2017学年(2018届)上海高三数学一模(松江卷)(含答案)
- 格式:doc
- 大小:864.00 KB
- 文档页数:8
2 9、若函数x y a 12log -=在),0(+∞上为减函数,且函数x a y )3(=为增函数,则a 的取值范围是( ) A.)31,0( B.(0,1) C.),1(+∞ D. )1,21( 10、如果数列}{n a 的通项公式是n n a 2=,那么=++++54321a a a a a ( )A.126B. 31C. 30D.6211.下列函数中,周期为π的奇函数是( )A.x x y sin cos =B.x x y 22sin cos -=C.x y cos 1-=D.x x y 2cos 2sin -= 12、.在同一直角坐标系中,函数y=x+a 与函数y=a x 的图像可能是:( )A. B. C. D.13、.函数)42sin(2)(π+=x x f 的图象,可由函数x x f 2sin 2)(=的图象( )而得到。
A. 向右平移4π个单位 B. 向左平移4π个单位 C. 向右平移8π 个单位 D. 向左平移8π 个单位 14、已知α为第二象限角,1312cos -=α,则αtan 等于( ) A.125 B.512 C.512- D.125- 15、在△ABC 中,若内角A 、B 、C 成等差数列,则=-C A C A sin sin cos cos ( )3 A. 21- B. 0 C. 23 D. 1 二、填空题(每空2分,共30分)16、集合}012{2=++x ax x 中只有一个元素,则=a _________.17、已知121)(+-=x a x f ,若)(x f 为奇函数,则=a _________ 18、已知⎩⎨⎧<-≥-=0,40,5)(22x x x x x f ,则=)]2([f f ___________________. 19、计算)163sin(77sin 17cos 13sin ︒-︒-︒︒= .20.在等比数列}{n a 中,31,891==n a a ,公比32=q ,则=n ________. 21.设}{n a 为等比数列,若,23=a 则此数列前5项的积为_________.22、函数x x f 2log 2)(-=的定义域为___________,23、如果0)](log [log log 237=x ,则21x 的值是_________________ 24、=++++-49tan 3sin )1251()279(27log 3103ππ____________. 25、设20πα<<,则)c o s 1(l o g )c o s 1(l o g s i n s i n αααα-++的值为______.26、 若等差数列}{n a 的公差为2-,且9741=++a a a ,则=++852a a a ___________.27、已知一元二次不等式02<++b ax x 的解集是)7,2(-,则=+b a _____。
2017年上海市虹口区高考数学一模试卷一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B=.2.已知,则复数z的虚部为.3.设函数f(x)=sinx﹣cosx,且f(α)=1,则sin2α=.4.已知二元一次方程组的增广矩阵是,则此方程组的解是.5.数列{a n}是首项为1,公差为2的等差数列,S n是它前n项和,则=.6.已知角A是△ABC的内角,则“”是“的条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).7.若双曲线x2﹣=1的一个焦点到其渐近线的距离为2,则该双曲线的焦距等于.8.若正项等比数列{a n}满足:a3+a5=4,则a4的最大值为.9.一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于.10.设函数f(x)=,则当x≤﹣1时,则f[f(x)]表达式的展开式中含x2项的系数是.11.点M(20,40),抛物线y2=2px(p>0)的焦点为F,若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于.12.当实数x ,y 满足x 2+y 2=1时,|x +2y +a |+|3﹣x ﹣2y |的取值与x ,y 均无关,则实数a 的取范围是 .二、选择题(每小题5分,满分20分)13.在空间,α表示平面,m ,n 表示二条直线,则下列命题中错误的是( )A .若m ∥α,m 、n 不平行,则n 与α不平行B .若m ∥α,m 、n 不垂直,则n 与α不垂直C .若m ⊥α,m 、n 不平行,则n 与α不垂直D .若m ⊥α,m 、n 不垂直,则n 与α不平行14.已知函数在区间[0,a ](其中a >0)上单调递增,则实数a 的取值范围是( )A .B .C .D .15.如图,在圆C 中,点A 、B 在圆上,则的值( )A .只与圆C 的半径有关B .既与圆C 的半径有关,又与弦AB 的长度有关 C .只与弦AB 的长度有关D .是与圆C 的半径和弦AB 的长度均无关的定值16.定义f (x )={x }(其中{x }表示不小于x 的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是( ) ①f (2x )=2f (x ); ②若f (x 1)=f (x 2),则x 1﹣x 2<1;③任意x 1,x 2∈R ,f (x 1+x 2)≤f (x 1)+f (x 2);④.A .①②B .①③C .②③D .②④三、解答题(本大题满分76分)17.在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.(1)求证:PA⊥BC;(2)求此三棱锥的全面积和体积.18.如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其北偏东30°方向与它相距20海里的B处有一外国船只,且D岛位于海监船正东18海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D岛12海里的E处(E在B的正南方向),不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时).19.已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).(1)判断此函数的奇偶性,并说明理由;(2)判断此函数在[,+∞)的单调性,并用单调性的定义证明你的结论;(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.20.椭圆C:过点M(2,0),且右焦点为F(1,0),过F的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.(1)求椭圆C的方程;(2)如果直线l的斜率等于﹣1,求出k1•k2的值;(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.21.已知函数f(x)=2|x+2|﹣|x+1|,无穷数列{a n}的首项a1=a.(1)如果a n=f(n)(n∈N*),写出数列{a n}的通项公式;(2)如果a n=f(a n﹣1)(n∈N*且n≥2),要使得数列{a n}是等差数列,求首项a 的取值范围;(3)如果a n=f(a n﹣1)(n∈N*且n≥2),求出数列{a n}的前n项和S n.2017年上海市虹口区高考数学一模试卷参考答案与试题解析一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B={2,4,8} .【考点】交集及其运算.【分析】先分别求出集合A和B,由此能出A∩B.【解答】解:∵集合A={1,2,4,6,8},∴B={x|x=2k,k∈A}={2,4,8,12,19},∴A∩B={2,4,8}.故答案为:{2,4,8}.2.已知,则复数z的虚部为1.【考点】复数代数形式的乘除运算.【分析】由,得,利用复数复数代数形式的乘法运算化简,求出z,则答案可求.【解答】解:由,得=2﹣2i+i﹣i2=3﹣i,则z=3+i.∴复数z的虚部为:1.故答案为:1.3.设函数f(x)=sinx﹣cosx,且f(α)=1,则sin2α=0.【考点】二倍角的正弦.【分析】由已知可得sinα﹣cosα=1,两边平方,利用二倍角的正弦函数公式,同角三角函数基本关系式即可得解.【解答】解:∵f(x)=sinx﹣cosx,且f(α)=1,∴sinα﹣cosα=1,∴两边平方,可得:sin2α+cos2α﹣2sinαcosα=1,∴1﹣sin2α=1,可得:sin2α=0.故答案为:0.4.已知二元一次方程组的增广矩阵是,则此方程组的解是.【考点】系数矩阵的逆矩阵解方程组.【分析】先利用增广矩阵,写出相应的二元一次方程组,然后再求解即得.【解答】解:由题意,方程组解之得故答案为5.数列{a n}是首项为1,公差为2的等差数列,S n是它前n项和,则=.【考点】数列的极限.【分析】求出数列的和以及通项公式,然后求解数列的极限即可.【解答】解:数列{a n}是首项为1,公差为2的等差数列,S n==n2.a n=1+(n﹣1)×2=2n﹣1,则==故答案为:;6.已知角A是△ABC的内角,则“”是“的充分不必要条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及三角函数值判断即可.【解答】解:A为△ABC的内角,则A∈(0,180°),若命题p:cosA=成立,则A=60°,sinA=;而命题q:sinA=成立,又由A∈(0,180°),则A=60°或120°;因此由p可以推得q成立,由q推不出p,可见p是q的充分不必要条件.故答案为:充分不必要.7.若双曲线x2﹣=1的一个焦点到其渐近线的距离为2,则该双曲线的焦距等于6.【考点】双曲线的简单性质.【分析】根据焦点到其渐近线的距离求出b的值即可得到结论.【解答】解:双曲线的渐近线为y=±bx,不妨设为y=﹣bx,即bx+y=0,焦点坐标为F(c,0),则焦点到其渐近线的距离d===b=2,则c====3,则双曲线的焦距等于2c=6,故答案为:68.若正项等比数列{a n}满足:a3+a5=4,则a4的最大值为2.【考点】等比数列的性质.【分析】利用数列{a n}是各项均为正数的等比数列,可得a3a5=a42,再利用基本不等式,即可求得a4的最大值.【解答】解:∵数列{a n}是各项均为正数的等比数列,∴a3a5=a42,∵等比数列{a n}各项均为正数,∴a3+a5≥2,当且仅当a3=a5=2时,取等号,∴a3=a5=2时,a4的最大值为2.故答案是:2.9.一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于.【考点】椭圆的简单性质.【分析】利用已知条件,求出题意的长半轴,短半轴,然后求出半焦距,即可.【解答】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=8,∵a2=b2+c2,∴c==2,∴椭圆的焦距为;故答案为:4.10.设函数f(x)=,则当x≤﹣1时,则f[f(x)]表达式的展开式中含x2项的系数是60.【考点】分段函数的应用.【分析】根据分段函数的解析式先求出f[f(x)]表达式,再根据利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为2求得r,再代入系数求出结果【解答】解:由函数f(x)=,当x≤﹣1时,f(x)=﹣2x﹣1,此时f(x)min=f(﹣1)=2﹣1=1,∴f[f(x)]=(﹣2x﹣1)6=(2x+1)6,=C6r2r x r,∴T r+1当r=2时,系数为C62×22=60,故答案为:6011.点M(20,40),抛物线y2=2px(p>0)的焦点为F,若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于42或22.【考点】抛物线的简单性质.【分析】过P做抛物线的准线的垂线,垂足为D,则|PF|=|PD|,当M(20,40)位于抛物线内,当M,P,D共线时,|PM|+|PF|的距离最小,20+=41,解得:p=42,当M(20,40)位于抛物线外,由勾股定理可知:=41,p=22或58,当p=58时,y2=116x,则点M(20,40)在抛物线内,舍去,即可求得p的值.【解答】解:由抛物线的定义可知:抛物线上的点到焦点距离=到准线的距离,过P做抛物线的准线的垂线,垂足为D,则|PF|=|PD|,当M(20,40)位于抛物线内,∴|PM|+|PF|=|PM|+|PD|,当M,P,D共线时,|PM|+|PF|的距离最小,由最小值为41,即20+=41,解得:p=42,当M(20,40)位于抛物线外,当P,M,F共线时,|PM|+|PF|取最小值,即=41,解得:p=22或58,由当p=58时,y2=116x,则点M(20,40)在抛物线内,舍去,故答案为:42或22.12.当实数x,y满足x2+y2=1时,|x+2y+a|+|3﹣x﹣2y|的取值与x,y均无关,则实数a的取范围是[,+∞).【考点】圆方程的综合应用.【分析】根据实数x,y满足x2+y2=1,设x=cosθ,y=sinθ,求出x+2y的取值范围,再讨论a的取值范围,求出|x+2y+a|+|3﹣x﹣2y|的值与x,y均无关时a的取范围.【解答】解:∵实数x,y满足x2+y2=1,可设x=cosθ,y=sinθ,则x+2y=cosθ+2sinθ=sin(θ+α),其中α=arctan2;∴﹣≤x+2y≤,∴当a≥时,|x+2y+a|+|3﹣x﹣2y|=(x+2y+a)+(3﹣x﹣2y)=a+3,其值与x,y均无关;∴实数a的取范围是[,+∞).故答案为:.二、选择题(每小题5分,满分20分)13.在空间,α表示平面,m,n表示二条直线,则下列命题中错误的是()A.若m∥α,m、n不平行,则n与α不平行B.若m∥α,m、n不垂直,则n与α不垂直C.若m⊥α,m、n不平行,则n与α不垂直D.若m⊥α,m、n不垂直,则n与α不平行【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】对于A,若m∥α,m、n不平行,则n与α可能平行、相交或n⊂α,即可得出结论.【解答】解:对于A,若m∥α,m、n不平行,则n与α可能平行、相交或n ⊂α,故不正确.故选A.14.已知函数在区间[0,a](其中a>0)上单调递增,则实数a的取值范围是()A.B.C.D.【考点】正弦函数的单调性.【分析】由条件利用正弦函数的单调性,可得2a+≤,求得a的范围.【解答】解:∵函数在区间[0,a](其中a>0)上单调递增,则2a+≤,求得a≤,故有0<a≤,故选:B.15.如图,在圆C中,点A、B在圆上,则的值()A.只与圆C的半径有关B.既与圆C的半径有关,又与弦AB的长度有关C.只与弦AB的长度有关D.是与圆C的半径和弦AB的长度均无关的定值【考点】平面向量数量积的运算.【分析】展开数量积,结合向量在向量方向上投影的概念可得=.则答案可求.【解答】解:如图,过圆心C作CD⊥AB,垂足为D,则=||||•cos∠CAB=.∴的值只与弦AB的长度有关.故选:C.16.定义f(x)={x}(其中{x}表示不小于x的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是()①f(2x)=2f(x);②若f(x1)=f(x2),则x1﹣x2<1;③任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2);④.A.①②B.①③C.②③D.②④【考点】函数与方程的综合运用.【分析】充分理解“取上整函数”的定义.如果选项不满足题意,只需要举例说明即可【解答】解:对于①,当x=1.4时,f(2x)=f(2.8)=3.2,f(1.4)=4.所以f (2x)≠2f(x);①错.对于②,若f(x1)=f(x2).当x1为整数时,f(x1)=x1,此时x2>x1﹣1,即x1﹣x2<1.当x1不是整数时,f(x1)=[x1]+1.[x1]表示不大于x1的最大整数.x2表示比x1的整数部分大1的整数或者是和x1保持相同整数的数,此时﹣x1﹣x2<1.故②正确.对于③,当x1,x2∈Z,f(x1+x2)=f(x1)+f(x2),当x1,x2∉Z,f(x1+x2)<f(x1)+f(x2),故正确;对于④,举例f(1.2)+f(1.2+0.5)=4≠f(2.4)=3.故④错误.