petrel蚂蚁体操作
- 格式:pptx
- 大小:458.14 KB
- 文档页数:6
Petrel软件实例操作目录第一章Petrel简介一、安装并启动Petrel (01)二、界面介绍 (02)第二章Petrel处理流程介绍一、数据准备 (07)二、断层建模 (14)三、Pillar Gridding (22)四、Make Hori zon (27)五、深度转换(可选步骤) (32)六、Layer ing (34)七、建立几何建模 (35)八、数据分析 (36)九、相建模 (42)十、属性建模 (51)十一、体积计算 (60)十二、绘图 (64)十三、井轨迹设计 (66)十四、油藏数值模拟的数据输入和输出 (69)第一章Petrel简介一、安装并启动Petrel把安装盘放入光驱,运行Setup.exe程序,根据提示就可以顺利完成安装,在安装的过程中同时安装DONGLE的驱动程序,安装的过程中不要把DONGLE插入USB插槽,安装完毕,再插入DONGLE,如果LICENSE过期,请和我们技术支持联系。
然后按下面的顺序打开软件。
1. 双击桌面上的Petrel图标启动Petrel。
2. 如果是第一次运行Petrel,在执行Petrel运行前会出现一个Petrel的介绍窗口。
3. 打开Gullfaks_Demo项目。
点击文件>打开项目,从项目目录中选择Gullfaks_2002SE.pet。
二、界面介绍(一)、菜单条/ 工具条与大多数PC软件一样,Petrel软件菜单条有标准的“文件”、“编辑”、“视图”、View等下拉菜单,以及一些用于打开、保存project的标准工具,在菜单条下面的工具条里还有更多工具。
在Petrel里,工具条还包含显示工具。
此外在第二个工具条里还有位于Petrel 项目窗口的右端的按钮,它具有附加的Petrel相关的功能。
后面的工具条称为功能条,这些工具是否有效取决于选择进程表中的哪个进程。
操作步骤1.点击上面工具条中的每一项看会出现什么。
你可以实践一些更感兴趣的选项。
Input里面加载所有单井数据well、well tops、;Model是所建模型;Templates是做的模板以上窗口可以随意摆放,双击即可回去这是地震上的解释是构造模型的建立,property modeling是属性建模(包括孔隙度模型,渗透率模型,含油饱和度模型等等)是数值模拟加载数据:先新建insert ->new well folder;对井进行编组:右击wells->insert folder,把所有井拖进去;井位数据(well heads)、井轨迹数据(well path)、测井数据(well logs)、分层数据(well tops:well、surface、MD)测井解释成果(.Prn)用production log格式加载井对比(对比剖面图):新建一个new wellsection window(对比窗口),为相建模打基础,建立层拉平,setting->flatten on well top,在此之前先把others里面的分层拖进stratigraphy 里面,按顶(base)来拉平,(建立层拉平:按分层数据拉平)调整纵向比:setting->absolute(1000即可),手动调整比例尺通过这是将一个图道中的两条曲线反向的操作可去掉网格线调整曲线颜色,然后上色,因为所有gamma值都在0~1中间,调整曲线的取值范围,回到well,进到colors,设置最大值为120(或者自动获取)gamma 值大对应泥岩(孔隙度比较小)(孔隙度和gamma成反相关);RT电阻率(电阻率一般按对数的方式显示),SP自然电位,DT声波曲线;设置一口井为模板(单井模板只能保存一个:->),应用到所有井,(地质上分层就是按照测井曲线来分层的),(如果发现分层有问题,通过来调整这就是手动修改的层位)去掉中间井的分层名字:双击well tops->去掉sub labels,只留下两侧井的分层名字用可以圈定含油面积(根据井的油水对比剖面图)setting调整polygon的粗细颜色聚类分析:classsification对应岩相和地震相的解释设定:井、曲线、聚出几类数据流程窗口,选择,双击,要选有数据的井,setting设置为2,选择create(以后有新的数据要加载时选update),先点,apply,wells->里面多处一项(神经网络),此处将他换为相(facies),勾上facies,(泥岩shale;砂岩sand),,重新应用模板,用调整解释出的泥岩砂岩,建完构造模型后才能做离散化。
Petrel是Schlumberger公司研发的以三维地质模型为中心的一体化油藏工作平台。
Petrel 一体化油藏工作平台实现了以地质模型为中心的,从地震综合解释到油藏数值模拟的工作流程。
面对当今日益复杂的油气藏的勘探开发技术挑战,Petrel创造了一个允许地质、地震、测井、油藏、钻井、数据管理多专业共享知识和成果的开放环境,Petrel也成为国际油公司解决油气藏勘探开发技术难题的首选。
