过程设备设计知识点
- 格式:docx
- 大小:600.71 KB
- 文档页数:8
《过程设备设计》期末复习题及答案第一章规程与标准1-1 压力容器设计必须遵循哪些主要法规和规程?答:1.国发[1982]22号:《锅炉压力容器安全监察暂行条例》(简称《条例》);2.劳人锅[1982]6号:《锅炉压力容器安全监察暂行条例》实施细则;3.劳部发[1995]264号:关于修改《〈锅炉压力容器安全监察暂行条例〉实施细则》"压力容器部分"有关条款的通知;4.质技监局锅发[1999]154号:《压力容器安全技术监察规程》(简称《容规》);5.劳部发[1993]370号:《超高压容器安全监察规程》;6.劳部发[1998]51号:《压力容器设计单位资格管理与监督规则》;7.劳部发[1995]145号:关于压力容器设计单位实施《钢制压力容器-分析设计标准》的规定;8.劳部发[1994]262号:《液化气体汽车罐车安全监察规程》;9.化生字[1987]1174号:《液化气体铁路槽车安全管理规定》;10.质技监局锅发[1999]218号:《医用氧舱安全管理规定》。
1-2 压力容器设计单位的职责是什么?答:1.设计单位应对设计文件的正确性和完整性负责;2.容器的设计文件至少应包括设计计算书和设计图样;3.容器设计总图应盖有压力容器设计单位批准书标志。
1-3 GB150-1998《钢制压力容器》的适用与不适用范围是什么?答:适用范围:1.设计压力不大于35MPa的钢制容器;2.设计温度范围按钢材允许的使用温度确定。
不适用范围:1.直接用火焰加热的容器;2.核能装置中的容器;3.旋转或往复运动的机械设备(如泵、压缩机、涡轮机、液压缸等)中自成整体或作为部件的受压器室;4.经常搬运的容器;5.设计压力低于0.1MPa的容器;6.真空度低于0.02MPa的容器;7.内直径(对非圆形截面,指宽度、高度或对角线,如矩形为对角线、椭圆为长轴)小于150mm的容器;8.要求作废劳分析的容器;9.已有其他行业标准的容器,诸如制冷、制糖、造纸、饮料等行业中的某些专用容器和搪玻璃容器。
过程设备设计与选型的主要内容过程设备设计与选型是指对工业过程设备进行设计和选择的过程。
它包括了以下主要内容:1.设计要求和规范:明确工业过程的要求和规范,例如生产能力、操作参数、工艺流程、环境要求等。
这些信息将对设备的设计和选型产生重要影响。
2.工艺流程分析:对整个工艺流程进行分析,包括原料处理、反应过程、处理和分离、产品收集等。
了解每个步骤的输入、输出、温度、压力和流量等参数,以及所需的操作和设备。
3.设备选型:根据工艺流程要求,选择适合的设备。
这可能涉及到反应器、分离器、加热器、冷却器、储存罐、泵和阀门等等。
设备的选择应考虑工艺要求、可靠性、安全性、可维护性、可操作性和经济性等因素。
4.材料选择:选择适合的材料来制造设备。
材料的选择应考虑流体的特性(如腐蚀性、温度和压力)、设备的寿命和成本等因素。
5.设备设计和布局:根据工艺要求和设备选型,进行设备细节设计和布局。
这包括设备的大小、形状、连接管道和支撑结构等。
6.安全性分析:对设备的安全性进行评估和分析,防止潜在的危险和意外。
这可能需要进行风险评估、安全阀和爆破片的设计、操作规程等。
7.运营成本分析:评估设备的运营成本,包括能耗、维护成本、备件需求和人工成本等方面的考虑。
8.经济性分析:评估设备的投资回报,包括设备的购买成本、运营成本以及技术和市场风险等。
以上是过程设备设计与选型的主要内容。
这个过程需要综合考虑工艺要求、设备的性能和可用性、安全性、经济性以及可操作性等因素,以确保设备的良好运行和工业过程的有效实施。
过程装备设计知识点过程装备设计是指根据生产过程需求,设计和选择合适的装备设备,以满足工艺流程的要求。
在过程装备设计过程中,需要考虑到多个知识点,包括工艺流程、选型设计、安全性及经济性等方面。
本文将重点介绍过程装备设计的几个关键知识点。
一、工艺流程设计工艺流程设计是过程装备设计的基础。
在设计过程中,需要了解生产工艺的具体要求,并根据这些要求设计出符合工艺流程的装备设备。
工艺流程设计包括物料的流动路径、温度、压力和速度等参数的设定,以及工艺单元之间的相互关系等。
合理的工艺流程设计可以保证生产过程的高效性和稳定性。
二、选型设计选型设计是指根据工艺流程的要求,选择合适的装备设备。
在选型设计中,需要考虑装备设备的工作条件、能力、技术参数等因素。
合适的装备选型可以提高生产效率,降低能耗,同时也可以确保生产过程的顺利进行。
三、安全性设计安全性设计是过程装备设计中至关重要的一环。
在设计过程中,需要考虑装备设备的安全性能,包括防爆性能、防护措施、应急处理措施等。
合理的安全性设计可以确保生产过程的安全稳定,减少事故的发生。
四、经济性设计经济性设计是指在装备设计过程中,考虑装备设备的投资和运营成本。
合理的经济性设计可以降低装备设备的成本,提高投资回报率。
在经济性设计中,需要对不同选项进行经济性评估,并选择最佳的方案。
