14.(2021秋•渠县期末)如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.15.(2022春•前进区期末)(1)完成下面的推理说明:已知:如图,BE∥CF,BE、CF分别平分∠ABC和∠BCD.求证:AB∥CD.证明:∵BE、CF分别平分∠ABC和∠BCD(已知),∴∠1=∠,∠2=∠().∵BE∥CF(),∴∠1=∠2().∴∠ABC=∠BCD().∴∠ABC=∠BCD(等式的性质).∴AB∥CD().(2)说出(1)的推理中运用了哪两个互逆的真命题.。
专题15 逆命题及逆定理知识框架重难突破一、互逆命题与互逆定理1.互逆命题对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.备注:所有的命题都有逆命题. 原命题正确,它的逆命题不一定是正确的.2.互逆定理如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.备注:(1)一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理;(2)一个假命题的逆命题可以是真命题,甚至可以是定理.二、线段垂直平分线性质定理及其逆定理线段垂直平分线(也称中垂线)的性质定理是:线段的垂直平分线上的点到这条线段的两个端点的距离相等;逆定理:到线段两端距离相等的点在线段的垂直平分线上.备注:性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理的题设是已知线段相等,结论是确定线段被垂直平分,一定要注意两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.要点二、角平分线性质定理及其逆定理角平分线性质定理是:角平分线上的点到角两边的距离相等;逆定理:角的内部到角两边距离相等的点在角的平分线上.备注:性质定理的前提条件是已经有角平分线了,即角被平分了;逆定理则是在结论中确定角被平分,一定要注意两者的区别,在使用这两个定理时不要混淆了.例1.(2019·四川南充市·八年级期末)下列命题的逆命题成立的是( )A .对顶角相等B .等边三角形是锐角三角形C .正方形的对角线互相垂直D .平行四边形的对角线互相平分【答案】D【解析】解:A 、逆命题为相等的角是对顶角,不成立;B 、逆命题为:锐角三角形是等边三角形,不成立;C 、逆命题为:对角线互相垂直的四边形是正方形,不成立;D 、逆命题为:对角线互相平分的四边形是平行四边形,成立,故选:D .练习1.(2019·山东德州市·)数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果a >2,那么a 2>4.下列命题中,具有以上特征的命题是( )A .两直线平行,同位角相等B .如果|a |=1,那么a =1C .全等三角形的对应角相等D .如果x >y ,那么mx >my 【答案】C解:A 、原命题正确,逆命题为同位角相等,两直线平行,正确,为真命题,不符合题意;B 、原命题错误,是假命题;逆命题为如果a =1,那么|a |=1,正确,是真命题,不符合题意;C 、原命题正确,是真命题;逆命题为:对应角相等的三角形全等,错误,是假命题,符合题意;D 、当m =0时原命题错误,是假命题,不符合题意,故选:C .练习2.(2020·山西临汾市·八年级期末)下列命题的逆命题是真命题的是( )A .若22a b >,则a b >B .两个全等三角形的对应角相等C .若0a =,0b =,则0ab =D .全等三角形的对应边相等解:A :逆命题:若a b >,则22a b >,当a=1,b=-2时,错误;B :逆命题:对应角相等的两个三角形全等,错误;C :逆命题:若0ab =,则0a =,0b =,也可能a=0,b≠0,错误;D :逆命题:对应边相等的两个三角形全等,根据SSS 可以判定,正确,故选D.例2.(2020·四川巴中市·八年级期末)命题“等腰三角形两底角相等”的逆命题是_______【答案】有两个角相等的三角形是等腰三角形∵原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,∴命题“等腰三角形的两个底角相等”的逆命题是“有两个角相等三角形是等腰三角形”.故答案为:有两个角相等的三角形是等腰三角形.练习1.(2018·富顺县赵化中学校八年级期末)命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是 ___________________ .