Petrel平台使用了国际石油勘探开发领域的先进技术,包括断裂系统自动提取、复杂构造建模、多点相建模、裂缝系统分析、全三维可视化显示和解释、不确定性分析、模型自动更新工作流等功能。
Petrel以其友好的界面、强大的显示功能、无缝的数据整合为研究人员提供了多用户、多学科协同工作环境。
使各学科研究人员更好地共享知识和经验、提高工作效率和成果的准确性。
Petrel作为受到业界广泛应用和认可的软件平台,其一体化的工作理念、开放的研发环境和先进的技术功能已经引领软件发展的潮流。
Petrel平台分地学核心系统、地球物理系统、地质建模系统、油藏工程系统等共20多个功能模块,在地学核心系统和高级核心系统的支持下,系统中的每个模块均可独立运行,用户可以根据工作需求合理组合所需功能模块。
2.1核心模块Geoscience Core地学核心系统,是运行Petrel和其它模块的最基本的必要条件包括基本系统和三维网格建立。
应用它进行三维断层建模、生成层面图以及加载井数据和井的分层数据。
它能用于生成/编辑多边形,同时还可以作为一种方便宜的查询工具。
例如,浏览管理、质量检查以及查询PETREL TM工区等,所有信息的在线帮助系统也是这个模块功能的一部分。
2.2地球物理(1) SEISMIC INTERPRETATION地震解释Seismic Interpretation模块提供了主要的地震解释功能。
包括地震数据体二、三维显示和浏览,使解释人员快速浏览地震数据体,优选研究目标区;断层手工解释和自动解释(Automatic Fault Picking功能);层位的二、三维手工解释和自动解释追踪功能;构造模型与地震数据体的同时显示,提高对地下地层和构造的了解。
Petrel地质建模部分实用操作手册目录第一章Petrel简介 (1)1.1 关于本手册 (5)1.2 Petrel Workflow Tools功能简介 (6)1.3 安装并启动Perel (7)1.4 Perel用户界面简介 (8)1.5 菜单及工具条 (10)第二章数据格式说明及加载 (11)2.1 数据准备 (11)2.2 数据输入 (15)练习2-1 创建一个工区 (16)练习2-2 加载井数据 (16)练习2-3 加载分层数据 (20)练习2-4 加载地震数据 (21)2.3 编辑整理数据 (22)2.3.1 自动生成断层多变形 (22)2.3.2 生成/编辑Polygons (23)2.3.3 生成/编辑Surface (24)2.3.4 面体积计算 (27)2.4 井数据的管理 (27)2.4.1归类引擎(Saved searches) (28)2.4.2井滤波(well filter) (29)第三章聚类分析与井相关 (30)3.1 属性(地震、测井)聚类分析和判断 (30)3.2 井相关(Well Correlation) (37)第四章速度模型与域转换............................................................................. 错误!未定义书签。
4.1 构建速度模型.................................................................................. 错误!未定义书签。
4.2 时间-深度转换 ................................................................................ 错误!未定义书签。
第五章框架模型............................................................................................. 错误!未定义书签。
主要模块介绍一、数据准备本实例中的数据整理如下:wellhead井位坐标文件jinghao X Y kb topdepth bottomdepth X21-233973816364714261433.0821502195 X21-243974070364716291433.082156.12193.1 X21-253974257364718491433.082154.42190.4 X21-263974480364720961436.52154.82189.8 X22-193972535364705161407.562120.32152.3 X22-203972803364707951417.462139.12165.1 X22-213973010364710401379.72102.62135.6 welltop分层文件X Y hb wellpoint surface jinghao 397381636471426-716.92Horizon c811X21-23397381636471426-724.92Horizon c8121X21-23397381636471426-735.92Horizon c8122X21-23397381636471426-755.92Horizon c813X21-23397381636471426-761.92Horizon