五、维护保养设计维护保养设计是过程装备设计中需要重视的一方面。
合理的维护保养设计可以延长装备设备的使用寿命,减少故障发生的几率。
在维护保养设计过程中,需要考虑到设备的可维修性、易用性等因素,并制定相应的维护保养计划。
六、环保性设计环保性设计是现代工程设计的重要考虑因素之一。
在过程装备设计中,需要考虑装备设备对环境的影响,并采取相应的环保措施。
合理的环保性设计可以减少对环境的污染,保护生态环境。
总结:过程装备设计是一个综合性的工作,需要综合考虑多个方面的知识点。
工艺流程设计、选型设计、安全性设计、经济性设计、维护保养设计和环保性设计都是过程装备设计中需要关注的重要方面。
设备设计小知识点设备设计是一门复杂而重要的学科,它涉及到各种各样的知识和技术。
在进行设备设计的过程中,有许多小知识点需要我们掌握和了解。
本文将介绍一些设备设计中常见的小知识点,帮助读者深入了解这个领域。
一、设备选择的原则在进行设备设计时,我们首先要考虑的是设备的选择。
设备的选择应当基于以下几个原则:1. 功能需求:设备的功能是否满足项目需求。
2. 技术特性:设备是否具备所需的技术特性,如工作温度范围、工作压力等。
3. 可靠性:设备的可靠性是重要的考虑因素,需要评估设备的寿命、故障率等指标。
4. 维护性:设备应具备易于维护和维修的特性,以降低维修成本。
5. 成本因素:设备的价格和运行成本应当是综合考虑的因素之一。
二、布局设计设备的布局设计是设计过程中的另一个重要环节。
在进行布局设计时,我们应该注意以下几点:1. 安全距离:设备之间的间距需要满足安全要求,以防止因为设备之间的干扰而导致意外事故。
2. 管道布置:管道的布置要合理,以减少压力损失和流体阻力。
3. 通风系统:设备的布局应当考虑到通风系统,以确保设备在正常工作时能保持良好的通风环境。
4. 工作空间:设备的布局还要考虑到操作人员的工作空间,以保证工作效率和人员安全。
三、尺寸设计设备的尺寸设计是设备设计中的核心要素之一。
在进行尺寸设计时,应当注意以下几点:1. 载荷计算:针对不同的设备,需要根据实际工况进行载荷计算,以确定设备的尺寸和材质。
2. 结构强度:设备的结构强度是一个重要的设计指标,需要经过实验和计算来验证。
3. 材料选择:根据设备的工作环境和载荷要求,正确选择相应的材料。
4. 装配要求:设备的组装和拆卸需要简便可行,应考虑到设备的拆装工艺。
四、维护保养设备的维护保养是设备运行和管理的重要环节。
在进行维护保养时,应当注意以下几点:1. 定期检查:定期对设备进行检查和维护,以确保设备的正常运行。
2. 润滑剂选择:根据设备的工作要求,正确选择润滑剂,并定期更换和补充。
过程装备设计知识点总结一、引言过程装备设计是指在工业生产过程中用于完成物料处理、传输、储存等功能的设备的设计和制造。
在工业生产中,过程装备是非常重要的一环,对于提高生产效率、降低生产成本具有重要意义。
过程装备设计需要考虑到诸多因素,包括物料性质、工艺要求、设备结构等,下面将从几个关键的知识点入手,对过程装备设计做一详细的总结。
二、物料性质的考虑1. 物料状态:根据物料的状态,可以将物料分为固体、液体和气体三种状态。
对于固体物料,需要考虑到物料的流动性、堆积性等特点,选择合适的传输方式和存储设备;对于液体物料,需要考虑到流体动力学、气液两相流等特点,选择合适的泵、阀门等设备;对于气体物料,需要考虑到气体的扩散性、压缩性等特点,选择合适的压缩机、分离器等设备。
2. 物料性质:物料的化学成分、粒度、密度等性质对过程装备设计也有重要影响。
不同的物料对设备的材质、结构、传输方式等都有不同的要求。
例如,对于易燃、易爆的物料,需要选择防爆设备;对于易结块、易结晶的物料,需要选择防结块、防结晶的设备。
3. 物料的流动性:物料在输送、储存过程中的流动性对设备的性能有重要影响。
需要考虑到物料的流变特性、黏度、流速等因素,选择合适的输送方式和储存设备,以确保物料的稳定输送和储存。
4. 物料的腐蚀性:部分物料具有腐蚀性,在过程装备设计中需要考虑到物料对设备的腐蚀影响,选择合适的耐腐蚀材料和防护措施,以保证设备的长期稳定运行。
三、工艺要求的考虑1. 工艺流程:过程装备设计需要根据生产工艺流程进行设计,确保设备与整个生产线的配套,达到流程的顺畅和高效。
2. 物料处理要求:不同的工艺对物料的处理有不同的要求,需要选择合适的设备完成物料的加工、分离、混合等工艺要求。
3. 温度、压力要求:部分工艺对温度、压力有严格的要求,需要选择能够满足要求的加热、冷却、压缩等设备。
4. 设备的安全性:工艺要求也需要考虑到设备的安全性,包括防爆、防溢、防漏等方面的设计,确保设备的安全运行。
过程设备设计知识点总结过程设备设计是指在工业生产过程中,根据产品的工艺要求以及工艺参数,设计出适用于生产过程的设备与装置。
其目的是通过合理的设备设计,实现生产过程的高效、安全和可持续发展。
本文将从设备选型、设备尺寸设计、设备材料选择等多个方面进行知识点总结。