它是 ________ 命题(填“真”或“假”).【答案】如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 真【解析】分析:把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.详解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.它是真命题.故答案为:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;真.例3.(2020·四川绵阳市·八年级期末)如图,有A 、B 、C 三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A .∠A 、∠B 两内角的平分线的交点处B .AC 、AB 两边高线的交点处C .AC 、AB 两边中线的交点处D .AC 、AB 两边垂直平分线的交点处解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.练习1.(2019·四川成都市·八年级期末)如图,在Rt△ABC中,∠C=90°,AC=3,BC=5,分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交点分别为点P、Q,过P、Q两点作直线交BC于点D,则CD的长是_____.【答案】8 5【解析】分析:连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;详解:连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(5﹣x)2,解得x=175,∴CD=BC﹣DB=5﹣175=85,故答案为85. 例4.(2020·四川广元市·八年级期末)如图,在ABC 中,已知AB AC =,AB 的垂直平分线交AB 于点N ,交AC 于点M ,连接MB .(1)若70ABC ∠=︒,则NMA ∠的度数是 ;(2)若8AB cm =,MBC △的周长是14cm .①求BC 的长度;②若点P 为直线MN 上一点,请你直接写出PBC 周长的最小值.【答案】(1)50︒;(2)①6;②14 cm .解:解:(1)如图,∵AB=AC ,∴∠C=∠ABC=70°,∴∠A=40°,∵AB 的垂直平分线交AB 于点N ,∴∠ANM=90°,∴∠NMA=50°,故答案为:50;(2)①∵MN 是AB 的垂直平分线,∴AM=BM ,∴△MBC 的周长=BM+CM+BC=AM+CM+BC=AC+BC ,∵AB=8,∴AC=8,∵△MBC 的周长是14,∴BC=14-8=6;②∵PB+PC=PA+PC,PA+PC≥AC,∴当点P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=14.练习1.(2020·四川成都市·七年级期末)如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.【答案】(1)100°;(2)20°,推导见解析;(3)20解:(1)∵∠ABC+∠ACB+∠BAC=180°,∴∠BAC=180°﹣30°﹣50°=100°;(2)∵DE是线段AB的垂直平分线,∴DA=DB,∴∠DAB=∠ABC=30°,同理可得,∠FAC=∠ACB=50°,∴∠DAF=∠BAC﹣∠DAB﹣∠FAC=100°﹣30°﹣50°=20°;(3)∵△DAF的周长为20,∴DA+DF+FA=20,由(2)可知,DA=DB,FA=FC,∴BC=DB+DF+FC=DA+DF+FA=20.练习2.(2020·四川成都市·八年级期末)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(﹣2,4),B(﹣4,2),C(﹣3,1),按下列要求作图,保留作图痕迹.(1)画出△ABC关于x轴对称的图形△A1B1C1(点A、C分布对应A1、C1);(2)请在y轴上找出一点P,满足线段AP+B1P的值最小.【答案】(1)作图见解析;(2)作图见解析.(1)如图所示:(2)如图所示:点P 即为所求.例5.(2020·四川泸州市·)如图,在Rt ABC ∆中,90C ∠=︒,AD 是角平分线,若BC 10cm =,:3:2BD CD =,则点D 到AB 的距离是( )A .6cmB .5cmC .4cmD .3cm【答案】C过点D 作DE ⊥AB ,∵90C ∠=︒,∴DC ⊥AC,∵AD 平分∠BAC ,∴DE=DC,∵BC 10cm =,:3:2BD CD =,∴DE=DC=4cm ,故选:C.