故选:C.三、解答题(本大题满分76分)17.在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.(1)求证:PA⊥BC;(2)求此三棱锥的全面积和体积.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积;直线与平面垂直的性质.【分析】(1)取BC的中点M,连AM、BM.由△ABC是等边三角形,可得AM ⊥BC.再由PB=PC,得PM⊥BC.利用线面垂直的判定可得BC⊥平面PAM,进一步得到PA⊥BC;(2)记O是等边三角形的中心,则PO⊥平面ABC.由已知求出高,可求三棱锥的体积.求出各面的面积可得三棱锥的全面积.【解答】(1)证明:取BC的中点M,连AM、BM.∵△ABC是等边三角形,∴AM⊥BC.又∵PB=PC,∴PM⊥BC.∵AM∩PM=M,∴BC⊥平面PAM,则PA⊥BC;(2)解:记O是等边三角形的中心,则PO⊥平面ABC.∵△ABC是边长为6的等边三角形,∴.∴,,∵,∴;.18.如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其北偏东30°方向与它相距20海里的B处有一外国船只,且D岛位于海监船正东18海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D岛12海里的E处(E在B的正南方向),不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时).【考点】直线与圆的位置关系.【分析】(1)依题意,在△ABD中,∠DAB=60°,由余弦定理求得DB;(2)法一、过点B作BH⊥AD于点H,在Rt△ABH中,求解直角三角形可得HE、AE的值,进一步得到sin∠EAH,则∠EAH可求,求出外国船只到达E处的时间t,由求得速度的最小值.法二、建立以点A为坐标原点,AD为x轴,过点A往正北作垂直的y轴.可得A,D,B的坐标,设经过t小时外国船到达点,结合ED=12,得,列等式求得t,则,,再由求得速度的最小值.【解答】解:(1)依题意,在△ABD中,∠DAB=60°,由余弦定理得DB2=AD2+AB2﹣2AD•AB•cos60°=182+202﹣2×18×15×cos60°=364,∴,即此时该外国船只与D岛的距离为海里;(2)法一、过点B作BH⊥AD于点H,在Rt△ABH中,AH=10,∴HD=AD﹣AH=8,以D为圆心,12为半径的圆交BH于点E,连结AE、DE,在Rt△DEH中,HE=,∴,又AE=,∴sin∠EAH=,则≈41.81°.外国船只到达点E的时间(小时).∴海监船的速度(海里/小时).又90°﹣41.81°=48.2°,故海监船的航向为北偏东48.2°,速度的最小值为6.4海里/小时.法二、建立以点A为坐标原点,AD为x轴,过点A往正北作垂直的y轴.则A(0,0),D(18,0),,设经过t小时外国船到达点,又ED=12,得,此时(小时).则,,∴监测船的航向东偏北41.81°.∴海监船的速度(海里/小时).19.已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).(1)判断此函数的奇偶性,并说明理由;(2)判断此函数在[,+∞)的单调性,并用单调性的定义证明你的结论;(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.【考点】二次函数的性质.【分析】(1)由二次函数f(x)=ax2﹣4x+c的值域,推出ac=4,判断f(﹣1)≠f(1),f(﹣1)≠﹣f(1),得到此函数是非奇非偶函数.(2)求出函数的单调递增区间.设x1、x2是满足的任意两个数,列出不等式,推出f(x2)>f(x1),即可判断函数是单调递增.(3)f(x)=ax2﹣4x+c,当,即0<a≤2时,当,即a>2时求出最小值即可.【解答】解:(1)由二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),得a>0且,解得ac=4.…∵f(1)=a+c﹣4,f(﹣1)=a+c+4,a>0且c>0,从而f(﹣1)≠f(1),f(﹣1)≠﹣f(1),∴此函数是非奇非偶函数.…(2)函数的单调递增区间是[,+∞).设x1、x2是满足的任意两个数,从而有,∴.又a>0,∴,从而,即,从而f(x2)>f(x1),∴函数在[,+∞)上是单调递增.…(3)f(x)=ax2﹣4x+c,又a>0,,x∈[1,+∞)当,即0<a≤2时,最小值g(a)=f(x0)=0当,即a>2时,最小值综上,最小值…当0<a≤2时,最小值g(a)=0当a>2时,最小值综上y=g(a)的值域为[0,+∞)…20.椭圆C:过点M(2,0),且右焦点为F(1,0),过F 的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.(1)求椭圆C的方程;(2)如果直线l的斜率等于﹣1,求出k1•k2的值;(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.【考点】直线与椭圆的位置关系.【分析】(1)利用已知条件求出b,即可求解椭圆方程.(2)直线l:y=﹣x+1,设AB坐标,联立利用韦达定理以及斜率公式求解即可.(3)当直线AB的斜率不存在时,不妨设A,B,求出斜率,即可;当直线AB 的斜率存在时,设其为k,求直线AB:y=k(x﹣1),联立直线与椭圆的方程组,利用韦达定理以及斜率公式化简求解即可.【解答】解:(1)∵a=2,又c=1,∴,∴椭圆方程为…(2)直线l:y=﹣x+1,设A(x1,y1)B(x2,y2),由消y得7x2﹣8x﹣8=0,有,.……(3)当直线AB的斜率不存在时,不妨设A(1,),B(1,﹣),则,,故k1+k2=2.…当直线AB的斜率存在时,设其为k,则直线AB:y=k(x﹣1),设A(x1,y1)B (x2,y2),由消y得(4k2+3)x2﹣8k2x+(4k2﹣12)=0,有,.…=…21.已知函数f(x)=2|x+2|﹣|x+1|,无穷数列{a n}的首项a1=a.(1)如果a n=f(n)(n∈N*),写出数列{a n}的通项公式;(2)如果a n=f(a n﹣1)(n∈N*且n≥2),要使得数列{a n}是等差数列,求首项a 的取值范围;(3)如果a n=f(a n﹣1)(n∈N*且n≥2),求出数列{a n}的前n项和S n.【考点】数列与函数的综合.【分析】(1)化简函数f(x)为分段函数,然后求出a n=f(n)=n+3.(2)如果{a n}是等差数列,求出公差d,首项,然后求解a的范围.(3)当a≥﹣1时,求出前n项和,当﹣2≤a≤﹣1时,当a≤﹣2时,分别求出n项和即可.【解答】解:(1)∵函数f(x)=2|x+2|﹣|x+1|=,…又n≥1且n∈N*,∴a n=f(n)=n+3.…(2)如果{a n}是等差数列,则a n﹣a n﹣1=d,a n=a n﹣1+d,由f(x)知一定有a n=a n﹣1+3,公差d=3.当a1≥﹣1时,符合题意.当﹣2≤a1≤﹣1时,a2=3a1+5,由a2﹣a1=3得3a1+5﹣a1=3,得a1=﹣1,a2=2.当a1≤﹣2时,a2=﹣a1﹣3,由a2﹣a1=3得﹣a1﹣3﹣a1=3,得a1=﹣3,此时a2=0.综上所述,可得a的取值范围是a≥﹣1或a=﹣3.…(3)当a≥﹣1时,a n=f(a n﹣1)=a n﹣1+3,∴数列{a n}是以a为首项,公差为3的等差数列,.…当﹣2≤a≤﹣1时,a2=3a1+5=3a+5≥﹣1,∴n≥3时,a n=a n﹣1+3.∴n=1时,S1=a.n≥2时,又S1=a也满足上式,∴(n∈N*)…当a≤﹣2时,a2=﹣a1﹣3=﹣a﹣3≥﹣1,∴n≥3时,a n=a n﹣1+3.∴n=1时,S1=a.n≥2时,又S1=a也满足上式,∴(n∈N*).综上所述:S n=.….。
上海市松江区2024届高三一模数学试卷(满分150分,时间120分钟)2023.12.5一、填空题(本大题共有12题,第1~6题每题4分,第7~12题每题5分,满分54分)1.已知全集为R ,集合1P x x ,则集合P.2.双曲线221x y 的右焦点坐标是.3.4.5.6.7.8.1人连续参9.2A ,则边长b10. 12,1,3x x ,使11. 2x f x2,则 2023f.12.已知正四面体A BCD 的棱长为,空间内任意点P 满足2PB PC ,则AP AD的取值范围是.第14题图第17题图二、选择题(本大题共有4题,第13、14题每题4分,第15、16题每题5分,满分18分)13.英国数学家哈利奥特最先使用“ ”和“ ”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.对于任意实数a 、b 、c 、d ,下列命题是真命题的是().A 若22a b ,则a b ;.B 若a b ,则ac bc ;.C 若a b ,c d ,则ac bd ;.D 若a b ,c d ,则a c b d .14.如图所示的茎叶图记录了甲、乙两支篮球队各6名队员某场比赛的得分数据(单位:分).则下列说法正确的是().A 甲队数据的中位数大于乙队数据的中位数;.B 甲队数据的平均值小于乙队数据的平均值;.C 甲数据的标准差大于乙队数据的标准差;.D 乙队数据的第75百分位数为27.15.函数y .A .C 16.;②曲线M .A 三、17.//AB .(1)(2)CD 45CDA ,求二面角P CE A 的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知数列 n a 为等差数列, n b 是公比为2的等比数列,且223344a b a b b a .(1)证明:11a b ;(2)若集合1,150k m M k b a a m ,求集合M 中的元素个数.19.(本题满分14分,第1小题满分6分,第2小题满分8分)为了鼓励居民节约用气,某市对燃气收费实行阶梯计价,普通居民燃气收费标准如下:第一档:年用气量在0310 (含)立方米,价格为a 元/立方米;第二档:年用气量在310520 (含)立方米,价格为b 元/立方米;第三档:年用气量在520立方米以上,价格为c 元/立方米.(1)请写出普通居民的年度燃气费用(单位:元)关于年度的燃气用量(单位:立方米)的函数解析式(用含a 、b 、c 的式子表示);(2)已知某户居民2023年部分月份用气量与缴费情况如下表,求a 、b 、c 的值.已知椭圆2222:1y x a b (0a b )的离心率为2,其上焦点F 与抛物线2:4K x y 的焦点重合.(1)求椭圆 的方程;(2)若过点F 的直线交椭圆F 于点A 、B ,同时交抛物线K 于点C 、D (如图1所示,点C 在椭圆与抛物线第一象限交点上方),试比较线段AC 与BD 长度的大小,并说明理由;(3)若过点F 的直线交椭圆 于点A 、B ,过点F 与直线AB 垂直的直线EG 交抛物线K 于点E 、G(如图2所示),试求四边形AEBG 面积的最小值.第20题图1第20题图2已知函数 y f x ,记 sin f x x x ,x D .(1)若 0,2D ,判断函数的单调性;(2)若0,2D,不等式 f x kx 对任意x D 恒成立,求实数k 的取值范围;(3)若D R ,则曲线 y f x 上是否存在三个不同的点A 、B 、C ,使得曲线 y f x 在A 、B 、C 三点处的切线互相重合?若存在,求出所有符合要求的切线的方程;若不存在,请说明理由.松江区2023学年度第一学期期末质量监控试卷高三数学答案一、填空题1、{}|1x x <(或(),1−∞)2、(2,0) 34、05、17− 6、 7、10 8、359、 10、[]7,8− 11、1− 12、4⎡−+⎣二、选择题:DDCC17、(1)证明:因为PA ⊥底面ABCD ,CE ⊂平面ABCD ,所以PA CE ⊥.………2分 因为,//,AB AD CE AB CE AD ⊥⊥所以. ………………………2分 又,PAAD A =所以CE ⊥平面PAD .……………………2分注:建立空间直角坐标系证明,相应给分.(2)因为PA ⊥底面ABCD ,所以PE 在平面ABCD 上的投影是AE ,由(1)可知CE AE ⊥,由三垂线定理可得,CE PE ⊥. 所以,二面角P CE A −−的平面角为PEA ∠.……………2分 在Rt ECD ∆中,DE CD =cos 451,sin 451,CE CD ⋅︒==⋅︒=又因为1,//AB CE AB CE ==,所以四边形ABCE 为矩形. ………2分 所以2BC AE ==,所以1115(23)13326P ABCD ABCD V S PA PA −=⋅=⨯+⨯⋅=梯形,所以1PA =………2分 在Rt PAE ∆中,1tan 2PA PEA AE ∠==,所以1arctan 2PEA ∠=. 即:二面角P CE A −−的大小为1arctan2. ………2分18、(1)证明:设数列{}n a 的公差为d ,则1111111122428(3)a db a d b a d b b a d +−=+−⎧⎨+−=−+⎩ ………2分即1112250d=b a d b =⎧⎨+−⎩ ………2分可解得,112db a ==,所以原命题得证. ………2分 (2)由(1)知112db a ==,所以111112(1)k k m b a a a a m d a −=+⇔⨯=+−+ ……2分因为10a ≠,所以[]221,50k m −=∈,解得22log 5027.64k ≤≤+≈ ………4分所以满足等式的解2,3,4,5,6,7k =.故集合M 中的元素个数为6. ………2分前5个月燃气总费用:168+240+198+174+183=963,由(1)中函数解析式,计算可得:9633103(320310)b =⨯+−, 所以 3.3b =. . ……… 4分又9月份,10月份,12月份的燃气费均价分别为:3.3,3.38,4.2均不同,所以12月份为第三档,264.64.263c ==. . ……… 2分 解法二:1月份,5月份,9月份,10月份,12月份的燃气费均价分别为:3,3.05,3.3,3.38,4.2均不同.所以1月份为第一档,5月份为第一档和第二档,10月份与12月份不同,则12月份为第三档,10月份与9月份不同,10月份为第二档与第三档,9月份为第二档.从而得到3=a ,3.3=b ,2.4=c . . ………8分 20、解:(1)由题意得(0,1)F ,即:1c = ,又2c a =,所以a = . ……… 2分 由222a b c −=,得21b = ,所以椭圆的方程为 2212y x += . . ……… 2分(2)由题意得过点F 的直线AB 的斜率存在,设直线AB 方程为1y kx =+, 设()11,A x y ,()22,B x y ,()33,C x y ,()44,D x y ,联立22112y kx x y =+⎧⎪⎨+=⎪⎩,消去y 得:()222210k x kx ++−=, 则12222k x x k +=−+,12212x x k=−+, 所以)2212k A k B +==+. . ……… 2分抛物线K 的方程为:24x y =, 联立214y kx x y=+⎧⎨=⎩,消去y 得:2440x kx −−=, 所以()241CD k ==+. . ……… 2分所以()()AC BD AC AD BD AD CD AB −=+−+=−())()(2222222212421410k k k k k k++=+−++=+>,即AC BD >. . ……… 2分 (3)设()11,A x y ,()22,B x y ,()55,E x y ,()66,G x y , 当直线AB 的斜率存在且不为零时, 设直线AB 方程为()10y kx k =+≠,则直线EG 方程为11y x k =−+,由(2)的过程可知:)2212kk AB ++=,2141EG k ⎛⎫=+ ⎪⎝⎭, . ……… 1分所以))()222222211111412222AEBGk k k S AB EG k k k ++⎡⎤⎛⎫=⋅=⨯⨯+= ⎪⎢⎥⎭⎣⎦+⎝+)()()222222111111k k k +==−−++ . ……… 2分因为211k +>,所以()()2210,11k ∈+,()()22110,11k−∈+,()22111AEBG S k =>−+. ……… 2分当直线AB 的斜率不存在时,AB =,4EG =,所以11422AEBG S AB EG =⋅=⨯=; . (2)分 综上所述:AEBG S ≥AEBG 面积的最小值为. . ……… 1分 21、解:(1)因为'()1cos 0f x x =+≥,当且仅当在x π=时,'()0f x =,…… 2分 所以函数()y f x =在上是增函数.