1. 设备选型:在进行设备选型时,需要综合考虑产品的工艺要求、生产能力、成本等因素。
首先要明确产品的生产工艺流程,并根据工艺要求选择合适的设备类型,例如反应釜、蒸馏塔、搅拌罐等。
其次,根据生产量和效率要求确定设备的尺寸和型号。
此外,还要考虑设备的可靠性、维护便捷性以及对环境的影响等因素。
2. 设备尺寸设计:设备尺寸设计是指根据工艺要求和流体特性,确定设备的尺寸参数。
在进行设备尺寸设计时,需要考虑以下几个方面:首先,根据工艺流程中的液体或气体流量,确定设备的容积或处理能力;其次,根据流体的物性参数,计算出设备的传热面积和传质面积;最后,根据设备的结构特点和操作要求,确定设备的尺寸参数,如高度、直径、壁厚等。
3. 设备材料选择:设备材料的选择对于生产过程的安全性和稳定性至关重要。
在进行设备材料选择时,需要考虑以下几个因素:首先,要了解所处理物料的性质,包括温度、压力、腐蚀性等;其次,要考虑材料的耐腐蚀性、疲劳性和可焊接性等性能;最后,要根据工艺要求和成本因素确定合适的材料,常用的材料包括不锈钢、碳钢、玻璃钢等。
4. 安全措施:在过程设备设计中,安全是至关重要的。
设计人员需要充分考虑设备的安全性,以确保生产过程的顺利进行。
在设备设计中,需要采取以下安全措施:首先,确保设备具有足够的强度和稳定性,能够承受预期的工艺参数和负荷;其次,设备应具备安全阀、压力表、温度传感器等安全装置,并保证这些装置的准确性和可靠性;此外,还需要考虑应急处理措施,如泄漏、火灾等意外事故的处理方式。
5. 能耗与节能:在过程设备设计中,节能是一个重要的考虑因素。
设计人员应针对具体的生产工艺,采取有效的节能措施。
过程设备机械设计基础引言概述:过程设备机械设计是指为了满足化工、石油、食品等行业中的生产流程需求而设计的机械设备。
过程设备机械设计的基础包括材料力学、气体动力学、流体力学等多个领域的知识。
本文将从材料选择、强度分析、气体动力学和流体力学设计、传动装置设计和设备安装调试等五个大点展开阐述过程设备机械设计的基础知识。
正文内容:1. 材料选择1.1 材料强度和硬度要求1.1.1 根据设备所需承受载荷的大小选择材料的抗拉强度、屈服强度和硬度。
1.1.2 考虑材料的疲劳强度和耐蚀性,选择能在设备运行环境中保持长期使用性能的材料。
1.2 材料的可塑性与韧性要求1.2.1 针对设备所需的成形性能和抗冲击性能,选择具有适当可塑性和韧性的材料。
1.2.2 根据设备所需的耐磨性能和耐蚀性能,选择材料的硬度和耐蚀性。
1.3 典型应用材料1.3.1 不锈钢:具有良好的抗腐蚀性能和耐高温性能,适用于化工行业。
1.3.2 碳钢:适用于一般工业设备,具有良好的强度和可加工性。
1.3.3 合金钢:具有较高的强度和硬度,适用于高温高压设备。
1.3.4 铝合金:具有轻质、强度高、导热性能好的特点,适用于食品行业。
2. 强度分析2.1 设备结构强度计算2.1.1 考虑设备所需承受的静态和动态载荷,进行应力和变形的强度计算。
2.1.2 根据材料力学性能和设备结构形式,采用适当的计算方法和公式进行强度分析。
2.2 设备连接和固定件设计2.2.1 考虑设备连接和固定件所需的抗剪、抗拉、抗扭等强度要求。
2.2.2 选择合适的连接和固定方式,如焊接、螺栓连接、键槽连接等。
3. 气体动力学和流体力学设计3.1 设备内部流场分析3.1.1 运用数值模拟方法,分析气体或流体在设备内部的流动特性。
3.1.2 通过调整流道形状、增加流动引导装置等措施,提高设备内部流动效果。
3.2 设备流量计算和调整3.2.1 根据设备所需流量和压力降的要求,计算出合适的流量和压力降。
过程机械设备设计基础一、引言过程机械设备是指在工业生产过程中用于加工、输送、储存和控制物料的机械装置。
其设计的合理与否直接影响着设备的性能、效率和可靠性。
因此,掌握过程机械设备设计的基础知识是每个工程师必备的技能之一。
二、设备设计的基本原则1. 功能性原则:设备的设计应符合工艺流程的要求,能够完成所需的物料加工、输送、储存和控制任务。
2. 安全性原则:设备的设计应考虑到操作人员的安全,避免可能导致事故和伤害的因素。
3. 经济性原则:设备的设计应在满足功能和安全要求的前提下,尽量减少材料和能源的消耗,降低生产成本。
4. 可维护性原则:设备的设计应考虑到维护和保养的便捷性,提高设备的可靠性和使用寿命。
三、设备设计的基本步骤1. 确定需求:明确设备所需完成的功能和性能指标,包括物料的加工要求、工艺流程、生产能力等。
2. 方案设计:根据需求进行初步设计,选择合适的设备类型、结构和工作原理,并进行初步的尺寸和参数计算。
3. 详细设计:根据方案设计的结果进行详细设计,包括设备的结构、工作原理、传动装置、控制系统等。
4. 材料选择:根据设备的工作环境和要求选择合适的材料,考虑其强度、耐磨性、耐腐蚀性等因素。
5. 零部件设计:对设备的各个零部件进行设计,包括轴承、齿轮、传动带等,保证其寿命和可靠性。