c821X21-23397407036471629-723.02Horizon c811X21-24397407036471629-731.02Horizon c8121X21-24397407036471629-742.02Horizon c8122X21-24397407036471629-754.02Horizon c813X21-24397407036471629-760.02Horizon c821X21-24测井文件准备DEPTH PERM_K POR_K SW_K VSH_K NTG 2140.1250.00590100 2140.250.0059010 1 2140.3750.00590100 2140.50.005900 1 0二、数据输入1 输入WellHeader(井位坐标文件)右键点击输入Well Header:文件类型里选:well heads(*.*)2 输入Well Tops(分层文件):右键点击Well Tops文件夹并选择Import (on Selection);文件类型里选:Petrel Well Tops (ASCII)3 输入输入Well Logs右键点击Wells文件夹,选择Import (on Selection);文件类型:well logs(ASCII)input Data logs specify logs to be load加载per,perm,sw vash,ntg 等数据。
[Petrel使用技巧] Petrel蚂蚁体的问题拿一个实际数据体说说各个参数的影响力。
原始数据的分析:一般作构造解释的地震数据并不特别需要做保幅处理,所以有些适度的AGC是比较好的作AGC前后的剖面对比如下:Petrel工作流程中推荐做“Structural smoothing”,注意这个属性的参数范围:效果对比:不同的平滑参数的对比效果:原始数据、AGC数据、Structural smoothing数据的方差体结果的对比:同数据源,不同的蚂蚁步长“Ant step size”对比效果:时间切片的效果对比,顺序跟上图不一致:雕刻一下:提取Fault paches的参数当然同样意义非常模糊,但是也同样重要,其实原问题问的就是这个部分了:对于面积、倾角等作过滤非常重要:合并Patches:适度平滑:转解释数据:其实有些Patches被错误合并到一起也是导致解释成果转化错误的一个原因。
蚂蚁体不好做出效果的原因,我们把事情说穿就好——工作流程过长,参数过多互相牵制。
原始数据体——强化后处理——方差体-——蚂蚁体——断层提取——Patches编辑——生成解释数据。
这个长流程中任何一个环节其实都可能增加或者强化出我们不希望出现的东西。
而且蚂蚁体的目标就是强化方差体,尤其要解决方差体因为搜索时窗在大断层带来的阶梯效果和有些小断层可以被重新识别出来。
这两个主要目标本身就是矛盾的,你希望模糊大断层上的时窗效果势必需要比较大的蚂蚁步来过滤(Filter)细节,而要保留甚至强化小断层效果则肯定要保证蚂蚁的敏感度,更适合较小的蚂蚁步。
这样的思考矛盾也融合在长流程之中了。
说一个不恰当的比喻,从婚姻为目的来看过长时间的恋爱。
太短的恋爱就结婚固然是比较冒险的行为,但是那种爱情长跑也非常容易变成爱情杀手,因为增加了中间过程的变数概率。
而蚂蚁体和断层提取两个步骤的思考过程中那些参数,就好比你对女友有若干互相矛盾的要求,女友上得厅堂可能就下不了厨房。
PETREL操作流程1.前期数据准备地震数据体,断层线FAULT LINS OR 断层棍FAULT STICKS,FAULTPOL YGONS,数字化的等值线。
工区内各井的坐标,顶深,海拔,底深(完钻井深),东西偏移,方位角,倾角,砂岩分层数据,砂层等厚图,测井曲线(公制单位),单井相,各层沉积相图,砂岩顶面构造图,单井岩性划分,测井解释成果表,含油面积图。
(在编辑数据的过程中,命名文件时最好数据文件名都和井名一致)2.数据加载①加载井口数据(WELL HEADERS)WELL_NAME X Y KB TOP BOTTOM SYMBOL井名X坐标Y坐标海拔顶深底深(完钻)井的类型②加载井斜数据(WELL PATH)第一种数据格式MD TVD DX DY AZIM INCL斜深垂深东西偏移南北偏移方位角倾角第二种数据格式MD INCL AZIM第三种数据格式TVD DX DY(单井用WELL LOGS,多井加井斜可用PRODUCTION LOGS)③加载分层数据(WELL TOPS)(包括断点数据)MD WELLPOINT 层名WELL NAME-1500 HORIZON Nm31 NP1-1600 FAULT Nm32 NP1以WELL TOPS加载之后删除系统的缺省项,新建4项,对应输入数据的列,名称进行编辑,Sub-sea Z values must be negative!(低于海平面的Z值都为负),该选项在编辑时不要选中④加载测井曲线(WELL LOGS)LAS格式文件MD RESIS AC SP GR曲线采用0.125m的点数据(1m8个点数据),注意有的曲线单位要由英制转换为公制,如:AC 英制单位μs/in要换成工制单位μs/m,再用转换程序转换为LAS格式文件进行输入,以提高数据的加载速度。