(区间开闭都对). ……… 2分[0,2]π(2)由题意得,(1)sin k x x −<,于是sin 1xk x−<. 令sin ()xh x x=,则2cos sin '()x x x h x x −=, . ……… 2分令()cos sin u x x x x =−,则'()sin 0,(0,]2u x x x x π=−<∈,所以()u x 在(0,]2π上是严格减函数,于是()(0)0,(0,]2u x u x π<=∈.. ……… 2分由于2cos sin '()0,(0,]2x x x h x x x π−=<∈,于是()h x 在(0,]2π上是严格减函数, 所以min 2()()2h x h ππ==,因此21k π−<,即21k π<+. . ……… 2分(3)设11(,)A x y 、22(,)B x y 、33(,)C x y ,则曲线在A B C 、、三点处的切线分别为直线 11111:(1cos )cos sin l y x x x x x =+−+,22222:(1cos )cos sin l y x x x x x =+−+, 33333:(1cos )cos sin l y x x x x x =+−+.因为直线123,,l l l 互相重合,所以123cos cos cos x x x ==,且111cos sin x x x −+222cos sin x x x =−+333cos sin x x x =−+. . ……… 2分 因为123cos cos cos x x x ==,所以12sin sin x x =±,23sin sin x x =±,31sin sin x x =±. ①若12sin sin x x =−,23sin sin x x =−,31sin sin x x =−. 则1sin 0x =,2sin 0x =,3sin 0x =, 于是112233cos cos cos x x x x x x −=−=−, 因为123cos cos cos 10x x x ===±≠,所以123x x x ==,与A B C 、、三点互不重合矛盾. . ………3分 ②若12sin sin x x =,23sin sin x x =,31sin sin x x =中至少一个成立, 不妨设12sin sin x x =成立,则1122cos cos x x x x =, 若12cos cos 0x x =≠,则12x x =,矛盾,舍去,于是12cos cos 0x x ==,12sin sin 1x x ==±, . ……… 2分所以满足要求的切线方程为1y x =+或1y x =−.. ……… 1分解法2:假设存在三个不同点112233(,),(,),(,)A x y B x y C x y 在曲线()y f x =上满足条件,则111222333sin ,sin ,sin y x x y x x y x x =+=+=+,且123,,x x x 互不相同。
上海市松江区2017-2018学年高考数学一模试卷(文科)一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若复数z满足|=0,则z的值为__________.2.已知f(x)=log a x(a>0,a≠1),且f﹣1(﹣1)=2,则f﹣1(x)=__________.3.在等差数列{a n}中,a2=6,a5=15,则a2+a4+a6+a8+a10=__________.4.已知正方形ABCD的边长为2,E为CD的中点,则=__________.5.在正四棱柱ABCD﹣A1B1C1D1中,BC1与平面ABCD所成的角为60°,则BC1与AC所成的角为__________(结果用反三角函数表示).6.若圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,则该圆的标准方程是__________.7.按如图所示的流程图运算,则输出的S=__________.8.已知函数f(x)=sin(ωx+)(x∈R,ω>0)的最小正周期为π,将y=f(x)图象向左平移φ个单位长度(0<φ<)所得图象关于y轴对称,则φ=__________.9.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于__________.10.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是5的概率为__________.11.函数f(x)=sin2x﹣cos2x+1的单调递增区间为__________.12.某同学为研究函数的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的值域是__________.13.设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=.若函数g(x)=f(x)﹣log a(x+2)(a>1)在区间(﹣2,6]恰有3个不同的零点,则a的取值范围是__________.14.在正项等比数列{a n}中,已知a1<a4=1,若集A={t|(a1﹣)+(a2﹣)+…+(a t﹣)≤0,t∈N*},则A中元素个数为__________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.已知p,q∈R,则“q<p<0”是“||<1”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.若二项式展开式中含有常数项,则n的最小取值是( )A.5 B.6 C.7 D.817.设P是△ABC所在平面内的一点,,则( )A.B.C.D.18.已知满足条件x2+y2≤1的点(x,y)构成的平面区域面积为S1,满足条件[x]2+[y]2≤1的点(x,y)构成的平面区域的面积为S2,其中[x]、[y]分别表示不大于x,y的最大整数,例如:[﹣0.4]=﹣1,[1.6]=1,则S1与S2的关系是( )A.S1<S2B.S1=S2C.S1>S2D.S1+S2=π+3三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.在△ABC中,a,b,c分别为内角A,B,C所对的边,且满足a<b<c,b=2asinB.(1)求A的大小;(2)若a=2,b=2,求△ABC的面积.20.已知函数f(x)=a|x+b|(a>0,a≠1,b∈R).(1)若f(x)为偶函数,求b的值;(2)若f(x)在区间[2,+∞)上是增函数,试求a、b应满足的条件.21.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).(1)如果该沙漏每秒钟漏下0.02cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?(2)细沙全部漏入下部后,恰好堆成个一盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm).22.(16分)已知数列{a n}的首项为1,设f(n)=a1C n1+a2C n2+…+a k C n k+…+a n C n n(n∈N*).(1)若{a n}为常数列,求f(4)的值;(2)若{a n}为公比为2的等比数列,求f(n)的解析式;(3)数列{a n}能否成等差数列,使得f(n)﹣1=2n•(n﹣1)对一切n∈N*都成立?若能,求出数列{a n}的通项公式;若不能,试说明理由.23.(18分)对于曲线C:f(x,y)=0,若存在最小的非负实数m和n,使得曲线C上任意一点P(x,y),|x|≤m,|y|≤n恒成立,则称曲线C为有界曲线,且称点集{(x,y)||x|≤m,|y|≤n}为曲线C的界域.(1)写出曲线(x﹣1)2+y2=4的界域;(2)已知曲线M上任意一点P到坐标原点O与直线x=1的距离之和等于3,曲线M是否为有界曲线,若是,求出其界域,若不是,请说明理由;(3)已知曲线C上任意一点P(x,y)到定点F1(﹣1,0),F2(1,0)的距离之积为常数a(a>0),求曲线的界域.上海市松江区2015届高考数学一模试卷(文科)一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.若复数z满足|=0,则z的值为±2i.考点:二阶行列式的定义;复数代数形式的乘除运算.专题:矩阵和变换.分析:由已知得z2+4=0,由此能求出z=±2i..解答:解:∵=0,∴z2+4=0,解得z=±2i.故答案为:±2i.点评:本题考查复数的求法,是基础题,解题时要注意二阶行列式性质的合理运用.2.已知f(x)=log a x(a>0,a≠1),且f﹣1(﹣1)=2,则f﹣1(x)=.考点:对数函数图象与性质的综合应用.专题:计算题;函数的性质及应用.分析:由题意可得f(2)=log a2=﹣1;从而得到a=;再写反函数即可.解答:解:由题意,∵f﹣1(﹣1)=2,∴f(2)=log a2=﹣1;故a=;故f﹣1(x)=;故答案为:.点评:本题考查了反函数的应用及指数对数函数的应用,属于基础题.3.在等差数列{a n}中,a2=6,a5=15,则a2+a4+a6+a8+a10=90.考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由已知条件,利用等差数列的前n项和公式求出首项和公差,由此能求出结果.解答:解:∵在等差数列{a n}中,a2=6,a5=15,∴,解得a1=3,d=3,∴a2+a4+a6+a8+a10=5a1+25d=90.故答案为:90.点评:本题考查数列的若干项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.4.已知正方形ABCD的边长为2,E为CD的中点,则=2.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为()•(),再根据两个向量垂直的性质,运算求得结果.解答:解:∵已知正方形ABCD的边长为2,E为CD的中点,则=0,故=()•()=()•()=﹣+﹣=4+0﹣0﹣=2,故答案为2.点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.5.在正四棱柱ABCD﹣A1B1C1D1中,BC1与平面ABCD所成的角为60°,则BC1与AC所成的角为arccos(结果用反三角函数表示).考点:异面直线及其所成的角.专题:计算题;空间位置关系与距离;空间角.分析:连接A1C1,A1B,则AC∥A1C1,∠BC1A1即为BC1与AC所成的角.由于CC1⊥平面ABCD,则∠C1BC=60°,设正四棱柱ABCD﹣A1B1C1D1中的底面边长为a,侧棱长为b,即b=a,再由余弦定理,即可得到.解答:解:连接A1C1,A1B,则AC∥A1C1,∠BC1A1即为BC1与AC所成的角.设正四棱柱ABCD﹣A1B1C1D1中的底面边长为a,侧棱长为b,则由于CC1⊥平面ABCD,则∠C1BC=60°,即有tan60°=,即b=a,在△BA1C1中,BC1=BA1==2a,A1C1=a,cos∠BC1A1==.则BC1与AC所成的角为arccos.故答案为:arccos.点评:本题考查空间的直线和平面所成的角,异面直线所成的角的求法,考查运算能力,属于基础题.6.若圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,则该圆的标准方程是(x﹣2)2+(y﹣1)2=1.考点:圆的标准方程;圆的切线方程.专题:计算题.分析:依据条件确定圆心纵坐标为1,又已知半径是1,通过与直线4x﹣3y=0相切,圆心到直线的距离等于半径求出圆心横坐标,写出圆的标准方程.解答:解:∵圆C的半径为1,圆心在第一象限,且与直线4x﹣3y=0和x轴都相切,∴半径是1,圆心的纵坐标也是1,设圆心坐标(a,1),则1=,又a>0,∴a=2,∴该圆的标准方程是(x﹣2)2+(y﹣1)2=1;故答案为(x﹣2)2+(y﹣1)2=1.点评:本题考查利用圆的切线方程求参数,圆的标准方程求法.7.按如图所示的流程图运算,则输出的S=20.考点:循环结构.专题:阅读型.分析:根据流程图,先进行判定条件,不满足条件则运行循环体,一直执行到满足条件即跳出循环体,输出结果即可.解答:解:第一次运行得:S=5,a=4,满足a≥4,则继续运行第二次运行得:S=20,a=3,不满足a≥4,则停止运行输出S=20故答案为:20点评:本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,在近两年的新课标地区2015届高考都考查到了,属于基础题.8.已知函数f(x)=sin(ωx+)(x∈R,ω>0)的最小正周期为π,将y=f(x)图象向左平移φ个单位长度(0<φ<)所得图象关于y轴对称,则φ=.考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题;三角函数的图像与性质.分析:根据函数的周期为π,结合周期公式可得ω=2.得到函数的表达式后,根据函数y=f (x+φ)是偶函数,由偶函数的定义结合正弦的诱导公式化简整理,即可得到实数φ的值.解答:解:∵函数f(x)=sin(ωx+)(x∈R,ω>0)的最小正周期为π,∴ω==2,函数表达式为:f(x)=sin(2x+),又∵y=f(x)图象向左平移φ个单位长度所得图象为y=sin[2(x+φ)+)]关于y轴对称,∴2φ+=+kπ,k∈Z,因为0<φ<,所以取k=0,得φ=,故答案为:.点评:本题给出y=Asin(ωx+φ)的图象左移φ个单位后得到偶函数的图象,求φ的值.着重考查了函数y=Asin(ωx+φ)的图象与性质和正弦的诱导公式等知识,属于基本知识的考查.9.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于.考点:双曲线的简单性质.专题:计算题.分析:可求得抛物线y2=12x的焦点坐标,从而可求得b2及双曲线﹣=1的右焦点坐标,利用点到直线间的距离公式即可.解答:解:∵抛物线y2=12x的焦点坐标为(3,0),依题意,4+b2=9,∴b2=5.∴双曲线的方程为:﹣=1,∴其渐近线方程为:y=±x,∴双曲线的一个焦点F(3,0)到其渐近线的距离等于d==.故答案为:.点评:本题考查双曲线的简单性质,求得b2的值是关键,考查点到直线间的距离公式,属于中档题.10.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是5的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:由题意知,七个数的中位数是5,说明5之前5个数中取3个,5之后4个数中取3个,根据概率公式计算即可.解答:解:5之前5个数中取3个,5之后4个数中取3个,P==.故答案为:.点评:本题主要考查了古典概率和中位数的问题,关键是审清题意,属于基础题.11.函数f(x)=sin2x﹣cos2x+1的单调递增区间为[kπ﹣](k∈Z).考点:两角和与差的正弦函数;正弦函数的单调性.专题:三角函数的求值;三角函数的图像与性质.分析:化简可得解析式f(x)=sin(2x﹣)+1,令2kπ﹣≤2x﹣≤2kπ+,k∈Z即可解得函数f(x)的单调递增区间.解答:解:∵f(x)=sin2x﹣cos2x+1=sin(2x﹣)+1,∴令2kπ﹣≤2x﹣≤2kπ+,k∈Z,∴可解得函数f(x)=sin2x﹣cos2x+1的单调递增区间为:[kπ﹣](k∈Z),故答案为:[kπ﹣](k∈Z).点评:本题主要考查了两角和与差的正弦函数公式的应用,正弦函数的单调性,属于基本知识的考查.12.某同学为研究函数的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的值域是[,].考点:函数的值域.专题:计算题;函数的性质及应用.分析:分别在Rt△PCF和Rt△PAB中利用勾股定理,得PA+PF=+.运动点P,可得A、P、B三点共线时,PA+PF取得最小值;当P在点B或点C时,PA+PF取得最大值.由此即可得到函数f(x)的值域.解答:解:Rt△PCF中,PF==同理可得,Rt△PAB中,PA=∴PA+PF=+∵当A、B、P三点共线时,即P在矩形ADFE的对角线AF上时,PA+PF取得最小值=当P在点B或点C时,PA+PF取得最大值+1∴≤PA+PF≤+1,可得函数f(x)=AP+PF的值域为[,].