高等土力学土的压缩与固结
- 格式:ppt
- 大小:2.28 MB
- 文档页数:81
第五章.土的压缩与固结概念与思考题1.比奥(Biot)固结理论与太沙基一伦杜立克(Terzaghi-Randulic)扩散方程之间主要区别是什么?后者不满足什么条件?二者在固结计算结果有什么主要不同?答:主要区别:在太沙基-伦扩散方程推导过程中,假设正应力之和在固结与变形过程中是常数,太-伦扩散方程不满足变形协调条件。
固结计算结果:从固结理论来看,比奥固结理论可解得土体受力后的应力、应变和孔压的生成和消散过程,理论上是完整严密的,计算结果是精确地,太-伦法的应力应变计算结果和孔压计算结果精确。
比奥固结理论能够反映比奥戴尔-克雷效应,而太沙-伦扩散方程不能。
但是,实际上,由于图的参数,本构模型等有在不确定性。
无论采用哪种方法计算都很难说结果是精确的。
2.对于一个宽度为a的条形基础,地基压缩层厚度为H,在什么条件下,用比奥固结理论计算的时间一沉降(t-s)关系与用太沙基一维固结理论计算的结果接近?答案:a/H很大时3.在是砂井预压固结中,什么是砂井的井阻和涂抹?它们对于砂井排水有什么影响?答:在地基中设置砂井时,施工操作将不可避免地扰动井壁周围土体,引起“涂抹”作用,使其渗透性降低;另外砂井中的材料对水的垂直渗流有阻力,是砂井内不同深度的孔不全等于大气压(或等于0),这被称为“井阻”。
涂抹和井阻使地基的固结速率减慢。
4.发生曼德尔一克雷尔效应的机理是什么?为什么拟三维固结理论(扩散方程)不能描述这一效应?答:曼戴尔-克雷尔效应机理:在表面透水的地基面上施加荷重,经过短暂的时间,靠近排水面的土体由于排水发生体积收缩,总应力与有效应力均由增加。
土的泊松比也随之改变。
但是内部土体还来不及排水,为了保持变形协调,表层土的压缩必然挤压土体内部,使那里的应力有所增大。
因此某个区域内的总应力分量将超过他们的起始值,而内部孔隙水由于收缩力的压迫,其压力将上升,水平总应力分量的相对增长(与起始值相比)比垂直分量的相对增长要大。
第四章土的压缩与固结4.1简介固结的过程经常与压实的过程相混淆。
通过减少空隙中空气的体积,压实过程增加非饱和土的密度(参见图4.1)。
然而,固结是一个与时间相关的,通过排出空隙中的水,而使饱和土的密度增加的过程(参见图4.1)。
固结通常与粉砂和粘土等幼粒土有关。
粗粒土,如砂和砾石,由于其高渗透性,也经历了固结,但在以更快的速度。
饱和粘土的固结由于其低渗透速度却慢得多。
固结理论预测的沉降量与沉降速度,以确保成立可压缩土层结构的可维护性。
4.2单向固结模型因为水可以在饱和土中任何方向流动,固结的过程中基本上三维。
然而,在大多数领域的情况下,因为在水平方向上土的区域巨大,土中水将不能够通过水平流动流出。
因此,水流的方向主要是竖向或一维的。
结果是,土层在竖向方向进行单向固结沉降(1-D)。
图4.2显示了一个简单的单向固结模型。
弹簧是类似于土骨架。
弹簧越不易弯曲,它将越难压缩。
因此,硬土将比软土经受更少的压缩。
土的硬度影响其固结沉降的幅度。
阀门开口尺寸类似于土的渗透性。
较小的开口,将需要更长的时间来排水和消散压力。
因此,幼粒土的完全固结比粗粒土需要花费更长的时间。
土壤的渗透性,影响其固结的速度。
4.3单向固结试验一维(1-D)固结试验由固结仪执行。
固结仪如图4.3所示。
土样是在一个环刀中(通常高度为20毫米和直径80毫米),它被限制在钢性护环,沉浸在水浴中。
竖向荷载用于压缩试样,并允许水排出放置在样本顶部和底部的透水石。