如果有孔渗饱数据,按相同格式依次排列即可。
在/INPUT DATA中设置数据的排列顺序,曲线内容较多,系统缺省项只有MD,所以要用SPECIFY TO BE LOADED定义新的曲线,对应加载数据的列数,名称和属性进行编辑。
Petrel 地震地质解释和建模使用技巧2015斯伦贝谢科技服务(北京)有限公司Copyright Notice© 2015 Schlumberger. All rights reserved.No part of this manual may be reproduced, stored in a retrieval system, or translated in any form or by any means, electronic or mechanical, including photocopying and recording, without the prior written permission of Schlumberger Information Solutions, 5599 San Felipe, Suite 1700, Houston, TX 77056-2722.DisclaimerThe License Agreement governs use of this product. Schlumberger makes no warranties, express, implied, or statutory, with respect to the product described herein and disclaims without limitation any warranties of merchantability or fitness for a particular purpose. Schlumberger reserves the right to revise the information in this manual at any time without notice.Trademark InformationSoftware application names used in this publication are trademarks of Schlumberger. Certain other products and product names are trademarks or registered trademarks of their respective companies or organizations.目录1.1 斜井井轨迹在Well Section窗口中的4种投影方式原理 (4)1.2 Well section下打印连井剖面图 (8)1.3 well section下设置隐含的边界显示单曲线道局部充填 (11)1.4 well section下井上解释断层断距显示 (15)1.5 在指定深度范围内修改测井曲线 (18)1.6 Petrel和Excel一体化快速生成测井解释成果表 (19)1.7 Petrel2014如何加载TVD/TVDSS索引的测井曲线 (23)1.8 对不同井的测井曲线使用不同的算法进行粗化 (25)1.9 拼接不同深度段的测井曲线 (27)1.10 每种沉积相的测井曲线范围统计 (29)1.11 3Dwindow中如何连接well top (32)1.12 Petrel中如何快速生成断层Polygon (33)1.13 surface上对特定polygon范围进行单独赋值 (34)1.14 如何实现多边形的合并Merge Polygons (37)1.15 Petrel如何在Surface上显示图片 (40)1.16 如何将多个surface对应的的平均值同时输出到excel表格中 (42)1.17 根据两个Surface生成TST和TVT Map (43)1.18 如何将Well heads在Surface附近显示 (45)1.19 在Make surface的时候如何将结果往边界多边形外扩一些 (47)1.20 如何计算某个zone内饱和度曲线的加权平均值 (50)1.21 如何由离散相曲线计算砂体或薄互层的厚度 (51)1.22 如何批量生成zone的厚度图 (53)1.23 计算特定井和特定Zone的砂层厚度 (54)1.24 批量计算单井上每个zone中砂岩段的数量 (56)1.25 用曲线截断创建离散的净厚度图 (60)1.26 地震体三维渲染显示不清晰时的解决方法 (64)1.27 如何使用用户自定义边界切割地震体 (65)1.28 三维显示沿层切割地震体 (67)1.29 如何在Petrel中如何往已有的Survey中加载相邻位置的地震体 (68)1.30 如何计算多口井周层面属性统计值 (71)1.31 Petrel中地震Vintage的管理 (76)1.32 