6. 制图和文档编制:根据设计结果进行制图,包括总装图、零部件图和工艺流程图,并编制相应的设计说明书和操作手册。
7. 设备制造和试运行:根据设计图纸进行设备的制造和装配,并进行试运行和调试,确保设备的性能和可靠性。
8. 设备交付和验收:将制造完成的设备交付给用户,并进行验收测试,确保设备符合设计要求和用户需求。
四、常见的过程机械设备1. 搅拌设备:用于将不同物料进行混合和均匀搅拌,常见的有搅拌桶、搅拌机等。
2. 输送设备:用于将物料从一处输送到另一处,常见的有皮带输送机、螺旋输送机等。
3. 分离设备:用于将混合物料中的不同成分进行分离,常见的有离心机、过滤机等。
过程设备设计的知识点过程设备设计是工程设计过程中的重要环节,涉及到各种工业设备的设计和布局。
在这个过程中,设计师需要考虑多个方面的因素,包括工艺流程、设备选型、安全性、可操作性以及经济性等。
本文将介绍过程设备设计的一些重要知识点。
一、工艺流程图设计在进行过程设备设计之前,首先需要对工艺流程进行规划和设计。
工艺流程图可以清晰地表述出原料从输入到产品输出的整个过程,为后续设备选择和布局提供基础。
在设计工艺流程图时,需要考虑物料的流动路径、工艺参数控制点、主要设备单元等。
二、设备选型在进行设备选型时,设计师需要根据工艺要求和实际情况选择合适的设备。
设备选型需要考虑设备的工作原理、操作要求、处理能力、可靠性以及维护成本等因素。
同时,还需要考虑设备与周围环境的适配性,以保证设备的正常运行。
三、设备布局设备布局是指将各个设备合理地安排在工厂或工作区域内,以满足工艺流程和操作需求。
在进行设备布局时,需要考虑设备之间的关联关系、设备与道路、管道以及其他设施之间的距离和空间等。
合理的设备布局可以提高工作效率、节省空间,并且便于设备维护和操作。
四、安全设计安全设计是过程设备设计中不可忽视的一个重要方面。
设计师需要考虑设备的安全性能,合理设置安全设施,如安全阀、泄漏报警装置、紧急停止装置等。
同时,还需要合理考虑有害物质的处理和防护措施,以保证人员和设备的安全。
五、可操作性设计过程设备设计不仅要考虑设备的性能和安全性,还要考虑设备的可操作性。
设计师需要根据操作人员的需求,合理安排设备的控制系统和操作界面,保证操作的简便性和高效性。
此外,还需要考虑设备的维护和清洁,使之方便操作和维护。
六、经济性设计经济性设计是过程设备设计中不可忽视的一方面。
在设计过程中,需要综合考虑成本、产能、能耗等因素,选择合适的设备和工艺流程,以降低生产成本、提高经济效益。
综上所述,过程设备设计涉及多个知识点,包括工艺流程图设计、设备选型、设备布局、安全设计、可操作性设计以及经济性设计等。
过程设备设计pdf
过程设备设计是工业生产中关键的环节之一,它负责按照工艺要求,将原材料转化为成品,同时保证产品质量和生产效率。
本文将从设备设计的基本原理、设计流程、技术要求等多个方面进行探讨。
一、设计基本原理
过程设备设计的基本原理是在保证生产效率的同时,满足工艺要求和产品质量的需求。
设计的过程中,需要考虑设备的运行安全性、维护效率以及使用寿命等因素,同时也需要考虑环保、节能等问题。
二、设计流程
过程设备设计流程一般包括前期调研和分析、方案设计、设备选型和采购、制造和安装调试等步骤。
其中前期调研和分析是十分关键的,需要对工艺流程、原材料和成品要求等进行分析和研究,制定出可行的设计方案。
三、技术要求
过程设备设计需要满足的技术要求较为严格。
首先,设备必须要有良好的安全性和稳定性,以确保生产过程和人员安全。
其次,设备必须能够满足所需工艺条件和产品质量要求,以保证产品的市场竞争力。
最后,还需要考虑设备的运维成本和使用寿命等问题,以确保设备能够长期稳定运行。
四、案例分析
以石化行业生产的溶剂回收塔为例,溶剂回收塔是一种化工工艺设备,用于从废气中吸收或吸附有机物质,以回收有机溶剂。
在设计中,需要考虑溶剂的含量、流量、温度、压力等多个指标,以确保设备的正常运行。
此外,设计时还需要考虑使用寿命、维护成本等多个因素,以确保设备能够在长期运行中保持稳定性。
五、总结
过程设备设计是工业生产中至关重要的环节,其关系到整个生产过程的稳定性和产品质量。
在设计过程中,需要遵循基本原理,按流程进行设计和实施,满足技术要求以及考虑各种因素,从而得到优秀的设计方案。
过程设备设计要点1. 生产工艺流程:首先需要明确生产过程的工艺流程,包括原料投入、生产加工、产品分离、废料处理等具体步骤。
设计人员需要对整个生产流程有清晰的理解,以便为设备选型和布局提供基础。
2. 设备选型:根据生产工艺的要求,选择合适的设备和设施。
这包括选择合适的反应器、分离设备、输送设备和控制系统等。
设备选型需要考虑设备性能、生产能力、节能环保等因素。
3. 设备布局:根据生产场地的大小和形状,设计设备布局。
合理的设备布局能够提高生产效率,减少生产线上的物料和人员移动,从而降低生产成本。
4. 安全性考虑:在设计过程设备时,需要充分考虑生产过程中的安全风险和危险源。