故答案为:[,].点评:本题以一个实际问题为例,求函数的值域,着重考查了勾股定理和函数的值域及其求法等知识点,属于基础题.13.设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x﹣2)=f(x+2),且当x∈[﹣2,0]时,f(x)=.若函数g(x)=f(x)﹣log a(x+2)(a>1)在区间(﹣2,6]恰有3个不同的零点,则a的取值范围是(,2).考点:根的存在性及根的个数判断;函数的周期性.专题:计算题;压轴题;数形结合.分析:由题意中f(x﹣2)=f(2+x),可得函数f(x)是一个周期函数,且周期为4,又由函数为偶函数,则可得f(x)在区间(﹣2,6]上的图象,结合方程的解与函数的零点之间的关系,可将方程f(x)﹣log a x+2=0恰有3个不同的实数解,转化为两个函数图象恰有3个不同的交点,数形结合即可得到实数a的取值范围.解答:解:∵对于任意的x∈R,都有f(x﹣2)=f(2+x),∴函数f(x)是一个周期函数,且T=4又∵当x∈[﹣2,0]时,f(x)=,且函数f(x)是定义在R上的偶函数,故函数f(x)在区间(﹣2,6]上的图象如下图所示:若在区间(﹣2,6]内关于x的方程f(x)﹣log a(x+2)=0恰有3个不同的实数解则log a4<3,log a8>3,解得:<a<2,即a的取值范围是(,2);故答案为(,2).点评:本题考查根的存在性及根的个数判断,关键是根据方程的解与函数的零点之间的关系,将方程根的问题转化为函数零点问题.14.在正项等比数列{a n}中,已知a1<a4=1,若集A={t|(a1﹣)+(a2﹣)+…+(a t﹣)≤0,t∈N*},则A中元素个数为7.考点:等比数列.专题:等差数列与等比数列.分析:设公比为q,由已知得a1=q﹣3,从而(a1﹣)+(a2﹣)+…+(a t﹣)=﹣=(a12q n﹣1﹣1)=•[q n﹣7﹣1]≤0,由此求出n≤7.解答:解:设公比为q∵a1<a4=a1q3=1∴0<a1<1 1<q3,q>1,①∴a1=q﹣3,②∴(a1﹣)+(a2﹣)+…+(a t﹣)=(a1+a2+…+a t)﹣(++…+)(后一个首项,公比)=﹣=(a12q n﹣1﹣1),代入②,得•[q n﹣7﹣1]≤0∵>0∴q t﹣7﹣1≤0q t﹣7≤1∴t﹣7≤0解得t≤7故答案为:7.点评:本题考查集合中元素个数的求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.已知p,q∈R,则“q<p<0”是“||<1”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据不等式之间的关系结合充分条件和必要条件的定义进行判断即可.解答:解:∵“q<p<0”,∴0<<1,则||<1成立,即充分性成立,若当q=2,p=﹣1时,满足||<1,但q<p<0不成立,即必要性不成立,故“q<p<0”是“||<1”充分不必要条件,故选:A点评:本题主要考查充分条件和必要条件的判断,利用不等式的性质是解决本题的关键.16.若二项式展开式中含有常数项,则n的最小取值是( )A.5 B.6 C.7 D.8考点:二项式定理的应用.专题:计算题.分析:利用二项展开式的通项公式求出展开式的通项,令x的指数为0方程有解.由于n,r都是整数求出最小的正整数n.解答:解:展开式的通项为T r+1=3n﹣r(﹣2)r C n r x2n﹣令2n﹣=0,据题意此方程有解∴n=,当r=6时,n最小为7.故选C.点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题,属于中档题.17.设P是△ABC所在平面内的一点,,则( )A.B.C.D.考点:向量的加法及其几何意义;向量的三角形法则.专题:平面向量及应用.分析:根据所给的关于向量的等式,把等式右边二倍的向量拆开,一个移项一个和左边移来的向量进行向量的加减运算,变形整理,得到与选项中一致的形式,得到结果.解答:解:∵,∴,∴∴∴故选B.点评:本题考查了向量的加法运算和平行四边形法则,可以借助图形解答.向量是数形结合的典型例子,向量的加减运算是用向量解决问题的基础,要学好向量的加减运算.18.已知满足条件x2+y2≤1的点(x,y)构成的平面区域面积为S1,满足条件[x]2+[y]2≤1的点(x,y)构成的平面区域的面积为S2,其中[x]、[y]分别表示不大于x,y的最大整数,例如:[﹣0.4]=﹣1,[1.6]=1,则S1与S2的关系是( )A.S1<S2B.S1=S2C.S1>S2D.S1+S2=π+3考点:二元一次不等式(组)与平面区域.专题:计算题;不等式的解法及应用;直线与圆.分析:先把满足条件x2+y2≤1的点(x,y)构成的平面区域,满足条件[x]2+[y]2≤1的点(x,y)构成的平面区域表达出来,然后看二者的区域的面积,再求S1与S2的关系.解答:解:满足条件x2+y2≤1的点(x,y)构成的平面区域为一个圆;其面积为:π当0≤x<1,0≤y<1时,满足条件[x]2+[y]2≤1;当0≤x<1,1≤y<2时,满足条件[x]2+[y]2≤1;当0≤x<1,﹣1≤y<0时,满足条件[x]2+[y]2≤1;当﹣1≤x<0,0≤y<1时,满足条件[x]2+[y]2≤1;当0≤y<1,1≤x<2时,满足条件[x]2+[y]2≤1;∴满足条件[x]2+[y]2≤1的点(x,y)构成的平面区域是五个边长为1的正方形,其面积为:5综上得:S1与S2的关系是S1<S2,故选A.点评:本题类似线性规划,处理两个不等式的形式中,第二个难度较大,[x]2+[y]2≤1的平面区域不易理解.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.在△ABC中,a,b,c分别为内角A,B,C所对的边,且满足a<b<c,b=2asinB.(1)求A的大小;(2)若a=2,b=2,求△ABC的面积.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)已知等式利用正弦定理化简,根据sinB不为0求出sinA的值,根据A为锐角求出A的度数即可;(2)由a,b,cosA的值,利用余弦定理求出c的值,根据b,c,sinA的值,利用三角形面积公式即可求出三角形ABC面积.解答:解:(1)∵b=2asinB,∴由正弦定理化简得:sinB=2sinAsinB,∵sinB≠0,∴sinA=,∵a<b<c,∴A为锐角,则A=;(2)∵a=2,b=2,cosA=,∴由余弦定理得:a2=b2+c2﹣2bccosA,即4=12+c2﹣2×2×c×,整理得:c2﹣6c+8=0,解得:c=2(舍去)或c=4,则S=bcsinA=×2×4×=2.点评:此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.20.已知函数f(x)=a|x+b|(a>0,a≠1,b∈R).(1)若f(x)为偶函数,求b的值;(2)若f(x)在区间[2,+∞)上是增函数,试求a、b应满足的条件.考点:函数奇偶性的判断;函数单调性的判断与证明.专题:函数的性质及应用.分析:(1)因为f(x)为偶函数,得到对任意的x∈R,都有f(﹣x)=f(x),求出b;(2)记h(x)=|x+b|=,讨论a值得到b的范围.解答:解:(1)因为f(x)为偶函数,∴对任意的x∈R,都有f(﹣x)=f(x),即a|x+b|=a|﹣x+b|,所以|x+b|=|﹣x+b|得b=0.(2)记h(x)=|x+b|=,①当a>1时,f(x)在区间[2,+∞)上是增函数,即h(x)在区间[2,+∞)上是增函数,∴﹣b≤2,b≥﹣2②当0<a<1时,f(x)在区间[2,+∞)上是增函数,即h(x)在区间[2,+∞)上是减函数但h(x)在区间[﹣b,+∞)上是增函数,故不可能∴f(x)在区间[2,+∞)上是增函数时,a、b应满足的条件为a>1且b≥﹣2点评:本题考查了函数奇偶性的运用以及讨论思想的运用,属于中档题.21.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).(1)如果该沙漏每秒钟漏下0.02cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?(2)细沙全部漏入下部后,恰好堆成个一盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到0.1cm).考点:根据实际问题选择函数类型;函数的最值及其几何意义.专题:计算题;应用题;函数的性质及应用.分析:(1)开始时,沙漏上部分圆锥中的细沙的高为H=×8=,底面半径为r=×4=;从而求时间;(2)细沙漏入下部后,圆锥形沙堆的底面半径4,设高为H′,从而得V=π×42×H′=π;从而求高.解答:解:(1)开始时,沙漏上部分圆锥中的细沙的高为H=×8=,底面半径为r=×4=;V=πr2H=π×()2×=π≈39.71;V÷0.02≈1986(秒)所以,沙全部漏入下部约需1986秒.(2)细沙漏入下部后,圆锥形沙堆的底面半径4,设高为H′,V=π×42×H′=π;H′=≈2.4;锥形沙堆的高度约为2.4cm.点评:本题考查了函数在实际问题中的应用,属于中档题.22.(16分)已知数列{a n}的首项为1,设f(n)=a1C n1+a2C n2+…+a k C n k+…+a n C n n(n∈N*).(1)若{a n}为常数列,求f(4)的值;(2)若{a n}为公比为2的等比数列,求f(n)的解析式;(3)数列{a n}能否成等差数列,使得f(n)﹣1=2n•(n﹣1)对一切n∈N*都成立?若能,求出数列{a n}的通项公式;若不能,试说明理由.考点:二项式定理的应用;等差数列的性质;等比数列的性质.专题:综合题;转化思想.分析:(1){a n}为常数列,a1=1,可求a n=1,代入f(n)=a1C n1+a2C n2+…+a k C n k+…+a n C n n(n∈N*)可求f(4)的值;(2)根据题意可求a n=2n﹣1(n∈N*),f(n)=C n1+2C n2+4C n3+…+2n﹣1C n n,两端同时2倍,配凑二项式(1+2)n,问题即可解决;(3)假设数列{a n}能为等差数列,使得f(n)﹣1=(n﹣1)2n对一切n∈N*都成立,利用倒序相加法求得,最终转化为(d﹣2)+(d﹣2)(n+2)2n﹣1=0对n∈N*恒成立,从而求得d=2,问题解决.解答:解:(1)∵{a n}为常数列,∴a n=1(n∈N*).∴f(4)=C41+C42+C43+C44=15.(2)∵{a n}为公比为2的等比数列,∴a n=2n﹣1(n∈N*).∴f(n)=C n1+2C n2+4C n3+…+2n﹣1C n n,∴1+2f(n)=1+2C n1+22C n2+23C n3+…+2n C n n=(1+2)n=3n,故.(3)假设数列{a n}能为等差数列,使得f(n)﹣1=(n﹣1)2n对一切n∈N*都成立,设公差为d,则f(n)=a1C n1+a2C n2+…+a k C n k+…+a n﹣1C n n﹣1+a n C n n,且f(n)=a n C n n+a n﹣1C n n﹣1+…+a k C n k+…+a2C n2+a1C n1,相加得2f(n)=2a n+(a1+a n﹣1)(C n1+C n2+…+C n k+…+C n n﹣1),∴==1+(n﹣1)d+[2+(n﹣2)d](2n﹣1﹣1).∴f(n)﹣1=(d﹣2)+[2+(n﹣2)d]2n﹣1=(n﹣1)2n对n∈N*恒成立,即(d﹣2)+(d﹣2)(n+2)2n﹣1=0对n∈N*恒成立,∴d=2.故{a n}能为等差数列,使得f(n)﹣1=(n﹣1)2n对一切n∈N*都成立,它的通项公式为a n=2n ﹣1.点评:本题重点考查二项式定理的应用,解决的方法有倒序相加法求f(n),难点在于综合分析,配凑逆用二项式定理,属于难题.23.(18分)对于曲线C:f(x,y)=0,若存在最小的非负实数m和n,使得曲线C上任意一点P(x,y),|x|≤m,|y|≤n恒成立,则称曲线C为有界曲线,且称点集{(x,y)||x|≤m,|y|≤n}为曲线C的界域.(1)写出曲线(x﹣1)2+y2=4的界域;(2)已知曲线M上任意一点P到坐标原点O与直线x=1的距离之和等于3,曲线M是否为有界曲线,若是,求出其界域,若不是,请说明理由;(3)已知曲线C上任意一点P(x,y)到定点F1(﹣1,0),F2(1,0)的距离之积为常数a(a>0),求曲线的界域.考点:曲线与方程.专题:圆锥曲线中的最值与范围问题.分析:(1)由已知得(x﹣1)2≤4,y2≤4,由此能求出曲线(x﹣1)2+y2=4的界域.(2)设P(x,y),则+|x﹣1|=3,从而得到﹣1≤x≤2,﹣2,由此得到曲线M为有界曲线,并能求出求出其界域.(3)由已知得:=a,×=a,从而得到|x|,,进而得到|y|≤,由此能求出曲线C界域.解答:解:(1)∵曲线(x﹣1)2+y2=4,∴(x﹣1)2≤4,y2≤4,∴﹣1≤x≤3,﹣2≤y≤2,∴界域为{(x,y)||x|≤3,|y|≤2}.(2)设P(x,y),则+|x﹣1|=3,化简,得:y2=,∴﹣1≤x≤2,﹣2,∴界域为{(x,y)||x|≤2,|y|}.(3)由已知得:=a,×==a,∴(x2+y2+1)2﹣4x2=a2,∴,∵y2≥0,∴,∴(x2+1)2≤4x2+a2,∴(x2﹣1)2≤a2,∴1﹣a≤x2≤a+1,∴|x|,,令t=,,,当t=2,即时,等号成立.若0<a≤2,1﹣[1﹣a,1+a],时,,∴|y|≤,若a>2,1﹣<0,,∴x=0时,=a﹣1,∴|y|≤,∴曲线C界域为:①0<a≤2时,{(x,y)|x|≤,|y|≤}.②a>2时,{(x,y)||x|,|y|≤}.点评:本题考查曲线的界域的求法,考查曲线是否为有界曲线的判断与界域的求法,解题时要认真审题,注意函数与方程思想的合理运用.。
2017年上海中学中考数学一模试卷一、选择题(本大题共有10个小题,每小题3分,共30分.)1.(3分)的相反数是()A.2016 B.﹣2016 C.D.2.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.3.(3分)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106 B.1.008×106C.1.008×105D.10.08×1044.(3分)计算(﹣2x2)3的结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x55.(3分)如图,下面几何体的俯视图不是圆的是()A.B.C.D.6.(3分)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC7.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=158.(3分)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分9.(3分)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°10.(3分)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)二.填空题(每小题3分,共24分)11.(3分)分解因式:x2y﹣y=.12.(3分)如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=.13.(3分)化简:﹣=.14.(3分)已知,则2016+x+y=.15.(3分)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则男生当选组长的概率是.16.(3分)抛物线y=(x﹣1)2+2的对称轴是.17.(3分)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.18.(3分)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于.三、解答题(本大题共有3个小题,每小题8分,共24分)19.(8分)计算:()﹣1+20160﹣|﹣4|20.(8分)解不等式组,并写出它的所有正整数解.21.