Petrel中如何按地震工区加载二维地震数据 (80)1.33 Petrel 2014中合成地震记录显示设定 (84)1.34 Petrel 2014中对于切地震剖面的快速设置 (87)1.35 Petrel中如何对地震数据进行抽稀 (88)1.36 Petrel中如何沿井轨迹提取地震数据的振幅 (89)1.37 Petrel中如何实现地震解释层位的合并 (90)1.38 如何加载2D数据 (92)1.39 依据Horizon和Fault剪切地震数据体 (93)1.40 如何在Petrel移动地震数据体 (94)1.41 按用户自定义范围到处2D地震测线 (96)1.42 Petrel如何加载信息缺失的二维地震数据 (101)1.43 将Jason 的子波加载到Petrel中 (105)1.44 如何在Petrel中提取可靠的子波 (107)1.45 如何在Function window按照某一曲线的属性显示交会图 (109)1.46 如何在Function window按照深度筛选交会图 (110)1.47 如何用Zone log过滤直方图 (113)1.48 如何合并多井的Checkshot数据到一个文件夹 (114)1.49 Petrel中如何做好井震对比 (116)1.50 如何将井分层与矫正后的Vo面均显示在X,Y,V域 (123)1.51 如何批量输出井斜 (125)1.52 使用部分井进行Data Analysis (126)1.53 Petrel 中如何批量修改井类型 (130)1.54 如何加载多口井轨迹在一个文件 (131)1.55 Petrel工区井的X坐标没区带号 (134)1.56 井坐标为经纬度如何加载 (135)1.57 一种简单安全的方式添加自定义井符号 (136)1.58 Petrel中蚂蚁体的运算技巧 (140)1.59 Petrel蚂蚁体介绍及参数设置 (144)1.60 如何利用蚂蚁体提取小断裂 (151)1.61 如何生成Azimuthal Map (155)1.62 如何在Petrel中加载经纬度的点数据 (157)1.63 使用自定义速度函数进行时深转换 (159)1.64 在Function Window中如何如用第三变量调整数据点的颜色 (161)1.65 Petrel中如何创建客户化岩性符号 (162)1.66 Petrel如何按宽度显示岩性 (164)1.67 如何批量移动断层 (168)1.68 如何生成用户自定义的离散属性面 (170)1.69 如何在Petrel中有效地组织数据 (173)1.70 如何在Petrel中自动形成断层多边形 (175)1.71 如何使用Clean Project History选项清理工区历史 (177)1.72 神经网络分类中的主成分分析 (178)1.73 如何对井一定范围外的网格粗化的同时保留井附近的原始网格 (182)1.74 以一种自定义的方式进行网格粗化 (186)1.75 如何在现有速度模型中加入其他速度异常体 (188)1.76 Petrel2014 Structural Framework工区保存错误解决方案 (189)1.77 剥蚀带的建模技术 (191)1.78 在属性建模中使用Local varying azimuth (192)1.79 多条二维测线速度数据建立速度模型 (195)1.80 如何对属性模型进行切割或者局部更新 (203)1.81 一个简单的工作流计算几个层面的均值并输出 (205)1.82 如何用Petrel Workflow快速整理层位数据 (207)1.83 如何用Petrel Workflow快速整理断层多边形数据 (210)1.84 运用workflow批量生成变化变程的属性模型 (211)1.85 运用Workflow统计地震测线长 (214)1.86 运用Workflow统计井间距离 (215)1.87 运用Workflow批量生成断层与上下盘层位交线 (218)1.88 Petrel全新的断层解释-建模一体化工作流 (220)1.89 使用Inspector工具修改模型中单个网络的属性 (221)2.1 PetroMod中如何优化断层在剖面上的形态 (223)2.2 PetroMod 中如何进行油源对比 (225)2.3 PetroMod模型在Petrel中显示 (228)3.1 GeoX中如何客户化输出GeoX Report到Excel中 (230)3.2 GeoX新许可设置流程 (237)1.1 斜井井轨迹在Well Section窗口中的4种投影方式原理在Petrel的连井剖面窗口(Well Section Window)中显示斜井轨迹是一个十分实用的功能。
“蚂蚁追踪”技术原理“蚂蚁追踪算法”是斯伦贝谢公司在Petrel软件中研发的一种复杂的地震属性算法,荣获《世界石油》杂志2005年"最佳勘探技术奖"。
该属性算法克服了解释主观性,有效提高了断层解释精度,大幅缩减了人工解释时间。
弄清断层体系断层面变化趋势及流体流动特征,是储层描述的最主要内容之一。
虽然三维地震资料空间"立体"解释技术已经发展很多年了,但直到目前断层面解释仍然存在很大的主观性。