4.3.1时间相关的固结对于每一个竖向荷载增量,土样的竖向沉降通过百分表来记录。
图4.4显示了竖向沉降的时间关系,竖向总应力,超孔隙水压力和竖向有效应力。
最初,竖向载荷的100%是由孔隙水来承担,因为土样低渗透性,孔隙水是无法很快地流出空隙。
因此,立即加竖向荷载后,土样很少有沉降。
只有当有一个有效应力增加,土壤的沉降是有可能的,这反过来又要求通过驱逐孔隙水,减少土的孔隙率。
几秒钟后,孔隙水开始流出空隙。
第七章 土的固结理论1.固结:所谓固结,就是在荷载作用下,土体孔隙中水体逐渐排除,土体收缩的过程。
更确切地说,固结就是土体超静孔隙水应力逐渐消散,有效应力逐渐增加,土体压缩的过程。
(超静孔压逐渐转化为有效应力的过程)2.流变:所谓流变,就是在土体骨架应力不变的情况下,土体随时间发生变形的过程。
次固结:孔隙压力完全消散后,有效应力随时间不再增加的情况下,随时间发展的压缩。
3.一维固结理论假定:一维(土层只有竖向压缩变形,没有侧向膨胀,渗流也只有竖向); 饱和土,水土二相; 土体均匀,土颗粒和水的压缩忽略不计,压缩系数为常数,仅考虑土体孔隙的压缩; 孔隙水渗透流动符合达西定律,并且渗透系数K 为常数; 外荷载为均布连续荷载,并且一次施加。
固结微分方程:ðu ðt=C vð2u ð2zu 为孔隙水压力,t 时间,z 深度C v =K m v γω=K(1+e)a γω渗透系数越大,固结系数越大,固结越快;压缩系数越大,土体越难压缩,固结系数就小。
C v 土的固结系数,与土的渗透系数K 成正比和压缩系数m v 成反比。
初始条件:t=0,u =u 0(z); 边界条件:透水面 u=0不透水面ðu ðz=04.固结度:为了定量地说明固结的程度或孔压消散的程度,提出了固结度的概念。
任意时刻任意深度的固结度定义为当前有效应力和总应力之比U=σ′σ=σ−u σ=1−uσ平均固结度:当前土层深度内平均的有效应力和平均的总应力之比。
U =1−∫udz H0∫σdzH 0固结度U 是时间因数Tv 的单值函数。
5.太沙基三维固结理论根据土体的连续性,从单元体中流出的水量应该等于土体的压缩量ðεv ðt =ðq xðx+ðq yðy+ðq zðz由达西定律:q i=−K iγw ðuði若土的各个方向的渗透系数相同,取K i=K将达西定律公式代入连续方程:ðεv ðt =−Kγw(ð2uð2x+ð2uð2y+ð2uð2z)=−Kγw∇2uεv=εx+εy+εz=1−2vE(σ1′+σ2′+σ3′)=1−2vE(σ1+σ2+σ3−3u)太沙基三维固结理论假设三向总应力和不随时间变化即:d(σ1+σ2+σ3)dt=0ðεv ðt =−3(1−2v)Eðuðt=−Kγw∇2u即3(1−2v)Eðuðt=Kγw∇2uðu ðt =E3(1−2v)Kγw∇2u=C v3∇2u C v3=E3(1−2v)Kγw6.轴对称问题固结方程砂井排水引起的土中固结,在一个单井范围内可以看成轴对称的三维问题,包含竖向和径向两个方向水的流动。
土体的变形第一部分 影响因素一. 土的压缩性1.定义:土在压力作用下体积缩小的特性称为土的压缩性。
土的压缩——土中孔隙体积的减少,在这一过程中,颗粒间产生相对移动,重新排列并互相挤紧,同时,土中一部分孔隙水和气体被挤出。
土体完成压缩过程所需的时间与土的透水性有很大的关系。
土的固结——土的压缩随时间增长的过程,称为土的固结。
2.土的侧限压缩试验:不允许土样产生侧向变形(侧限条件)的室内压缩试验3.侧限条件:侧向限制不能变形,只有竖向单向压缩的条件。