合理设计设备,设置安全防护装置,确保生产过程中不会发生事故。
5. 节能环保:在设备设计中,需要考虑节能和环保因素。
选择能够降低能耗的设备,设计合理的废料处理系统,减少对环境的影响是设计的重要考虑因素。
在过程设备设计过程中,需要综合考虑上述要点,以确保设计出安全、高效、节能、环保的设备和设施,满足生产过程的需求。
过程设备设计是一个复杂且细致的工作,需要综合考虑各种因素以确保生产过程的顺利进行。
以下是一些与过程设备设计相关的要点:6. 自动化程度:在设备设计中,需要考虑自动化程度。
自动化设备能够提高生产效率,减少人力成本,并且提高生产过程的稳定性和质量。
因此,需要在设计中充分考虑自动化程度,选择适合的自动化设备和控制系统。
7. 资源利用:在设备设计中,需要考虑资源的有效利用。
这包括原料、能源以及人力资源的合理利用。
通过合理的设备设计和工艺优化,可以最大限度地利用资源,减少浪费,提高生产效率。
8. 维护与维修:设备的维护和维修是生产过程中不可忽视的一部分。
在设备设计中,需要考虑设备的维护保养方便性以及维修的便捷程度。
合理的设备设计可以减少设备的维护频率,降低维修成本,保障生产过程的顺利进行。
9. 卫生与清洁:在食品、医药等行业的过程设备设计中,卫生与清洁是至关重要的考虑因素。
1.从原料到产品,要经过一系列物理的、化学的或者生物的加工处理步骤,这一系列加工处理步骤称为过程。
2.过程设备必须满足过程的要求。
设备的新设计、新材料和新制造技术是在过程的要求下发展起来的,没有响应的设备,过程也无法实现。
3.过程设备设计是根据产品在全寿命周期内的功能和市场竞争(性能、质量、成本等)要求,综合考虑环境要求和资源利用率,运用工业、机械、控制、力学、材料以及美学、经济学等知识,经过设计师的创造性劳动,制定可用于制造的技术文件。
4.随着科学技术的发展,过程设备向多功能、大型化、成套化和轻量化方向发展。
5.压力容器外壳构成:筒体、封头、密封装置、开孔接管、支座及安全附件6.压力容器规范简介ASME《锅炉与压力容器规范》,GB150-1998《钢制压力容器》,GB151-1999《管壳式换热器》,GB-12337-1998《钢制球形储罐》,JB4732-1995《钢制压力容器-分析设计标准》,JB4710-2000《钢制塔式容器》7.轴向压力σ=PD/4t,径向压力σ=PD/2t8.热应力的特点:热应力随约束程度的增大而增大;热应力与零外载相平衡;热应力具有自限性屈服流动或高温蠕变可使热应力降低9.失稳:承受外压载荷的壳体,当外压载荷增大到某一值时,壳体会突然失去原来的形状,被压扁或出现波纹,载荷卸去后,壳体不能恢复原状,这种现象称为外压壳体的屈曲或失稳。
10.失稳时呈现两个波纹,即n=2,这样的圆柱壳称为长圆筒;失稳时呈现两个以上的波纹数,即n>2这种圆柱壳称为短圆筒。
11.长圆筒临界应力P cr=2.2E(t/D0)3,短圆筒P cr=2.59Et/LD0(D0/t)0.5.临界长度2.2E(t/D0)3=2.59E(t/D)3/(L/D(t/D)0.5) L cr=1.17D(D/t)0.5.12.降低局部应力措施:1.合理的结构设计(a,减少两连接件的刚度差;b,尽量采用圆弧过渡;c,局部区域补强d,选择合适的开孔方位);2.减少附件传递的局部载荷;3.尽量减少结构中的缺陷。
过程装备与控制工程最重要的一些知识过程装备与控制工程是一门涵盖多个学科领域的综合学科,它涉及到工程设计、控制理论、自动化技术、仪器仪表、计算机技术等多个方面的知识。
在这篇文章中,我们将重点介绍过程装备与控制工程中最重要的一些知识。
1. 过程装备:过程装备是指在工业生产过程中使用的各种设备和工具,包括压力容器、换热器、反应器、分离器等。
过程装备的设计和选择对于生产过程的稳定性、效率和安全性都起到至关重要的作用。
在过程装备的设计中,需要考虑流体力学、热传导、质量传递等多个方面的知识。
2. 过程控制:过程控制是指对工业生产过程中的各种参数进行监测和调节,以达到预期的生产目标。
过程控制可以分为开环控制和闭环控制两种方式。
开环控制是指根据预先设定的参数进行调节,而闭环控制是根据实际反馈信号进行调节。
过程控制需要掌握控制理论、信号处理、传感器技术等知识。
3. 自动化技术:自动化技术是过程装备与控制工程中非常重要的一部分,它涵盖了传感器、执行器、控制器、人机界面等多个方面的技术。
自动化技术的发展使得工业生产过程更加高效、稳定和安全。
在自动化技术的应用中,需要掌握电气工程、电子技术、计算机技术等多个方面的知识。
4. 仪器仪表:仪器仪表是过程装备与控制工程中用于测量和控制的设备,包括压力传感器、温度计、流量计、控制阀等。
仪器仪表的准确性和可靠性对于生产过程的控制至关重要。
在仪器仪表的选择和使用中,需要掌握仪器仪表原理、校准方法、维护技术等知识。
5. 计算机技术:计算机技术在过程装备与控制工程中的应用越来越广泛。