(8分)如图,平行四边形ABCD中,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=3cm,BC=5cm,∠B=60°,当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)四、应用题(本大题共有3个小题,每小题8分,共24分)22.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)23.(8分)某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.24.(8分)如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据:=1.41,=1.73).五、综合题(本大题有2个小题,其中25题8分,26题10分,共18分)25.(8分)如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n(x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以A n(x n,y n)为顶点且经过点B n﹣1,B n,等腰△A n B n﹣1B n为第n个三角形.(1)求出A1的坐标;(2)求出第一条抛物线的解析式;(3)请直接写出A n的坐标.26.(10分)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.(1)求证:△DEB∽△ACB;(2)当点F与点A重合时(如图①),求线段BD的长;(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.2017年上海中学中考数学一模试卷参考答案与试题解析一、选择题(本大题共有10个小题,每小题3分,共30分.)1.(3分)(2016•益阳)的相反数是()A.2016 B.﹣2016 C.D.【分析】直接利用相反数的定义分析得出答案.【解答】解:∵﹣+=0,∴﹣的相反数是.故选:C.【点评】此题主要考查了相反数的定义,正确把握定义是解题关键.2.(3分)(2015•北京)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,B、不是轴对称图形,C、不是轴对称图形,D、是轴对称图形,故选:D.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.3.(3分)(2015•福建)一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为()A.0.1008×106 B.1.008×106C.1.008×105D.10.08×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:100800=1.008×105.故故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2008•邵阳)计算(﹣2x2)3的结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x5【分析】根据积的乘方计算即可.【解答】解:(﹣2x2)3=(﹣2)3•(x2)3=﹣8x6.故选A.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.5.(3分)(2016•邵阳县一模)如图,下面几何体的俯视图不是圆的是()A.B.C.D.【分析】俯视图是从几何体的正面看所得到的视图,分别找出四个几何体的俯视图可得答案.【解答】解:A、正方体的俯视图是正方形,故此选项符合题意;B、球的俯视图是圆形,故此选项不符合题意;C、圆锥的俯视图是圆形,故此选项不符合题意;D、圆柱的俯视图是圆形,故此选项不符合题意;故选:A.【点评】此题主要考查了简单几何体的三视图,关键是掌握俯视图是从几何体的正面看所得到的视图.6.(3分)(2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(3分)(2015•兰州)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.(3分)(2015•安徽)某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【分析】结合表格根据众数、平均数、中位数的概念求解.【解答】解:该班人数为:2+5+6+6+8+7+6=40,得45分的人数最多,众数为45,第20和21名同学的成绩的平均值为中位数,中位数为:=45,平均数为:=44.425.故错误的为D.故选D.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.9.(3分)(2015•泸州)如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【分析】由PA与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB 垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C的度数求出∠AOB的度数,在四边形PABO中,根据四边形的内角和定理即可求出∠P的度数.【解答】解:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.【点评】本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.10.(3分)(2015•曲靖)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)【分析】根据自变量的值,可得相应的函数值,根据待定系数法,可得反比例函数的解析式,根据解方程组,可得答案.【解答】解:当x=﹣2时,y=﹣×(﹣2)=1,即A(﹣2,1).将A点坐标代入y=,得k=﹣2×1=﹣2,反比例函数的解析式为y=,联立双曲线、直线,得,解得,,B(2,﹣1).故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求双曲线函数的解析式,又利用解方程组求图象的交点.二.填空题(每小题3分,共24分)11.(3分)(2014•宁夏)分解因式:x2y﹣y=y(x+1)(x﹣1).【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(3分)(2014•泰州)如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=125°.【分析】根据两直线平行,同位角相等可得∠1=∠α,再根据邻补角的定义列式计算即可得解.【解答】解:∵a∥b,∴∠1=∠α=55°,∴∠β=180°﹣∠1=125°.故答案为:125°.【点评】本题考查了平行线的性质,是基础题,熟记性质是解题的关键.13.(3分)(2016•常州)化简:﹣=.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.14.(3分)(2016•邵阳县一模)已知,则2016+x+y=2018.【分析】方程组两方程相减求出x+y的值,代入原式计算即可得到结果.【解答】解:,①﹣②得:x+y=2,则原式=2016+2=2018.故答案为:2018.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.15.(3分)(2017•邵阳县校级一模)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则男生当选组长的概率是.【分析】由一个学习兴趣小组有4名女生,6名男生,直接利用概率公式求解即可求得答案.【解答】解:∵一个学习兴趣小组有4名女生,6名男生,∴从这10名学生中选出一人担任组长,则男生当选组长的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2016•邵阳县一模)抛物线y=(x﹣1)2+2的对称轴是x=1.【分析】抛物线y=a(x﹣h)2+k是抛物线的顶点式,抛物线的顶点是(h,k),对称轴是x=h.【解答】解:y=(x﹣1)2+2,对称轴是x=1.故答案是:x=1.【点评】本题考查的是二次函数的性质,题目是以二次函数顶点式的形式给出,可以根据二次函数的性质直接写出对称轴.17.(3分)(2014•梅州)如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.【分析】根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.【解答】解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.【点评】此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.18.(3分)(2012•德州)如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为1,则凸轮的周长等于π.【分析】由“凸轮”的外围是以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成,得到∠A=∠B=∠C=60°,AB=AC=BC=1,然后根据弧长公式计算出三段弧长,三段弧长之和即为凸轮的周长.【解答】解:∵△ABC为正三角形,∴∠A=∠B=∠C=60°,AB=AC=BC=1,∴====,根据题意可知凸轮的周长为三个弧长的和,即凸轮的周长=++=3×=π.故答案为:π【点评】此题考查了弧长的计算以及等边三角形的性质,熟练掌握弧长公式是解本题的关键.三、解答题(本大题共有3个小题,每小题8分,共24分)19.(8分)(2016•邵阳县一模)计算:()﹣1+20160﹣|﹣4|【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=2+1﹣4=3﹣4=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2016•邵阳县一模)解不等式组,并写出它的所有正整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4(x+1)≤7x+10,得:x≥﹣2,解不等式x﹣5<,得:x<3.5,故不等式组的解集为:﹣2≤x<3.5,所以其正整数解有:1、2、3,【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2016•邵阳县一模)如图,平行四边形ABCD中,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=3cm,BC=5cm,∠B=60°,当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)【分析】(1)易证得△CFG≌△EDG,推出FG=EG,根据平行四边形的判定即可证得结论;(2)由∠B=60°,易得当△CED是等边三角形时,四边形CEDF是菱形,继而求得答案.【解答】(1)证明:四边形ABCD是平行四边形,∴CF∥ED,∴∠FCD=∠GCD,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△CFG≌△EDG(ASA),∴FG=EG,∴四边形CEDF是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD=BC=5cm,CD=AB=3cm,∠ADC=∠B=60°,∵当DE=CE时,四边形CEDF是菱形,∴当△CED是等边三角形时,四边形CEDF是菱形,∴DE=CD=3cm,∴AE=AD﹣DE=2cm,即当AE=2cm时,四边形CEDF是菱形.故答案为:2.【点评】此题考查了菱形的性质与判定、平行四边形的性质以及全等三角形的判定与性质.注意证得△CFG≌△EDG,△CED是等边三角形是关键.四、应用题(本大题共有3个小题,每小题8分,共24分)22.(8分)(2016•河南模拟)国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如图两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365天)【分析】(1)根据4级的天数数除以4级所占的百分比,可得答案;(2)根据有理数的减法,可得5级的天数,根据5级的天数,可得答案;(3)根据圆周角乘以3级所占的百分比,可得答案;(4)根据样本数据估计总体,可得答案.【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,空气质量等级天数统计图;(3)360°×=72°,故答案为:72;(4)365××100%=219(天),答:2015年该城市有219天不适宜开展户外活动.【点评】本题考查了条形统计图,观察函数图象获得有效信息是解题关键.23.(8分)(2016•邵阳县一模)某社区计划对面积为1800m2的区域进行绿化,经投标,由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积.(2)当甲、乙两个工程队完成绿化任务时,甲队施工了10天,求乙队施工的天数.【分析】(1)设乙工程队每天能完成绿化的面积是xm2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)用总工作量减去甲队的工作量,然后除以乙队的工作效率即可求解【解答】解:(1)设乙工程队每天能完成绿化的面积是xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲工程队每天能完成绿化的面积是100m2,乙工程队每天能完成绿化的面积是50m2;(2)=16(天).答:乙队施工了16天.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程解决问题.24.(8分)(2016•邵阳县一模)如图,是矗立在高速公路地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,求警示牌CD的高度.(参考数据:=1.41,=1.73).【分析】首先根据等腰直角三角形的性质可得DM=AM=4m,再根据勾股定理可得MC2+MB2=(2MC)2,代入数可得答案.【解答】解:由题意可得:∵AM=4米,∠MAD=45°,∴DM=4m,∵AM=4米,AB=8米,∴MB=12米,∵∠MBC=30°,∴BC=2MC,∴MC2+MB2=(2MC)2,MC2+122=(2MC)2,∴MC=4,则DC=4﹣4≈2.9(米).【点评】此题主要考查了勾股定理得应用,关键是掌握直角三角形中,两直角边的平方和等于斜边的平方.五、综合题(本大题有2个小题,其中25题8分,26题10分,共18分)25.(8分)(2016•邵阳县一模)如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n(x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;第三条抛物线以A3(x3,y3)为顶点且过点B2(4,0),B3(6,0),等腰△A3B2B3为第三个三角形;按此规律依此类推,…;第n条抛物线以A n(x n,y n)为顶点且经过点B n,B n,等腰△A n B n﹣1B n为第n个三角﹣1形.(1)求出A1的坐标;(2)求出第一条抛物线的解析式;(3)请直接写出A n的坐标(2n﹣1,).【分析】(1)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A1(1,9);(2)设第一个抛物线解析式为y=a(x﹣1)2+9,把O(0,0)代入该函数解析式即可求得a的值;(2)根据抛物线的对称性和反比例函数图象上点的坐标特征易求得到A2(3,3),A3(5,),根据规律即可得出A n的坐标.【解答】解:(1)∵第一条抛物线过点O(0,0),B1(2,0),∴该抛物线的对称轴是x=1.又∵顶点A1(x1,y1)在反比例函数y=图象上,∴y1=9,即A1(1,9);(2)设第一个抛物线为y=a(x﹣1)2+9(a≠0),把点O(0,0)代入,得到:0=a+9,解得a=﹣9.所以第一条抛物线的解析式是y=﹣9(x﹣1)2+9;(3)第一条抛物线的顶点坐标是A1(1,9),第二条抛物线的顶点坐标是A2(3,3),第三条抛物线的顶点坐标是A3(5,),由规律可知A n(2n﹣1,).故答案为:(2n﹣1,).【点评】本题综合考查了待定系数法求二次函数解析式,反比例函数图象上点的坐标特征.整个解题过程,利用抛物线的对称轴和反比例函数图象上的坐标特征来求相关点的坐标和相关线段的长度是解题的关键,此题综合性强,有一定的难度.26.(10分)(2016•邵阳县一模)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DE⊥AB,垂足为E,连接AD,将△DEB沿直线DE翻折得到△DEF,点B落在射线BA上的F处.(1)求证:△DEB∽△ACB;(2)当点F与点A重合时(如图①),求线段BD的长;(3)设BD=x,AF=y,求y关于x的函数解析式,并判断是否存在这样的点D,使AF=FD?若存在,请求出x的值;若不存在,请说明理由.【分析】(1)根据垂直的定义得到∠DEB=90°,证明∠ACB=∠DEB,根据相似三角形的判定定理证明即可;(2)根据勾股定理求出AB的长,根据相似三角形的性质得到比例式,代入计算即可;(3)分点F在线段AB上和点F在线段BA的延长线上两种情况,根据相似三角形的性质计算即可.【解答】(1)证明:∵DE⊥AB,∴∠DEB=90°,∴∠ACB=∠DEB,又∠B=∠B,∴△DEB∽△ACB;(2)∵∠ACB=90°,AC=6,BC=8,∴AB==10,由翻转变换的性质可知,BE=AE=AB=5,∵△DEB∽△ACB,∴=,即=,解得BD=.答:线段BD的长为;(3)当点F在线段AB上时,如图2,∵△DEB∽△ACB,∴=,即=,解得BE=x,∵BE=EF,∴AF=AB﹣2BE,∴y=﹣x+10;当点F在线段BA的延长线上时,如图3,AF=2BE﹣AB,∴y=x﹣10,当点F在线段AB上时,∵DE⊥AB,BE=EF,∴DF=DB要使AF=FD,只要AF=BD即可,即x=﹣x+10,解得x=,当点F在线段BA的延长线上时,AF=FD不成立,则当BD=时,AF=FD.【点评】本题考查的是相似三角形的判定和性质以及翻转变换的性质,掌握相似三角形的判定定理和性质定理以及翻转变换的性质是解题的关键,注意分情况讨论思想的应用.。