练习1.(2020·四川成都市·七年级期末)如图,在Rt ABC 中,90B ∠=︒,在边AB 、AC 上分别截取AD ,AE ,使AD AE =,分别以D 、E 为圆心,以大于12DE 的长为半径作弧,两弧在BAC ∠内交于点M ,作射线AM 交BC 边于点F .若2FB =,则点F 到AC 的距离为______.【答案】2根据作图过程可知:AF 平分∠BAC ,过点F 作FG ⊥AC ,∵∠B =90°,∴FB ⊥AB ,∴FG =FB =2.∴点F 到AC 的距离为2.故答案为:2.练习2.(2020·四川广元市·八年级期末)如图,OC 平分∠MON ,P 为OC 上一点,PA ⊥OM ,PB ⊥ON ,垂足分别为A 、B ,连接AB ,得到以下结论:(1)PA =PB ;(2)OA =OB ;(3)OP 与AB 互相垂直平分;(4)OP 平分∠APB ,正确的个数是( )A .1B .2C .3D .4【答案】C解:∵OP 平分∠AOB ,P A ⊥OA ,PB ⊥OB ,∴P A =PB ,故(1)正确;在Rt △APO 和Rt △BPO 中,OP OP PA PB =⎧⎨=⎩,∴Rt △APO ≌Rt △BPO (HL ),∴∠APO =∠BPO ,OA =OB ,故(2)正确,∴PO 平分∠APB ,故(4)正确,OP 垂直平分AB ,但AB 不一定垂直平分OP ,故(3)错误,故选:C .例6.(2020·四川绵阳市·八年级期末)如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若1BD =,3BC =,则AC 的长为( )A .5B .4C .3D .2【答案】A解:延长BD,与AC 交于点F,∵BD CD ⊥∴∠BDC =∠FDC=90°∵CD 平分ACB ∠,∴∠BCD =∠FCD在△BDC 和△FDC 中90BDC FDC BCD FCDCD CD ∠∠=︒⎧⎪∠∠⎨⎪=⎩== ∴△BDC ≌△FDC∴BD=FD =1 BC=FC=3∵A ABD ∠=∠∴AF=BF∵1BD =,3BC =,∴AC=AF+FC=BF+BC=2BD+BC=2+3=5故选:A例7.(2020·四川巴中市·七年级期末)如图,DE 是ABC 中AB 边的垂直平分线,分别交AB ,BC 于点D ,E ,AE 平分BAC ∠,若30B ∠=︒.求C ∠的度数.【答案】∠C 的度数为90°.∵DE 是线段AB 的垂直平分线,∠B=30°,∴AE= BE ,∴∠BAE=∠B=30°,∵AE 平分∠BAC ,∴∠EAC=∠BAE=30°,即∠BAC=60°,∴∠C=180°-∠BAC-∠B=180°-60°-30°=90°.∴∠C 的度数为90°.练习1.(2018·四川南充市·)如图,已知:∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,AB =6,AC =3,则BE =_______.【答案】32解:如图所示,连接CD 、BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE ,∠F=∠DEB=90°,∠ADF=∠ADE ,∴AE=AF ,∵DG 是BC 的垂直平分线,∴CD=BD ,在Rt △CDF 和Rt △BDE 中CD BDDF DE =⎧⎨=⎩∴Rt △CDF ≌Rt △BDE∴BE=CF ,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE ,∵AB=6,AC=3,∴BE=32.故答案为:32练习2.(2020·四川眉山市·八年级期末)已知120MAN ∠=︒,AC 平分MAN ∠,点,B D 分别在,AN AM 上.(1)如图1,若CD AM ⊥于点D ,CB AN ⊥于点B .①利用等腰三角形“三线合一”,将ADC ∆补成一个等边三角形,可得,AC AD 的数量关系为________. ②请问:AC 是否等于AB AD +呢?如果是,请予以证明.(2)如图2,若180ABC ADC ∠+∠=︒,则(1)中的结论是否仍然成立?若成立,请予以证明;若不成立,请说明理由.