计算机可以用于数据采集、信号处理、控制算法实现等方面。
掌握计算机技术可以提高工业生产过程的自动化水平和控制精度。
6. 工程设计:工程设计是过程装备与控制工程中的核心环节,它涉及到对整个工业生产过程进行分析、规划和优化。
在工程设计中,需要考虑到工艺流程、设备选择、控制策略等多个方面的因素。
工程设计的质量直接影响到工业生产过程的效率和安全性。
1试推导内压薄壁球壳的厚度计算公式。
(10分)πδσ相等。
对于薄壳体,必与轴向内力Dϕ可近似认为内直径i D等与壳体的中面直径Dπδσ=DϕArray由此得σ由强度理论知<=φ[]t由上式可得2封头和筒体连接处存在不连续应力,但破口却在筒体中部,试解释其原因封头和筒体连接处虽然存在不连续应力,但连接处会产生变形协调,导致材料强化;而筒体中部应力与所受压力成正比,随着压力的增大应力迅速增大,所以破口出现在筒体中部3什么是焊接应力?减少焊接应力有什么措施?答:焊接应力是指焊接过程中由于局部加热导致焊接件产生较大的温度梯度,因而在焊件内产生的应力。
为减少焊接应力和变形,应从设计和焊接工艺两个方面采取措施,如尽量减少焊接接头的数量,相等焊缝间应保持足够的间距,尽可能避免交叉,焊缝不要布置在高应力区,避免出现十字焊缝,焊前预热等等)4预应力法提高厚壁圆筒屈服承载能力的基本原理是什么?答:通过压缩预应力,使内层材料受到压缩而外层材料受到拉伸。
当厚壁圆筒承受工作压力时,筒壁内的应力分布由按拉美公式确定的弹性应力和残余应力叠加而成,内壁处的总应力有所下降,外壁处的总压力有所上升,均化沿筒壁厚度方向的应力分布,从而提高圆筒的初始屈服压力。
5对于外压圆筒,只要设置加强圈就可提高其临界压力。
对否,为什么?采用的加强圈愈多,圆筒所需厚度就愈薄,故经济上愈合理。
对否,为什么?答:对于承受外压的圆筒,短圆筒的临界压力比长圆筒的高,且短圆筒的临界压力与其长度成反比。
故可通过设置合适间距的加强圈,使加强圈和筒体一起承受外压载荷,并使长圆筒变为短圆筒(加强圈之间或加强圈与筒体封头的间距L<L cr),或使短圆筒的长度进一步降低,从而提高圆筒的临界压力。
若设置的加强圈不能使长圆筒变为短圆筒(L≥L cr),则所设置的加强圈并不能提高圆筒的临界压力。
L D很小时,短圆筒可能变为刚性圆筒,此时圆筒设置加强圈将增加制造成本;而且,当/o的失效形式已不是失稳而是压缩强度破坏,此时再设置额外的加强圈已无济于事。
12过程设备设计与选型的主要内容过程设备设计与选型是指根据工艺要求和生产需求,对工艺设备进行设计和选择的过程。
在过程设备设计与选型过程中,主要内容包括以下几个方面:1.工艺流程分析:工艺流程分析是一个重要的环节,通过对工艺流程的详细分析,可以确定工艺设备的种类、数量和工艺单元。
在工艺流程分析中,需要考虑原料种类、产量、产品质量要求等因素。
2.设备选型:设备选型是根据工艺要求,从市场上选择适合的设备。
设备选型需要综合考虑设备的性能、质量、技术参数、价格和生产厂家等因素。
根据工艺要求,选定适合的设备可以有效地提高生产效率和产品质量。
3.设备布局设计:设备布局设计是将选定的设备合理地布置在生产场地上。
设备布局的合理与否直接影响到生产效率和工作安全。
在设备布局设计中,要考虑设备之间的空间关系、设备与人员的安全距离、设备的维护通道等因素。
4.设备参数设计:设备参数设计是根据工艺要求和生产需求,对设备的参数进行设计。
设备参数设计包括设备的工作容量、加工速度、温度、压力等参数的确定。
5.设备材料选择:设备材料选择是根据工艺要求和物料性质,选择适合的材料作为设备的制造材料。
设备材料选择需要考虑材料的耐腐蚀性、耐磨性、强度等因素。
6.设备自动化设计:随着科技的发展,许多设备具备自动化的功能。
设备自动化设计是将自动化技术应用于设备中,提高生产效率和产品质量。
7.设备安装调试:设备安装调试是将选定的设备按照设计要求安装到指定位置,并经过调试达到正常运行状态。
设备安装调试需要进行设备连接、管道布局、检查设备各部件是否正常工作等。
过程设备设计与选型的主要内容是为了根据生产需求和工艺要求,选择合适的设备,并进行设计、布局和安装调试等工作,以确保生产的顺利进行和产品的质量达到要求。
此外,过程设备设计与选型还需要考虑经济性和可持续性等因素,以达到节约资源、提高效益的目标。
通过科学合理地进行过程设备设计与选型,可以提高生产效率、保证产品质量、降低生产成本,并对企业的发展起到推动作用。
1.过程设备的应用:1)加氢反应器2)储氢容器3)超高压食品杀菌釜4)核反应堆5)超临界流体萃取装置6)深海潜艇2.过程设备的特点:过程设备向多功能,大型化,成套化和轻量化方向发展1)功能原理多种多样2)化机电一体化3)外壳一般为压力容器3.压力容器规范:中国:GB150 《钢制压力容器》,JB4732 《钢制压力容器---分析设计标准》、JB/T4735《钢制焊接常压容器》和技术法规《固定式压力容器安全技术监察规程》等4.过程设备的基本要求:1)安全可靠:1.材料的强度高、韧性好。