侧限条件的适用性:自然界广阔土层上作用着大面积均布荷载的情况;土体的天然土的自重应力作用下的压缩性。
4.侧限压缩试验的方法:试验方法:加荷载,让土样在50、100、200和400kpa 压力作用下只可能发生竖向压缩,而无侧向变形。
测定各级压力作用下土样高度的稳定值,即压缩量。
将压缩量换算成每级荷载后土样的孔隙比e 。
则可整理的压缩试验的结果,压缩曲线e-p 、e-logp 。
)1(000e H s e e +-=5.侧限压缩性指标压缩系数——e-p 曲线上任一点的切线斜率a ,即 dp de a -= 物理意义:压缩系数a 越大,曲线愈陡,说明随着压力的增加,土孔隙比的减小愈显著,因而土的压缩性愈高。
为了便于应用和比较,通常采用压力间隔由p 1=100kpa 增加到p 2=200kpa 时所得的压缩系数a 1-2来评定土的压缩性如下:当 a 1-2 < 0.1Mpa -1时,属于低压缩性土0. 1≤a 1-2 < 0.5Mpa -1时,属于中压缩性土a 1-2 ≥ 0.5Mpa -1时,属于高压缩性土。
压缩指数——土的e-p 线改绘成半对教压缩曲线e-logp 曲线时,它的后段接近直线,其斜率Cc 称为土的压缩指数。
同压缩系数a 一样,压缩指数Cc 值越大,土的压缩性越高压缩模量(侧限压缩模量)——土在完全侧限条件下的竖向附加压应力σz 与相应的应变εz 之比值。
高等土力学第一次读书(固结)笔记土的压缩与固结1 沉降:在附加应力作用下,地基土产生体积缩小,从而引起建筑物基础的竖直方向的位移(或下沉)称为沉降 2 某些特殊性土由于含水量的变化也会引起体积变形,如湿陷性黄土地基,由于含水量增高会引起建筑物的附加下沉,称湿陷沉降。
相反在膨胀土地区,由于含水量的增高会引起地基的膨胀,甚至把建筑物顶裂。
除此之外某些大城市,如墨西哥、上海等由于大量开采地下水使地下水位普遍下队从而引起整个城市的普遍下沉。
这可以用地下水位下降后地层的自重应力增大来解释。
当然,实际问题也是很复杂的,还涉及工程地质、水文地质方面的问题。
如果地基土各部分的竖向变形不相同,则在基础的不同部位会产生沉降差,使建筑物基础发生不均匀沉降。
基础的沉降量或沉降差(或不均匀沉降)过大不但会降低建筑物的使用价值,而且往往会造成建筑物的毁坏。
3 为了保证建筑物的安全和正常使用,我们必须预先对建筑物基础可能产生的最大沉降量和沉降差进行估算。
如果建筑物基础可能产生的最大沉降量和沉降差,在规定的允许范围之内,那么该建筑物的安全和正常使用一般是有保证的;否则,是没有保证的。
对后一种情况,我们必须采取相应的工程措施以确保建筑物的安全和正常使用。
(1)基础沉降量或沉降差的大小首先与土的压缩性有关,易于压缩的土,基础的沉降大,而不易压缩的土,则基础的沉降小。
(2)基础的沉降量与作用在基础上的荷载性质和大小有关。
一般而言,荷载愈大,相应的基础沉降也愈大;而偏心或倾斜荷载所产生的沉降差要比中心荷载为大。
二、土的压缩特性1 压缩:土在压力作用下,体积将缩小。
这种现象称为压缩。
2 固结:土的压缩随时间增长的过程称为固结目前我们在研究土的压缩性,均认为土的压缩完至是由于孔隙中水和气体向外排出而引起的。
3 注意:在很短的时间内,孔隙中的水来不及排出,加之土体中的土粒和水是不可压缩的,因而瞬时沉降是在没有体积变形的条件下发生的,它主要是由于土体的侧向变形引起的(1)瞬时沉降一般不予考虑(2)对于控制要求较高的建筑物,瞬时沉降可用弹性理论估算。