【答案】(1)①12AD AC =(或2AC AD =),理由见解析;②AD AB AC +=,理由见解析;(2)仍成立,理由见解析解:(1)①12AD AC =(或2AC AD =) AC 平分,120MAN MAN ∠∠=︒,60CAD ∴∠=︒,又90ADC ∠=︒,30ACD ∴∠=︒利用等腰三角形“三线合一”,将ADC ∆补成一个等边三角形,可知12AD AC = ②AD AB AC += 证明:由①知,12AD AC = 同理,AC 平分,120MAN MAN ∠∠=︒,60CAB ∴∠=︒,又90ABC ∠=︒,30ACB ∴∠=︒,12AB AC = AD AB AC ∴+=(2)仍成立证明:过点C 分别作,AM AN 的垂线,垂足分别为,E FAC 平分,MAN ∠CE CF ∴=,180,180ABC ADC ADC CDE ∠+∠=︒∠+∠=︒ CDE ABC ∴∠=∠又90CED CFB ∠=∠=︒()CED CFB AAS ∴∆≅∆ED FB ∴=AD AB AE ED AF FB AE AF ∴+=-++=+ 由(1)中②知AE AF AC +=AD AB AC ∴+=.。
13.5 逆命题与逆定理学习目标1. 理解逆命题的概念,能写出一个命题的逆命题,知道原命题成立,它的逆命题不一定成立;了解互逆定理。
2. 掌握线段垂直平分线的性质定理及逆定理。
3. 掌握角平分线性质定理及逆定理。
知识详解1. 互逆命题与互逆定理一般来说,在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题。
如果把其中一个命题叫做原命题,那么另一命题就叫做它的逆命题。
每一个命题都有逆命题,只要将原命题的题设改成结论,并将结论改成题设,便可得到原命题的逆命题,但是原命题正确,它的逆命题未必正确。
如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理。
2. 线段垂直平分线线段的垂直平分线上的点到这条线段的两个端点的距离相等。
此定理的逆命题是“到一条线段的两个端点的距离相等的点在这条线段的垂直平分线上”。
到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上。
三角形三边的垂直平分线交于一点。
3. 角平分线角平分线上的点到这个角的两边的距离相等。
此定理的逆命题是“到一个角的两边的距离相等的点在这个角的平分线上”。
到一个角的两边距离相等的点,在这个角的平分线上,上述两条定理互为逆定理,根据上述这两条定理,我们很容易证明:三角形三条角平分线交于一点。
【典型例题】例1:如图,到△ABC的三个顶点距离相等的点是△ABC的()A.三边垂直平分线的交点B.三条角平分线的交点C.三条高的交点D.三边中线的交点【答案】A【解析】△ABC的三个顶点距离相等的点是三边垂直平分线的交点.例2:如图所示,DE是线段AB的垂直平分线,下列结论一定成立的是()A.ED=CDB.∠DAC=∠BC.∠C>2∠BD.∠B+∠ADE=90°【答案】D【解析】∵DE是线段AB的垂直平分线,∴AD=BD.∴∠B=∠BAD,∠ADE=∠BDE.∴∠B+∠ADE=90°其它选项无法证明其是正确的.例3:如图:Rt△ABC中,∠C=90°,DE是AB的垂直平分线,∠CAD:∠DAB=2:1,则∠B 的度数为()A.20°B.22.5°C.25°D.30°【答案】B【解析】在Rt△ABC中∵DE是AB的垂直平分线∴∠B=∠BAD ∵∠CAD:∠DAB=2:1 ∴4∠B=90°∴∠B=22.5°【误区警示】易错点1:线段的垂直平分线上的点到线段的两个端点的距离相等1. 如图,在Rt△ABC中,∠ACB=90°,BC的中垂线交斜边AB于D,图中相等的线段有()A.1组B.2组C.3组D.4组【答案】D【解析】∵BC的中垂线交斜边AB于D,CD=BD,CE=BE,∴∠B=∠BCD,又∠A+∠B=90°,∠BCD+∠ACD=90°∴∠A=∠ACD,∴AD=CD ∴AD=BD 共4组.易错点2:线段的垂直平分线的性质2. 线段AB外有两点C,D(在AB同侧)使CA=CB,DA=DB,∠ADB=80°,∠CAD=10°,则∠ACB=()A.80°B.90°C.100°D.110°【答案】C【解析】∵CA=CB,DA=DB,∴CD垂直平分AB且垂足为M.∵∠ADB=80°,∠CAD=10°,∴∠ACM=50°,∴∠ACB=100°.【综合提升】针对训练1. 如图,点D在△ABC的边BC上,且BC=BD+AD,则点D在()的垂直平分线上.A.ABB.ACC.BCD.不能确定2. 如图,Rt△ABC中,∠ACB=90°,BD=CD,AB=7.8,AC=3.9,DE⊥BC于E,则图中有()个60°的角.A.2B.3C.4D.53. 