2.材料与介质相容。
3.结构有足够的刚度和抗失稳能力。
4.密封性能好。
2)满足过程要求:1.功能要求。
2.寿命要求。
3)综合经济性好:1.生产效率高、消耗低。
2.结构合理,制造简便。
3.易于运输和安装4)易于操作、维护和控制:1.操作简单。
2.可维护性。
3.便于控制5)优良的环境性能5.压力容器的基本组成:1)筒体2)封头3)密封装置4)开孔与接管5)支座6)安全附件6.7.介质危害性:介质的毒性、易燃性、腐蚀性、氧化性等,影响分类的主要是毒性和易燃性8.毒性:极度危害(Ⅰ级)<0.1mg/m3 高度危害(Ⅱ级)0.1~1mg/m3中度危害(Ⅲ级)1~10mg/m3 轻度危害(Ⅳ级)>10mg/m39.压力容器的分类:1)按压力容器等级分:低压容器L 0.1~1.6MPa;中压容器M1.6~10.0MPa ;高压容器H 10~100MPa;超高压容器U 100MPa~ 2)按容器在生产中的作用分类:反应压力容器R;换热压力容器E;分离压力容器S;储存压力容器C球罐B。
3)按安装方式分类:固定式压力容器;移动式压力容器。
4)按安全技术管理分类:1.介质分组:第一组介质:毒性危害程度为极度危害、高度危害的化学介质,易爆介质,液化气体。
第二组介质2.压力容器分类10.国外主要规范标准简介:ASME规范(美国)JIS B8266《压力容器构造---特定标准》(日本)EEC/EC指令和协调标准(欧盟)11.国内主要规范标准介绍:法律---行政法规---部门规章---安全技术规范---引用标准12.压力来源的三种情况:一是流体经泵或压缩机,通过与容器相连接的管道,输入容器内而产生压力。
如氨合成塔,尿素合成塔。
二是加热盛装液体的密闭容器,液体膨胀或汽化后使容器类压力升高,如人造水晶釜。
三是盛装液化气体的容器,如液氨储罐,其压力为液体的饱和蒸气压。
13.非压力载荷:分为整体载荷和局部载荷。
整体载荷:重力,风,地震,运输。
局部载荷:管系载荷,支座反力和吊装力14.载荷工况:1.正常操作工况2.特殊载荷工况(ⅰ压力试验ⅱ开停工及检修)3.意外载荷工况15.对于圆筒,(D o/D i)max《1.1~1.2,则成为薄壁圆筒,反之,则称为厚壁圆筒16.无力矩理论应用条件1)壳体的厚度、中面曲率和载荷连续,没有突变,且构成壳体的材料的物理性能相同2)壳体的边界处不受横向剪力、弯矩和转矩作用3)壳体的边界处的约束沿经线的切线方向,不得限制边界处的转角与挠度17.不连续效应:由于这种总体结构不连续,组合壳在连接处附近的局部区域出现衰减很快的应力增大现象。
该处的应力具有局限性和自限性18.厚壁圆筒的筒壁应力值19.热应力:因温度变化引起的自由膨胀或收缩受到约束,在弹性体内所引起的应力。
20.厚壁圆筒中压力与容积变化量的关系OA段:弹性变形阶段A点:初始屈服压力P sAC段:弹塑性变形阶段B点:全屈服压力P soC点:塑性垮塌压力CD段:爆破阶段D点:爆破压力P b21.自增强:原理:通过超工作压力处理,由筒壁自身外层材料的弹性收缩引起残余应力的方法;目的:提高屈服承载能力22.失稳现象:承受外压载荷的壳体,当外压载荷增大到某一值时,壳体会突然失去原来的形状,被压扁或出现波纹,载荷卸去后,壳体不能恢复原状的现象23.失稳时呈现两个波纹,n=2,这样的圆柱壳称为长圆筒。
n>2,称为短圆筒。
24.过大的局部应力会使结构处于不安定状态;在变动载荷作用下,局部应力处易形成裂纹,有可能导致疲劳失效。
25.降低局部应力的措施:⑴合理的结构设计①减少两连接件的刚度差②尽量采用圆弧过渡③局部区域补强④选择合适的开孔方位⑵减少附件传递的局部载荷⑶尽量减少结构中的缺陷26.钢材分类:钢板,钢管,锻件27.钢材类型:碳素钢:含碳量小于0.02~2.11%的铁碳合金。
以及少量硫、磷、硅、氧、氮等元素 10、20钢钢管; 20、 35钢锻件Q235-B Q235-C系列钢板Q245R、 20G 低合金钢:Q345R,16MnDR,15MnNiDR,09MnNiDR,15CrMoR,20MnMo,09MnNiD,12Cr1MoVR 高合金钢:0Cr13(S11316),0Cr18Ni9,0Cr18Ni10Ti,0Cr19Ni10,00Cr18Ni5Mo3Si328.有色金属:铜及铜合金,铝及铝合金,镍及镍合金,钛及钛合金29.非金属材料:涂料,工程塑料,不透性石墨,搪瓷,陶瓷30.冷加工:定义:在再结晶温度以下进行的塑性变形特点:冷变形中无再结晶出现,因而有加工硬化现象。
由于冷变形时有加工硬化现象,塑性降低,每次的冷变形程度不宜过大,否则,变形金属将产生断裂破坏。
31.热加工:定义:凡是在再结晶温度以上进行的塑性变形特点:热变形时加工硬化和再结晶现象同时出现,但加工硬化被再结晶消除变形后具有再结晶组织,因而无加工硬化现象。
32.应变时效:定义:经冷加工塑性变形的碳素钢、低合金钢,在室温下停留较长时间,或在较高温度下停留一定时间后,会出现屈服点和抗拉强度提高,塑性和韧性降低的现象,称为应变时效。