上海市徐汇区2017届高三一模数学试卷2016.12.21一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 25lim1n n n →∞-=+2. 已知抛物线C 的顶点在平面直角坐标系原点,焦点在x 轴上,若C 经过点(1,3)M ,则 其焦点到准线的距离为3. 若线性方程组的增广矩阵为0201a b ⎛⎫ ⎪⎝⎭,解为21x y =⎧⎨=⎩,则a b += 4. 若复数z满足:i z i ⋅=(i 是虚数单位),则||z =5. 在622()x x+的二项展开式中第四项的系数是 (结果用数值表示) 6. 在长方体1111ABCD A B C D -中,若1AB BC ==,1AA =1BD 与1CC 所成角的大小为7. 若函数22,0(),0xx f x x m x ⎧≤⎪=⎨-+>⎪⎩的值域为(,1]-∞,则实数m 的取值范围是8. 如图,在△ABC 中,若3AB AC ==,1cos 2BAC ∠=,2DC BD =u u ur u u u r ,则AD BC ⋅=u u u r u u u r9. 定义在R 上的偶函数()y f x =,当0x ≥时,2()lg(33)f x x x =-+,则()f x 在R 上 的零点个数为 个10. 将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中 2辆卡车必须停在A 与B 的位置,那么不同的停车位置安排共有 种(结果用数值 表示)11. 已知数列{}n a 是首项为1,公差为2m 的等差数列,前n 项和为n S ,设2nn nS b n =⋅ *()n N ∈,若数列{}n b 是递减数列,则实数m 的取值范围是12. 若使集合2{|(6)(4)0,}A x kx k x x Z =--->∈中的元素个数最少,则实数k 的取值 范围是二. 选择题(本大题共4题,每题5分,共20分) 13. “4x k ππ=+()k Z ∈”是“tan 1x =”的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要14. 若1-(i 是虚数单位)是关于x 的方程20x bx c ++=的一个复数根,则( )A. 2b =,3c =B. 2b =,1c =-C. 2b =-,1c =-D. 2b =-,3c = 15. 已知函数f (x )为R 上的单调函数,f -1(x )是它的反函数,点A (-1,3)和点B (1,1)均在函数f (x )的图像上,则不等式1|(2)|1x f -<的解集为( )A. (1,1)-B. (1,3)C. 2(0,log 3)D. 2(1,log 3)16. 如图,两个椭圆221259y x +=、221259y x+=内部重叠区域的边界记为曲线C ,P 是曲线 C 上的任意一点,给出下列三个判断:(1)P 到1(4,0)F -、2(4,0)F 、1(0,4)E -、2(0,4)E 四点的距离之和为定值(2)曲线C 关于直线y x =、y x =-均对称 (3)曲线C 所围区域面积必小于36 上述判断中正确命题的个数为( )A. 0个B. 1个C. 2个D. 3个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 已知PA ⊥平面ABC ,AC AB ⊥,2AP BC ==,30CBA ︒∠=,D 是AB 的中点; (1)求PD 与平面PAC 所成角的大小;(结果用反三角函数值表示) (2)求△PDB 绕直线PA 旋转一周所构成的旋转体的体积;(结果保留π)18. 已知函数2sin ()1x xf x x -=;(1)当[0,]2x π∈时,求()f x 的值域;(2)已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若()2Af =,4a =,5b c +=, 求△ABC 的面积;19. 某创业团队拟生产A 、B 两种产品,根据市场预测,A 产品的利润与投资额成正比 (如图1),B 产品的利润与投资额的算术平方根成正比(如图2); (注:利润与投资额的单位均为万元) (1)分别将A 、B 两种产品的利润f (x )、g (x )表示为投资额x 的函数;(2)该团队已筹集到10万元资金,并打算全部投入A 、B 两种产品生产,问:当B 产品 的投资额为多少万元时,生产A 、B 两种产品能获得最大利润,最大利润为多少?20. 如图,双曲线22:13x y Γ-=的左、右焦点1F 、2F ,过2F 作直线l 交y 轴于点Q ; (1)当直线l 平行于Γ的一条渐近线时,求点1F 到直线l 的距离;(2)当直线l 的斜率为1时,在Γ的右支上是否存在点P ,满足110F P FQ ⋅=u u u r u u u r?,若存在, 求点P 的坐标,若不存在,说明理由;(3)若直线l 与Γ交于不同两点A 、B ,且Γ上存在一点M ,满足40OA OB OM ++=u u u r u u u r u u u u r r(其中O 为坐标原点),求直线l 的方程;21. 正数数列{}n a 、{}n b 满足:11a b ≥,且对一切2k ≥,k N *∈,k a 是1k a -与1k b -的等差中项,k b 是1k a -与1k b -的等比中项; (1)若22a =,21b =,求1a 、1b 的值;(2)求证:{}n a 是等差数列的充要条件是n a 为常数数列;(3)记||n n n c a b =-,当2n ≥,n N *∈,指出2n c c ++L 与1c 的大小关系并说明理由;参考答案一. 填空题 1. 2 2. 92 3. 2 4. 2 5. 160 6. 4π7. 01m <≤ 8. 32- 9. 4 10. 40320 11. [0,1) 12. [3,2]--二. 选择题13. C 14. D 15. C 16. C三. 解答题 17.(1)3arctan ;(2)32π; 18.(1)32[0,]+;(2)33; 19.(1)1()4f x x =,5()4g x x =;(2)对A 投资3.75万元,对B 投资6.25万元,可获得最大利润6516万元; 20.(1)2;(2)不存在;(3)22x y =±+;21.(1)123a =+,123b =-;(2)略;(3)21n c c c ++<L ;。
2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n−2n>1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件。
2017-2018学年高一上学期期末复习数学模拟卷一(必修1必修2)一、单选题(每小题5分,共计60分) 1.在空间直角坐标系中,点关于轴的对称点坐标为( ) A . B . C .D .【答案】A 【解析】点关于轴对应点故点关于轴对应点为,故选A 。
2.如图是正方体或四面体,P Q R S ,,,分别是所在棱的中点,则这四个点不共面的一个图是( )【答案】D 【解析】试题分析:A ,B ,C 选项都有//PQ SR ,所以四点共面,D 选项四点不共面. 考点:空间点线面位置关系.3.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( )A . a c b <<B . b a c <<C . a b c <<D . b c a <<【答案】B【解析】20.4200.41,log 0.40,21<< , 01,0,1,a b c b a c ∴<<∴<<,故选B .4.已知直线l1:x+y=0,l2:2x+2y+3=0,则直线l1与l2的位置关系是()A.垂直B.平行C.重合D.相交但不垂直【答案】B【点评】本题考查了斜率存在的两条直线平行的充要条件、斜截式,属于基础题.5.一个四棱锥的三视图如图所示,那么这个四棱锥的侧面积是()A BC D【答案】D【解析】试题分析:根据题中所给的三视图,可知该几何体为底面是一个直角梯形,且一条侧棱垂直于底面的四棱锥,其侧面有三个是直角三角形,面积分别为111222,121,1222⨯⨯=⨯⨯=⨯=,还有一个三角形,其边长分别为,所以该三角形也是直角三角形,其面积为12=,所以其侧面积为3+=D . 考点:根据几何体的三视图还原几何体,求其侧面积.6.在ABC ∆中,0090,30,1C B AC ∠=∠==,M 为AB 的中点,将ACM ∆沿CM 折起,使,A B 间的,则M 到平面ABC 的距离为A .12 B C .1 D .32 【答案】A 【解析】试题分析:由已知得2AB =,1AM BM MC ===,BC =AMC 为等边三角形,取CM中点,则AD CM ⊥,AD 交BC 于E ,则AD ===222BC AC AB =+ ,知90BAC ∠= ,又cos EAC ∠=2222cos AE CA CE CA CE ECA =+-⋅∠=222AC AE CE =+,∴90AEC ∠= .∵222AD AE ED =+,∴AE ⊥平面BCM ,即AE 是三棱锥A BCM -的高,AE =,设点M 到面ABC 的距离为h ,则因为BCM S ∆=,所以由A BCM M ABC V V --=11132h =⨯⨯,所以12h =,故选A .考点:翻折问题,利用等级法求点面距离.【思路点睛】该题属于求点到面的距离问题,属于中等题目,一般情况下,在文科的题目中,出现求点到平面的距离问题时,大多数情况下,利用等级法转换三棱锥的顶点和底面,从而确定出所求的距离所满足的等量关系式,在做题的过程中,可以做一个模型,可以提高学生的空间想象能力,提升做题的速度.7.若log 2log 20m n <<,则,m n 满足的条件是A 、1m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<【答案】Clg lg 00 1.n m n m ⇔<<⇔<<<故选C8.已知圆C : ()()22111x y ++-=与x 轴切于点A ,与y 轴切于点B ,设劣弧AB的中点为M ,则过点M 的圆C 的切线方程是( )A . 2y x =+B . 1y x =+C . 2y x =-D . 1y x =+-【答案】A9.已知函数y =ax 2+bx +c ,若a >b >c 且a +b +c =0,则其图象可能是( )【答案】D【解析】由条件知:(1)0,0,0;f a b c a c =++=><排除答案A ,C ;(0)0f c =≠排除B ; 故选D10.一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图所示,则该几何体的体积为( ).A .7B .223 C . 476 D .233【答案】D【解析】依题意可知该几何体的直观图如图,其体积为23-2×13×12×1×1×1=233. 11.过原点且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为( )A .B . 2CD 【答案】A点睛:圆的弦长的常用求法(1)几何法:求圆的半径为r ,弦心距为d ,弦长为l ,则l =(2)代数方法:运用根与系数的关系及弦长公式: 2AB x =-.12.已知定义在R 上的函数()f x 的图象关于点3,04⎛⎫- ⎪⎝⎭对称, 且满足()32f x f x ⎛⎫=-+⎪⎝⎭,又()()11,02f f -==-,则()()()()123...2008f f f f ++++=( )学科+网A .669B .670C .2008D .1【答案】D考点:函数的周期性.二、填空题(每小题5分,共计20分)13.已知圆O:,圆C:,则两圆的位置关系为________.【答案】外切【解析】圆的圆心坐标是,半径;圆的圆心坐标是,半径,两圆圆心距离,由可知两圆的位置关系是外切,故答案为外切.14.已知某三棱锥的三视图如图所示,则该三棱锥的最长棱的长是__________.【答案】【解析】由三视图可以知道:该几何体是一个三棱锥.其中底面,,则该三棱锥的最长棱的长是,,故答案为.15.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则B A U = . 【答案】{0,1,2,3,6,9} 【解析】试题分析:{}{}{}0,1,2,3,|3,0,3,6,9A B x x a a A ===∈={}0,1,2,3,6,9A B ∴= 考点:集合的并集运算点评:两集合的并集即将两集合的所有的元素组合到一起构成的新集合16.已知函数222,2,()log 1,2,x x x f x x x ⎧-+≤⎪=⎨->⎪⎩ 则((4))f f =_______,函数()f x 的单调递减区间是_______.【答案】1,(1,2) 【解析】试题分析:因为2(4)log 41211f =-=-=,所以2((4))1211f f =-+⨯=;当2x >时,2()log 1f x x =-为单调递增函数;当2x ≤时,22()2(1)1f x x x x =-+=--+,函数()f x 在(,1)-∞上单调递增,在(1,2)上单调递减,所以函数()f x 的单调递减区间为(1,2). 考点:1、分段函数的求值;2、对数的运算;3、函数的单调性. 三、解答题(共计70分)17.(10分)如图,在直三棱柱111ABC A B C -中,13 5 4 4AC AB BC AA ====,,,,点D 是AB 的中点.C 1DB 1A 1CBA(1)求证:11AC CDB ∥平面; (2)求三棱锥1B CDB -的体积. 【答案】(1)证明见解析;(2)4. 【解析】试题分析:(1)借助题设条件运用线面平行的判定定理;(2)依据题设运用体积转换法进行探求. 试题解析:(1)设11BC B C O = ,连接OD ,由直三棱柱性质可知,侧面11BCC B 为矩形, ∴O 为1BC 中点, 又∵D 为AB 中点, ∴在1ABC △中,1OD AC ∥,又∵1OD CDB ⊂平面,11AC CDB ⊄平面, ∴11AC CDB ∥平面.(2)由题 5 3 4AB AC BC ===,,,∴222CA CB AB +=,即CA CB ⊥, 又由直三棱柱可知,侧棱1AA ABC ⊥底面,∴111111134443322B CDB B CDB BCD V V S BB --⎛⎫==⋅=⋅⋅⋅⋅⋅= ⎪⎝⎭△.