下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB,PA=PB;②若PA=PB,EA=EB,则直线PE垂直平分线段AB;③若PA=PB,则点P必是线段AB的垂直平分线上的点;④若EA=EB,则过点E的直线垂直平分线段AB.其中正确的个数有()A.1个B.2个C.3个D.4个1.【答案】B【解析】∵BC=BD+AD=BD+CD ∴AD=CD ∴点D在AC的垂直平分线上2.【答案】D【解析】在Rt△ABC中,∠ACB=90°,AB=7.8,AC=3.9 ∴∠B=30°∵BD=CD ∴∠DCB=∠B=30°又DE⊥BC于E ∴∠BDE=∠CDE=60 ∴∠ACD=90°﹣30°=60°∴△ACD为等边三角形∴∠ADC=∠DAC=∠ACD=∠CDE=∠BDE=60°3.【答案】C【解析】①若直线PE是线段AB的垂直平分线,则EA=EB,PA=PB,符合性质定理,是正确的;②若PA=PB,EA=EB,则直线PE垂直平分线段AB,符合逆定理,是正确的;③若PA=PB,则点P必是线段AB的垂直平分线上的点,符合逆定理,是正确的;④若EA=EB,则过点E的直线垂直平分线段AB,不符合逆定理,是错误的。
逆命题与逆定理(提高)知识讲解
责编:杜少波
【学习目标】
1.理解命题与逆命题、定理与逆定理的意义,会区分命题的题设(条件)和结论,并能判断一个命题的真假;会识别互逆命题与互逆定理,并知道原命题成立时其逆命题不一定成立;
2.理解并掌握角平分线的性质定理及其逆定理,能用它们解决几何计算和证明题;
3.理解并掌握线段垂直平分线性质定理及其逆定理,能用它们解决几何计算和证明题.
【要点梳理】
要点一、互逆命题与互逆定理
1.互逆命题
对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.
要点诠释:所有的命题都有逆命题. 原命题正确,它的逆命题不一定是正确的.
2.互逆定理
如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.
要点诠释:
(1)一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理;
(2)一个假命题的逆命题可以是真命题,甚至可以是定理.
要点二、线段垂直平分线性质定理及其逆定理
线段垂直平分线(也称中垂线)的性质定理是:线段的垂直平分线上的点到这条线段的两个端点的距离相等;逆定理:到线段两端距离相等的点在线段的垂直平分线上.
要点诠释:
性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理的题设是已知线段相等,结论是确定线段被垂直平分,一定要注意两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.
要点二、角平分线性质定理及其逆定理
角平分线性质定理是:角平分线上的点到角两边的距离相等;逆定理:角的内部到角两边距离相等的点在角的平分线上.
要点诠释:
性质定理的前提条件是已经有角平分线了,即角被平分了;逆定理则是在结论中确定角被平分,一定要注意两者的区别,在使用这两个定理时不要混淆了.
【典型例题】
类型一、互逆命题与互逆定理
1、请写出“全等三角形的对应角相等”的逆命题,判断此逆命题的真假性,并给出证明.
【答案与解析】
解:命题“全等三角形的对应角相等”的题设是“全等三角形”,结论是“对应角相等”,故其逆命题是对应角相等的三角形是全等三角形,是假命题.
举例证明:
如图在△ABC中DE∥BC,交边AB、AC分别于D、E两点,
∴∠ADE=∠B,∠AED=∠C,∠A=∠A,
但△ADE与△ABC不全等.
【总结升华】根据逆命题的概念,交换原命题的题设与结论即可的出原命题的逆命题,进而判断它的真假,再举例证明即可.
举一反三:
【变式】试写出下列命题的逆命题,并判断这些命题的真假.
(1)对顶角相等;
(2)两直线平行,同位角相等;
(3)若a=0,则ab=0;
(4)两条直线不平行,则一定相交;
【答案】(1)对顶角相等(真);相等的角是对顶角(假);
(2)两直线平行,同位角相等(真);同位角相等,两直线平行(真);
(3)若a=0,则ab=0(真);若ab=0,则a=0(假);
(4)两条直线不平行,则一定相交(假);两条直线相交,则一定不平行(真);
类型二、线段垂直平分线性质定理及其逆定理
2、如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC的周长为16cm.
(1)求线段BC的长;
(2)连结OA,求线段OA的长;
(3)若∠BAC=120°,求∠DAE的度数.