危害:发生应变时效的钢材,不但冲击吸收功大幅度下降,而且韧脆转变温度大幅度上升,表现出常温下的脆化。
降低危害的措施:一般认为,合金元素中,碳、氮增加钢的应变时效敏感性。
减少碳、氮含量,加入铝、钛、钒等元素,使它们与碳、氮形成稳定化合物,可显著减弱钢的应变时效敏感性。
31.焊接接头包括焊缝、熔合区和热影响区33.焊接接头常见缺陷:裂纹,夹渣,未焊透,未熔合,焊瘤,气孔,咬边34.焊接接头检验:破坏性检验非破坏性检验:外观检查(直观,量具);密封性检验(水,气,油);无损检测(射线透照,超声波,表面(磁粉,渗透,涡流))35.蠕变现象:定义:在高温和恒定载荷的作用下,金属材料会产生随时间而发展的塑性变形,这种现象被称为蠕变现象。
36.蠕变曲线三阶段:减速蠕变,恒速蠕变,加速蠕变37.松弛:在高温和应力作用下,随着时间的增长,如果变形总量保持不变,蠕变而逐渐增加的塑性变形将逐步代替原来的弹性变形,从而使零件内的应力逐渐降低,这种称为松驰。
38.松弛的危害:如高温压力容器中的连接螺栓,可能因松弛而引起容器泄漏39.按机理的腐蚀分类:电化学腐蚀,化学腐蚀,应力腐蚀40.应力腐蚀的特征:拉伸应力;特定合金和介质的组合;一般为延迟脆性断裂41.应力腐蚀的三个阶段:孕育阶段;裂纹稳定扩展阶段;裂纹失稳阶段42.常见的应力腐蚀:碱溶液(碱脆);湿硫化氢(硫裂);液氨(氨脆);氯化物溶液(氯脆)43.应力腐蚀的预防措施:合理选择材料;减少或消除残余拉应力;改善介质条件;涂层保护;合理设计38.压力容器失效形式:按机理:突发性失效;退化性失效(长期,循环载荷引起)按原因:强度失效,刚度失效,失稳失效,泄露失效39.强度失效:因材料屈服或断裂引起的压力容器失效,称为强度失效,包括韧性断裂;脆性断裂;疲劳断裂;蠕变断裂;腐蚀断裂等40.刚度失效:由于构件过度的弹性变形引起的失效。
如塔受风41.失稳失效:在压应力作用下,压力容器突然失去其原有的规则几何形状引起的失效42.泄漏失效:泄漏而引起的失效。
危害——可能引起中毒、燃烧和爆炸等事故,造成环境污染43.屈服和断裂是容器强度失效的两种表现形式44.韧性断裂——是压力容器在载荷作用下,产生的应力达到或接近所用材料的强度极限而发生的断裂断裂特征——断后有肉眼可见的宏观变形,如整体鼓胀,周长伸长率可达10~20%,断口处厚度显著减薄;没有碎片,或偶尔有碎片;按实测厚度计算的爆破压力与实际爆破压力相当接近45.脆性断裂——是指变形量很小、且在壳壁中的应力值远低于材料的强度极限时发生的断裂。
断裂特征——断裂时容器没有膨胀,即无明显的塑性变形;其断口齐平,并与最大应力方向垂直;断裂的速度极快,常使容器断裂成碎片。
46.断裂原因---材料脆性和缺陷。
47.疲劳断裂——在交变载荷作用下,经一定循环次数后产生裂纹或突然发生断裂失效的过程。
包括裂纹萌生、扩展和最后断裂三个阶段48.疲劳断口由裂纹源、裂纹扩展区、瞬时裂纹区三部分组成49.筒体结构:多层包扎式:优点:制造工艺简单,不需大型复杂加工设备;安全可靠性高,层板间隙具有阻止缺陷和裂纹向厚度方向扩展的能力;减少了脆性破坏的可能性;包扎预应力改善筒体的应力分布;对介质适应性强,可选择合适的内筒材料。
缺点:筒体制造工序多、周期长、效率低、钢材利用率低(仅60%左右);深环焊缝对制造质量和安全有显著影响。
①无损检测困难,环焊缝的两侧均有层板,无法用超声检测,只能射线检测;②焊缝部位存在很大的焊接残余应力,且焊缝晶粒易变得粗大而韧性下降;③环焊缝的坡口切削工作量大,且焊接复杂。
热套式:优点:工序少,周期短,且具有包扎式筒体的大多数优点缺点:筒体要有较准确的过盈量,卷筒的精度要求很高,且套合时需选配套合;套合时贴紧程度不很均匀;套合后,需热处理以消除套合预应力及深环焊缝的焊接残余应力绕板式:优点:机械化程度高,制造效率高,材料利用率高(可达90%以上)。
缺点:薄卷板存在中间厚两边薄,卷板后易累积间隙。
整体多层包扎式:优点:环、纵焊缝错开,筒体与封头或法兰间的环焊缝为一定角度的斜面焊缝,承载面积增大。
绕带式:两种结构:型槽绕带式;扁平钢带倾角错绕式优点:筒体具有较高的安全性,机械化程度高,材料损耗少,且由于存在预紧力,在内压用下,筒壁应力分布较均匀;缺点:钢带需由钢厂专门轧制,尺寸公差要求严,技术要求高;为保证邻层钢带能相互啮合,需采用精度较高的专用缠绕机床.50.厚度示意图:51.计算厚度(δ)——由公式采用计算压力得到的厚度。
必要时还应计入其它载荷对厚度的影响。
52.设计厚度(δd)——计算厚度与腐蚀裕量之和。
δd=δ+C253.名义厚度(δn)——设计厚度加上钢材厚度负偏差后向上圆整至钢材标准规格的厚度,即标注在图样上的厚度。
δn=δd+C1+Δ= δ+C1 +C2 +Δ54.有效厚度(δe)——名义厚度减去钢材负偏差和腐蚀裕量。
δe=δn-C1-C255.厚度附加量(C)——由钢材的厚度负偏差C1和腐蚀裕量C2 组成。