考点:线面平行的判定定理及三棱锥的等积转换法等有关知识的综合运用.18.(12分)已知函数()y f x =是定义在R 上的周期函数,周期5T =,函数()y f x =(11x -≤≤)是奇函数.又已知()y f x =在[]0,1上是一次函数,在[]1,4上是二次函数,且在2x =时函数取得最小值5-.(1)证明:(1)(4)0f f +=;(2)求()y f x =,[]1,4x ∈的解析式.【答案】(1)证明见解析;(2)2()2(2)5f x x =--(14x ≤≤).【解析】试题分析:(1)先根据条件求出(4)f ,(1)f ,即得(1)(4)f f +;(2)采用待定系数法设出二次函数解析式即可.考点:1、函数的性质;2、函数解析式.19.(12分)已知函数()()()()()log 1,2log 2,0a a f x x g x x t t R a =+=+∈>且1a ≠.(Ⅰ) 若1是关于x 的方程()()0f x g x -=的一个解,求t 的值;(Ⅱ) 当01a <<且1t =-时,解不等式()()f x g x ≤;(Ⅲ)若函数()()221f x F x a tx t =+-+在区间(-1,2]上有零点,求t 的取值范围.【答案】(Ⅰ) 2t =- (Ⅱ) 15|24x x ⎧⎫<≤⎨⎬⎩⎭(Ⅲ) 2t ≤-或t ≥【解析】试题解析:(Ⅰ)∵若1是关于x 的方程()()0f x g x -=的解,()()22log 2log 2,22a a t t =+∴+=∴,又2202t t t +=-∴∴>=+ ,.(Ⅱ) 1t =- 时,()()2log 1log 21a a x x +≤-,又()224501214,,015210201x x x x x x x a ⎧-≤⎧+≥-⎪⎪∴∴≤≤⎨⎨>->⎪⎪⎩<⎩<∴ ,,∴解集为:15|24x x ⎧⎫<≤⎨⎬⎩⎭; (Ⅲ)若0t =,则()0F x =在]1,2-(上没有零点.下面就0t ≠时分三种情况讨论:方程()0F x =在]1,2-(上有重根12x x =,则0=,解得t =;① ()0F x =在]1,2-(上只有一个零点,且不是方程的重根,则有120FF -<()(),解得21t t <-> 或,又经检验:21t t =-=或时,()0F x =在]1,2-(上都有零点,21t t ∴≤-≥或.②;()0F x =在]1,2-(上有两个相异实根,则有:()()0011221020t t F F ⎧>⎪∆>⎪⎪⎪-<-<⎨⎪⎪->⎪>⎪⎩或()()0011221020t t F F ⎧>⎪∆>⎪⎪⎪-<-<⎨⎪⎪-<⎪<⎪⎩1t <<,③;综合①②③可知t 的取值范围为2t ≤-或t ≥考点:函数的零点.不等式的解法【名师点睛】本题考查函数零点判定定理、对数不等式的解法,属中档题,解对数不等式要注意考虑对数函数定义域.分情况讨论时要注意分类标准,做到不重不漏.20.(12分)将12cm 长的细铁线截成三条长度分别为a 、b 、c 的线段,(1)求以a 、b 、c 为长、宽、高的长方体的体积的最大值;学!科网(2)若这三条线段分别围成三个正三角形,求这三个正三角形面积和的最小值。
松江二中2025届高三数学第一学期开学考数学试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.已知集合,则______.2.在复平面内,复数对应的点的坐标是,则______.3.在的展开式中,的系数为______.4.双曲线的两条渐近线的夹角为______.5.已知向量,且,则______.6.函数在上可导,若,则______.7.已知随机变量的分布为,且,若,则实数______.8.正方体的棱长为2,P 为棱的中点,以为轴旋转一周,则得到的旋转体的表面积是______.9.已知集合,设函数的值域为,若,则实数的取值范围为______.10.已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束,则恰好检测四次停止的概率为______.11.如图,已知分别是椭圆的左、右焦点,为椭圆上两点,满足,且,则椭圆的离心率为______.{}{}1,0,1,2,03A B x x =-=<<A B = z ()1,2i z ⋅=)52-2x 2213x y -=()()21,2,,2a b x =-= 3cos ,5a b 〈〉= x =()f x R ()23f '=()()Δ023Δ2ΔlimΔx f x f x x→+--=X 123111236⎛⎫⎪ ⎪⎝⎭3Y aX =+[]2E Y =-a =1111ABCD A B C D -1CC 1BPD △1BD 21,2A xx x ⎧⎫=≥∈⎨⎬-⎩⎭R ()12log ,y x a x A =+∈B B A ⊆a12,F F 2222:1(0)x y C a b a b+=>>,M N 12F M F N ∥221::1:2:3F N F M F M =C12.已知都是平面向量,且,若,则的最小值为______.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)13.“”是“直线与直线垂直”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件14.已知是两条不同直线,是两个不同平面,则下列命题错误的是( )A .若平行于同一平面,则与可能异面B .若不平行,则在内不存在与平行的直线C .若不平行,则与不可能垂直于同一平面D .若垂直于同一平面,则与可能相交15.在中,是边上一定点,满足,且对于边上任一点,恒有,则为( )A .等腰三角形B .钝角三角形C .直角三角形D .锐角三角形16.已知函数,若函数恰有5个不同的零点,则实数的取值范围是( )A .B .C .D .三、解答题(本大题共有5题,满分78分)解答下列各题必须写出必要的步骤。
2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B =2. 若排列数6654m P =⨯⨯,则m =3. 不等式11x x->的解集为 4. 已知球的体积为36π,则该球主视图的面积等于 5. 已知复数z 满足30z z+=,则||z = 6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该 双曲线上的一点,若1||5PF =,则2||PF =7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐 标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2f x -=的解为9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“”的 点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为二. 选择题(本大题共4题,每题5分,共20分) 13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543 B. 1024 C. 1523 D. 605414. 在数列{}n a 中,1()2n n a =-,*n ∈N ,则lim n n a →∞( ) A. 等于12-B. 等于0C. 等于12D. 不存在 15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N , 使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+=16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动 点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小.18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标; (3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程.21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤. (1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值. 函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.2017年上海市高考数学试卷2017.6一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1. 已知集合{1,2,3,4}A =,集合{3,4,5}B =,则AB =【解析】{3,4}A B =2. 若排列数6654m P =⨯⨯,则m = 【解析】3m =3. 不等式11x x ->的解集为 【解析】111100x x x->⇒<⇒<,解集为(,0)-∞4. 已知球的体积为36π,则该球主视图的面积等于 【解析】3436393r r S πππ=⇒=⇒= 5. 已知复数z 满足30z z+=,则||z =【解析】23||z z z =-⇒=⇒=6. 设双曲线22219x y b -=(0)b >的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =, 则2||PF =【解析】226||11a PF =⇒=7. 如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐 标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为 【解析】(4,0,0)A ,1(0,3,2)C ,1(4,3,2)AC =-8. 定义在(0,)+∞上的函数()y f x =的反函数为1()y f x -=,若31,0()(),0x x g x f x x ⎧-≤⎪=⎨>⎪⎩为奇函数,则1()2f x -=的解为【解析】()31(2)918x f x f =-+⇒=-+=-,∴1()2f x -=的解为8x =-9. 已知四个函数:① y x =-;② 1y x=-;③ 3y x =;④ 12y x =. 从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点”的概率为 【解析】①③、①④的图像有一个公共点,∴概率为24213C = 10. 已知数列{}n a 和{}n b ,其中2n a n =,*n ∈N ,{}n b 的项是互不相等的正整数,若对于任意*n ∈N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b =【解析】222149161491612341234lg()()2lg()n n a b n n b b b b b a b b b b b b b b b b b b b b =⇒=⇒=⇒=11. 设1a 、2a ∈R ,且121122sin 2sin(2)αα+=++,则12|10|παα--的最小值等于【解析】111[,1]2sin 3α∈+,211[,1]2sin(2)3α∈+,∴121112sin 2sin(2)αα==++,即12sin sin(2)1αα==-,∴122k παπ=-+,24k παπ=-+,12min |10|4ππαα--=12. 如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“”的 点在正方形的顶点处,设集合1234{,,,}P P P P Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“”的点分布在P l 的两侧. 用1()P D l 和2()P D l 分别表示P l 一侧 和另一侧的“”的点到P l 的距离之和. 若过P 的直 线P l 中有且只有一条满足12()()P P D l D l =,则Ω中 所有这样的P 为 【解析】1P 、3P二. 选择题(本大题共4题,每题5分,共20分) 13. 关于x 、y 的二元一次方程组50234x y x y +=⎧⎨+=⎩的系数行列式D 为( )A.0543 B. 1024 C. 1523 D. 6054【解析】C14. 在数列{}n a 中,1()2n n a =-,*n ∈N ,则lim n n a →∞( )A. 等于12-B. 等于0C. 等于12D. 不存在 【解析】B15. 已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c =++,*n ∈N ,则“存在*k ∈N ,使得100k x +、200k x +、300k x +成等差数列”的一个必要条件是( )A. 0a ≥B. 0b ≤C. 0c =D. 20a b c -+= 【解析】A16. 在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=. P 为1C 上的动 点,Q 为2C 上的动点,w 是OP OQ ⋅的最大值. 记{(,)|P Q P Ω=在1C 上,Q 在2C 上,且}OP OQ w ⋅=,则Ω中元素个数为( )A. 2个B. 4个C. 8个D. 无穷个 【解析】D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,直三棱柱111ABC A B C -的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱1AA 的长为5.(1)求三棱柱111ABC A B C -的体积; (2)设M 是BC 中点,求直线1A M 与平面ABC 所成角的大小. 【解析】(1)20V S h =⋅=(2)tanθ==18. 已知函数221()cos sin 2f x x x =-+,(0,)x π∈. (1)求()f x 的单调递增区间;(2)设△ABC 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求△ABC 的面积.【解析】(1)1()cos22f x x =+,(0,)x π∈,单调递增区间为[,)2ππ (2)1cos223A A π=-⇒=,∴225191cos 2252c A c c +-==⇒=⋅⋅或3c =,根据锐角三角形,cos 0B >,∴3c =,1sin 2S bc A ==19. 根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤⎪=⎨-+≥⎪⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【解析】(1)12341234()()96530935a a a a b b b b +++-+++=-= (2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大12341234(42050)38(647)42()()[965]878222a a a ab b b b +⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=2424(4246)88008736S =--+=,∴此时保有量超过了容纳量.20. 在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且||OP =P 的坐标;(2)设83(,)55P ,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =, 求直线AQ 的方程.【解析】(1)联立22:14x y Γ+=与222x y +=,可得P (2)设(,0)M m ,283833(,1)(,)055555MA MP m m m m m ⋅=-⋅-=-+=⇒=或1m =8283864629(,)(,)0555********PA MP m m m ⋅=-⋅-=-+=⇒=(3)设00(,)P x y ,线段AP 的中垂线与x 轴的交点即03(,0)8M x ,∵4PQ PM =,∴003(,3)2Q x y --,∵2AQ AC =,∴00133(,)42y C x --,代入并联立椭圆方程,解得09x =,019y =-,∴1()3Q ,∴直线AQ 的方程为110y x =+21. 设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤. (1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 为周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,()g x 是定义在R 上、恒大于零的周期函数,M 是()g x 的最大值. 函数()()()h x f x g x =. 证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”. 【解析】(1)0a ≥;(2)略;(3)略.。