斯伦贝谢公司的"蚂蚁追踪"算法完全改变了这一状况,克服了解释工作中的主观性,有效提高了解释精度,大幅缩减了人工解释时间。
该方法利用三维地震体,清楚显示断层轮廓,并利用智能搜索功能和三维可视化技术,自动提取断层面,使地质专家以更宽的视野完成断层解释,增加构造解释的客观性、准确性及可重复性。
利用该技术的自动提取断层功能以及极坐标图和各种筛选程序,可抽提感兴趣的断层体系。
“蚂蚁追踪”算法可根据工作流程需要,按任意比例自动提取断层。
例如,在勘探阶段,可将工作重点集中在寻找跨盆地的大型构造断层体系以及确定它们对勘探前景的影响等方面;而在储层评价阶段以及开发和生产阶段,可采用同样的方法,将主要精力放在自动提取往往会影响油气最终采收率的那些局部的小型断层和断层体系上。
“蚂蚁追踪”算法的工作流程分四步:增强边界特征,突出特殊的地层不连续性,预处理地震资料;生成蚂蚁追踪立方体,提取断层;确认、校验断层;创建最终断层解释模型。
流程的第一步包括利用边缘探测手段,增强地震资料中的空间不连续性,并通过噪声压制技术,随意预处理地震资料。
第二步建立蚂蚁追踪立方体。
蚂蚁追踪算法遵循类似于蚂蚁在其巢穴和食物源之间,利用可吸引蚂蚁的信息素(一种化学物质)传达信息,以寻找最短路径的原理。
在最短路径上,用更多的信息素做标记,使随后的蚂蚁更容易选择这一最短路径。
该技术原理就是在地震体中设定大量这样的电子"蚂蚁",并让每个"蚂蚁"沿着可能的断层面向前移动,同时发出"信息素"。
第六章相建模(FaciesModeling)6.1 Petrel2010版本中相建模技术的大发展Petrel相建模(Facies Modeling)现有方法主要包括:多点地质统计学相模拟、基于目标的河流相模拟,基于像元的序贯指示模拟、截断高斯模拟,带趋势的截断高斯模拟,指示克里金模拟、神经网络方法,用于详细表征相带分布特征的确定性和随机性相建模技术,而且可以交互使用。
同时用户可以导入自己的算法和人工赋值的方法,建立沉积相模型。
Petrel2010在原有版本基础上对相建模方法做了较大的改进,主要体现在以下四个方面:1)全新的MPS多点统计相模拟算法在Petrel2010版本中,引进了多点地质统计学相模拟方法,该方法的引进改变了过去传统的两点统计地质学方法,而发展为多点地质学,解决了过去两点统计关系上变差函数的不足,特别是对储层非均质性描述上的不足,多点统计地质学能够充分描述复杂几何形状砂体的空间连续性和变异性。
多点统计地质学是建立在多个点的相关关系上,它在解决描述空间变量的连续性和变异性方面得到越来越广泛的应用。
斯坦福大学的Journel教授曾指出多点地质统计学是今后地质统计学发展的方向,它的优势已越来越显著。
2)基于快速傅立叶变换的高斯模拟算法一种新的新的高斯模拟算法在Petrel 2010.1.中被引用,这种算法与GSLIB的序贯随机模拟方式不同。
A 它比SGS运算速度提高了很多B 它不是序贯算法C 它可以并行运算D 它可以进行快速的协同模拟设定如同上面提到的,这种高斯算法不同于序贯模拟的序贯算法,允许并行计算,采用的算法是傅立叶变换算法,这种算法具有快速、并行、在大的范围变程内优选最合理的变程等优点,这种算法的界面与序贯高斯模拟算法有些类似。
3)进一步改进克里金算法在2010.1版本中引用了新的克里金算法,这是完全不同于标准GSLIB 克里金的一种设计,其搜索性能和并行运算都有很大改进。
克里金可以沿网格方向、也可以沿海平面进行插值。
Petrel中蚂蚁体的运算技巧
Petrel中蚂蚁体的运算技巧
现在的Petrel用户中对蚂蚁体属性的使越来多,大部分都能取得较好的效果,下面是目前Petrel中常用的蚂蚁体的研究流程:
该流程基本涵盖了蚂蚁体生成的流程,但有时虽然各环节做的都很好了,但最终结果仍令人不太满意,实际上通过下面的办法可能对最终结果有进一步提高,用户在下面研究时可以试一下。
它的指导思想是,在现有蚂蚁体基础上再多次运算蚂蚁体,以期得到效果上的改变。
例子1:单次运算结果
1. 单次运算被动模式的蚂蚁体(Passive)得到不好的结果:信号非常差,非常差的连续性。
2. 单次运算主动式的蚂蚁体(aggressive)得到不好的结果:信号差,不好的联系性,很难理解断裂的分布。
例子2:两次运行结果
1. 两次运行:先被动后主动方式,获得较强的信号和比较好的连续性。
2. 两次运行:先主动后被动方式,获得更强的信号,更好的连续性,很多重要的特征显现出来。
例子3:连续3次运行结果
1. 3次运行:被动+主动+被动(极大地呈现了主断裂系统特征,清晰的图像,比较容易进行断面的提取)
2. 3次运行:主动+被动+主动方式(最强的结果,可能不太容易进行提取,但很好展示整个项目的断裂的分布)
如果能够遵循下面原则,蚂蚁体会得到较好的结果:
1. 数据预处理:通过Chaos或Variance属性来减少噪音和不连续性增强
2. 断层增强:通过Ant Tracking计算,把上面的重要的不连续性
分解为片。
3. 断层提取:验证、编辑、把蚂蚁体结果合并为面。
4. 建立最终三维断层模型。