【思路点拨】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可;(3)根据线段垂直平分线的性质和等腰三角形的性质进行计算.
【答案与解析】解:(1)∵l1是AB边的垂直平分线,
∴DA=DB,
∵l2是AC边的垂直平分线,
∴EA=EC,
BC=BD+DE+EC=DA+DE+EA=6cm;
(2)∵l1是AB边的垂直平分线,
∴OA=OB,
∵l2是AC边的垂直平分线,
∴OA=OC,
∵OB+OC+BC=16cm,
∴OA=0B=OC=5cm;
(3)∵∠BAC=120°,
∴∠ABC+∠ACB=60°,
∵DA=DB,EA=EC,
∴∠BAD=∠ABC,∠EAC=∠ACB,
∴∠DAE=∠BAC﹣∠BAD﹣∠EAC=60°.
【总结升华】本题考查的是线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.
举一反三:
【变式】如图,在△ABC中,∠A=50°,DE是线段AB的垂直平分线,E为垂足,交AC于点D,则∠ABD =_________ .
【答案】50°;
3、(2016•怀柔一模)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.
【思路点拨】由线段垂直平分线的性质以及三角形的性质即可得到答案.
【答案与解析】
证明:∵DE是AB边的垂直平分线,
∴AE=BE , ∠ADE=90°.
∴∠EAB=∠B.
在Rt△ABC中,∠C=90°,
∴∠CAB+∠B=90°.
在Rt△ADE中,∠ADE=90°,
∴∠AED+∠EAB=90°.
∴∠CAB=∠AED.
【总结升华】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.
类型三、角平分线性质定理及其逆定理
4、已知:如图,CD⊥AB于D,BE⊥AC于E,BE、CD相交于点O,且AO平分∠BAC,
求证:OB=OC.
证明:∵AO平分∠BAC,
∴OB=OC(角平分线上的点到角的两边距离相等)上述解答不正确,请你写出正确解答.
【思路点拨】由角平分线的性质可得OD=OE,然后证明△DOB≌△EOC,可得证OB=OC.
【答案与解析】
证明:∵AO平分∠BAC,CD⊥AB,BE⊥AC,
∴OD=OE,
在△DOB和△EOC中,
∠DOB=∠EOC,OD=OE,∠ODB=∠OEC,
∴△DOB≌△EOC(ASA),
∴OB=OC.
【总结升华】此题主要考查角平分线的性质和全等三角形的判定和性质,注意点到直线的距离是垂线段的长.
5、如图所示,已知△ABC中,F点到直线AE、AD、BC的距离都相等.
求证:F点在∠DAE、∠CBD、∠BCE的平分线上.
【思路点拨】连接AF,由已知可知GF=FM,已知AF=AF,则利用HL来判定Rt△AGF≌Rt△AMF从而可得到∠FAG=∠FAM,同理可得到∠FC G=∠FCH,∠FBH=∠FBM,即F点在∠DAE、∠CBD、∠BCE的平分线上.【答案与解析】
证明:如图所示,连接AF.
∵F点到直线AE、AD的距离相等,
即FG=FM,
∴△AGF和△AMF为直角三角形.
在Rt△AGF和Rt△AMF中,
∵FG=FM,AF=AF,
∴Rt△AGF≌Rt△AMF.
∴∠FAG=∠FAM.
同理可证Rt△FGC≌Rt△FHC,
Rt△FHB≌Rt△FMB,
∴∠FCG=∠FCH,∠FBH=∠FBM,
∴F点在∠DAE,∠CBD,∠BCE的平分线上.
【总结升华】此题主要考查学生对角平分线的性质及全等三角形的判定方法的理解及运用.准确作出辅助线是解答本题的关键.
举一反三:
【变式】如图,在△ABC中,∠B、∠C的平分线交于点O,求证:O也在∠A的平分线上.
【答案】
证明:如图,过点O分别作OD⊥AB,OE⊥BC,OF⊥AC,
∵O在∠B的平分线上,
∴OD=OE,
又点O在∠C的平分线上,
∴OE=OF,
∴OD=OF,
∴O在∠A的平分线上.。