2017年上海市徐汇区高考数学一模试卷一、填空题(共12小题,第1题至第6题每小题4分,第7题至第12题每小题4分,满分54分)1.(4分)=.2.(4分)已知抛物线C的顶点在平面直角坐标系原点,焦点在x轴上,若C经过点M(1,3),则其焦点到准线的距离为.3.(4分)若线性方程组的增广矩阵为,解为,则a+b=.4.(4分)若复数z满足:i•z=+i(i是虚数单位),则|z|=.5.(4分)在(x+)6的二项展开式中第四项的系数是.(结果用数值表示)6.(4分)在长方体ABCD﹣A1B1C1D1中,若AB=BC=1,AA1=,则异面直线BD1与CC1所成角的大小为.7.(5分)若函数f(x)=的值域为(﹣∞,1],则实数m的取值范围是.8.(5分)如图,在△ABC中,若AB=AC=3,cos∠BAC=,=2,则=.9.(5分)定义在R上的偶函数y=f(x),当x≥0时,f(x)=lg(x2﹣3x+3),则f(x)在R上的零点个数为个.10.(5分)将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中2辆卡车必须停在A与B的位置,那么不同的停车位置安排共有种?(结果用数值表示)11.(5分)已知数列{a n}是首项为1,公差为2m的等差数列,前n项和为S n,设b n=(n∈N*),若数列{b n}是递减数列,则实数m的取值范围是.12.(5分)若使集合A={x|(kx﹣k2﹣6)(x﹣4)>0,x∈Z}中的元素个数最少,则实数k的取值范围是.二、选择题(共4小题,每小题5分,满分20分)13.(5分)“x=kπ+(k∈Z)“是“tanx=1”成立的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件14.(5分)若1﹣i(i是虚数单位)是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=2,c=﹣1 C.b=﹣2,c=﹣1 D.b=﹣2,c=315.(5分)已知函数f(x)为R上的单调函数,f﹣1(x)是它的反函数,点A(﹣1,3)和点B(1,1)均在函数f(x)的图象上,则不等式|f﹣1(2x)|<1的解集为()A.(﹣1,1)B.(1,3) C.(0,log23)D.(1,log23)16.(5分)如图,两个椭圆+=1,+=1内部重叠区域的边界记为曲线C,P是曲线C上任意一点,给出下列三个判断:①P到F1(﹣4,0)、F2(4,0)、E1(0,﹣4)、E2(0,4)四点的距离之和为定值;②曲线C关于直线y=x、y=﹣x均对称;③曲线C所围区域面积必小于36.上述判断中正确命题的个数为()A.0个 B.1个 C.2个 D.3个三、解答题(共5小题,满分76分)17.(14分)如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D是AB的中点.(1)求PD与平面PAC所成的角的大小;(2)求△PDB绕直线PA旋转一周所构成的旋转体的体积.18.(14分)已知函数f(x)=.(1)当x∈[0,]时,求f(x)的值域;(2)已知△ABC的内角A,B,C的对边分别为a,b,c,若f()=,a=4,b+c=5,求△ABC的面积.19.(14分)某创业团队拟生产A、B两种产品,根据市场预测,A产品的利润与投资额成正比(如图1),B产品的利润与投资额的算术平方根成正比(如图2).(注:利润与投资额的单位均为万元)(1)分别将A、B两种产品的利润f(x)、g(x)表示为投资额x的函数;(2)该团队已筹到10万元资金,并打算全部投入A、B两种产品的生产,问:当B产品的投资额为多少万元时,生产A、B两种产品能获得最大利润,最大利润为多少?20.(16分)如图,双曲线Γ:﹣y2=1的左、右焦点分别为F1,F2,过F2作直线l交y轴于点Q.(1)当直线l平行于Γ的一条渐近线时,求点F1到直线l的距离;(2)当直线l的斜率为1时,在Γ的右支上是否存在点P,满足=0?若存在,求出P点的坐标;若不存在,说明理由;(3)若直线l与Γ交于不同两点A、B,且Γ上存在一点M,满足++4=(其中O为坐标原点),求直线l的方程.21.(18分)正整数列{a n},{b n}满足:a1≥b1,且对一切k≥2,k∈N*,a k是a k﹣1与b k﹣1的等差中项,b k是a k﹣1与b k﹣1的等比中项.(1)若a2=2,b2=1,求a1,b1的值;(2)求证:{a n}是等差数列的充要条件是{a n}为常数数列;(3)记c n=|a n﹣b n|,当n≥2(n∈N*)时,指出c2+…+c n与c1的大小关系并说明理由.2017年上海市徐汇区高考数学一模试卷参考答案与试题解析一、填空题(共12小题,第1题至第6题每小题4分,第7题至第12题每小题4分,满分54分)1.(4分)=2.【分析】分式分子、分母同除以n,运用常见数列的极限为0,计算即可得到所求值.【解答】解:===2.故答案为:2.【点评】本题考查数列极限的求法,注意运用常见数列的极限公式,考查运算能力,属于基础题.2.(4分)已知抛物线C的顶点在平面直角坐标系原点,焦点在x轴上,若C经过点M(1,3),则其焦点到准线的距离为.【分析】由题意可知:设抛物线的方程:y2=2px,将M(1,3)代入9=2p,解得:p=,求得抛物线方程,则焦点到准线的距离d=p=9.【解答】解:由题意可知:由焦点在x轴上,若C经过点M(1,3),则图象经过第一象限,∴设抛物线的方程:y2=2px,将M(1,3)代入9=2p,解得:p=,∴抛物线的标准方程为:y2=9x,由焦点到准线的距离d=p=,故答案为:.【点评】本题考查抛物线的简单几何性质,考查抛物线方程的应用,属于基础题.3.(4分)若线性方程组的增广矩阵为,解为,则a+b=2.【分析】根据增广矩阵的定义得到是方程组的解,解方程组即可.【解答】解:由题意知是方程组的解,即,则a+b=1+1=2,故答案为:2.【点评】本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键.4.(4分)若复数z满足:i•z=+i(i是虚数单位),则|z|=2.【分析】求出z,根据复数求模公式求出z的模即可.【解答】解:由iz=+i,得z==1﹣i,故|z|==2,故答案为:2.【点评】本题考查了复数求模公式,复数的化简,是一道基础题.5.(4分)在(x+)6的二项展开式中第四项的系数是160.(结果用数值表示)【分析】利用二项式定义的通项公式求解.【解答】解:在(x+)6的二项展开式中第四项:=8C x﹣3=160x﹣3.∴在(x+)6的二项展开式中第四项的系数是160.故答案为:160.【点评】本题考查二项展开式中第四项的求法,是基础题,解题时要认真审题,注意二项式定理的性质的合理运用.6.(4分)在长方体ABCD﹣A1B1C1D1中,若AB=BC=1,AA1=,则异面直线BD1与CC1所成角的大小为.【分析】根据条件画出图形,并连接D1B1,可以判断出∠B1BD1为异面直线BD1与CC1所成的角,从而在Rt△BB1D1中可求出cos∠B1BD1,进而便可得出∠B1BD1的大小.【解答】解:如图,连接D1B1;∵CC1∥BB1;∴BD1与CC1所成角等于BD1与BB1所成角;∴∠B1BD1为异面直线BD1与CC1所成角;∴在Rt△BB1D1中,cos∠B1BD1=;∴异面直线BD1与CC1所成角的大小为.故答案为:.【点评】考查异面直线及异面直线所成角的概念,三角函数的定义,已知三角函数值求角.7.(5分)若函数f(x)=的值域为(﹣∞,1],则实数m的取值范围是(0,1] .【分析】根据指数函数的最值以及二次函数的性质求出f(x)的值域(﹣∞,1],从而判断出a的范围即可.【解答】解:x≤0时:f(x)=2x∈(0,1].x>0时,f(x)=﹣x2+m,函数的对称轴x=0,f(x)在(﹣∞,0)递增,∴f(x)=﹣x2+m<m,函数f(x)=的值域为(﹣∞,1],故0<m≤1,故答案为:(0,1].【点评】本题考查了分段函数问题,考查二次函数以及对数函数的性质,是一道中档题.8.(5分)如图,在△ABC中,若AB=AC=3,cos∠BAC=,=2,则=.【分析】由条件可先得出,且,从而带入进行数量积的运算即可求出该数量积的值.【解答】解:根据条件:===;∴===.故答案为:.【点评】考查向量加法和数乘的几何意义,以及向量的数乘运算,向量数量积的运算及计算公式.9.(5分)定义在R上的偶函数y=f(x),当x≥0时,f(x)=lg(x2﹣3x+3),则f(x)在R上的零点个数为4个.【分析】利用函数是偶函数求出xx≥0时,函数的零点个数,即可得到结果.【解答】解:当x≥0时,f(x)=lg(x2﹣3x+3),函数的零点由:lg(x2﹣3x+3)=0,即x2﹣3x+3=1,解得x=1或x=2.因为函数是定义在R上的偶函数y=f(x),所以函数的零点个数为:4个.故答案为:4.【点评】本题考查函数的零点的个数的求法,函数的奇偶性的应用,考查计算能力.10.(5分)将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中2辆卡车必须停在A与B的位置,那么不同的停车位置安排共有40320种?(结果用数值表示)【分析】根据将6辆不同的小汽车和2辆不同的卡车驶入如图所示的10个车位中的某8个内,其中2辆卡车必须停在A与B的位置,利用排列知识可得结论.【解答】解:由题意,不同的停车位置安排共有A22A86=40320种.故答案为40320.【点评】本题考查排列知识的运用,考查学生的计算能力,比较基础.11.(5分)已知数列{a n}是首项为1,公差为2m的等差数列,前n项和为S n,设b n=(n∈N*),若数列{b n}是递减数列,则实数m的取值范围是[0,1).【分析】利用求和公式可得S n=n+×2m.可得b n==,由数列{b n}是递减数列,可得b n<b n,即可得出.+1【解答】解:S n=n+×2m=mn2+(1﹣m)n.∴b n==,∵数列{b n}是递减数列,<b n,∴<,∴b n+1化为:m(n﹣2)+1>0,对于∀n∈N*都成立.n=1时,m<1;n=2时,m∈R;n>2时,m,解得m≥0.综上可得:m∈[0,1).故答案为:[0,1).【点评】本题考查了等差数列的求和公式、不等式的解法、数列的单调性,考查了推理能力与计算能力,属于中档题.12.(5分)若使集合A={x|(kx﹣k2﹣6)(x﹣4)>0,x∈Z}中的元素个数最少,则实数k的取值范围是[﹣3,﹣2] .【分析】化简集合A,对k讨论即可.求解x的范围,可得答案.【解答】解:集合A={x|(kx﹣k2﹣6)(x﹣4)>0,x∈Z},∵方程(kx﹣k2﹣6)(x﹣4)=0,解得:,x2=4,∴(kx﹣k2﹣6)(x﹣4)>0,x∈Z当k=0时,A=(﹣∞,4);当k>0时,4<k+,A=(﹣∞,4)∪(k+,+∞);当k<0时,k+<4,A=(k+,4).∴当k≥0时,集合A的元素的个数无限;当k<0时,k+<4,A=(k+,4).集合A的元素的个数有限,令函数g(k)=k+,(k<0)则有:g(k)≤﹣2,∵题意要求x∈Z,故得:k+≥﹣5,且k+<﹣4,解得:﹣3≤k≤﹣2故答案为:[﹣3,﹣2].【点评】本题考查的是集合元素的分布以及运算问题,方程的思想以及问题转化的思想在题目当中的应用.此题属于集运算与方程、不等式于一体的综合问题,值得同学们认真反思和归纳.二、选择题(共4小题,每小题5分,满分20分)13.(5分)“x=kπ+(k∈Z)“是“tanx=1”成立的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据三角函数,充分必要条件的定义判断.【解答】解:∵tanx=1,∴x=kπ+(k∈Z)∵x=kπ+(k∈Z)则tanx=1,∴根据充分必要条件定义可判断:“x=kπ+(k∈Z)“是“tanx=1”成立的充分必要条件故选:C.【点评】本题考察了充分必要条件的定义,属于容易题.14.(5分)若1﹣i(i是虚数单位)是关于x的实系数方程x2+bx+c=0的一个复数根,则()A.b=2,c=3 B.b=2,c=﹣1 C.b=﹣2,c=﹣1 D.b=﹣2,c=3【分析】利用实系数一元二次的虚根成对原理、根与系数的关系即可得出.【解答】解:∵1﹣i是关于x的实系数方程x2+bx+c=0的一个复数根,∴1+i是关于x的实系数方程x2+bx+c=0的一个复数根,∴,解得b=﹣2,c=3.故选:D.【点评】本题考查了实系数一元二次的虚根成对原理、根与系数的关系,属于基础题.15.(5分)已知函数f(x)为R上的单调函数,f﹣1(x)是它的反函数,点A(﹣1,3)和点B(1,1)均在函数f(x)的图象上,则不等式|f﹣1(2x)|<1的解集为()A.(﹣1,1)B.(1,3) C.(0,log23)D.(1,log23)【分析】由已知结合互为反函数的两个函数图象间的关系可得f﹣1(3)=﹣1,f﹣1(1)=1,再由|f﹣1(2x)|<1,得﹣1<f﹣1(2x)<1,即f﹣1(3)<f﹣1(2x)<f﹣1(1),再由函数的单调性转化为指数不等式求解.【解答】解:∵点A(﹣1,3)和点B(1,1)在图象上,∴f(﹣1)=3,f(1)=1,又f﹣1(x)是f(x)的反函数,∴f﹣1(3)=﹣1,f﹣1(1)=1,由|f﹣1(2x)|<1,得﹣1<f﹣1(2x)<1,即f﹣1(3)<f﹣1(2x)<f﹣1(1),函数f(x)为R的减函数,∴f﹣1(x)是定义域上的减函数,则1<2x<3,解得:0<x<log23.∴不等式|f﹣1(2x)|<1的解集为(0,log23).故选:C.【点评】本题考查函数单调性的性质,考查了互为反函数的两个函数图象间的关系,体现了数学转化思想方法,是基础题.16.(5分)如图,两个椭圆+=1,+=1内部重叠区域的边界记为曲线C,P是曲线C上任意一点,给出下列三个判断:①P到F1(﹣4,0)、F2(4,0)、E1(0,﹣4)、E2(0,4)四点的距离之和为定值;②曲线C关于直线y=x、y=﹣x均对称;③曲线C所围区域面积必小于36.上述判断中正确命题的个数为()A.0个 B.1个 C.2个 D.3个【分析】①,若点P在椭圆+=1上,P到F1(﹣4,0)、F2(4,0)两点的距离之和为定值、到E1(0,﹣4)、E2(0,4)两点的距离之和不为定值;②,两个椭圆+=1,+=1关于直线y=x、y=﹣x均对称,曲线C关于直线y=x、y=﹣x均对称;③,曲线C所围区域在边长为6的正方形内部.【解答】解:对于①,若点P在椭圆+=1上,P到F1(﹣4,0)、F2(4,0)两点的距离之和为定值、到E1(0,﹣4)、E2(0,4)两点的距离之和不为定值,故错;对于②,两个椭圆+=1,+=1关于直线y=x、y=﹣x均对称,曲线C关于直线y=x、y=﹣x均对称,故正确;对于③,曲线C所围区域在边长为6的正方形内部,所以面积必小于36,故正确.故选:C.【点评】本题考查了椭圆的定义及对称性,属于基础题.三、解答题(共5小题,满分76分)17.(14分)如图,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D是AB的中点.(1)求PD与平面PAC所成的角的大小;(2)求△PDB绕直线PA旋转一周所构成的旋转体的体积.【分析】(1)先判断∠DPA就是PD与平面PAC所成的角,再在Rt△PAD中,即可求得结论;(2)△PDB绕直线PA旋转一周所构成的旋转体,是以AB为底面半径、AP为高的圆锥中挖去一个以AD为底面半径、AP为高的小圆锥,从而可求体积.【解答】解:(1)∵PA⊥平面ABC,∴PA⊥AB,又∵AC⊥AB,PA∩AC=A∴AB⊥平面PAC,∴∠DPA就是PD与平面PAC所成的角.…(2分)在Rt△PAD中,PA=2,AD=,…(4分)∴tan∠DPA=∴∠DPA=arctan,…(5分)即PD与平面PAC所成的角的大小为arctan.…(6分)(2)△PDB绕直线PA旋转一周所构成的旋转体,是以AB为底面半径、AP为高的圆锥中挖去一个以AD为底面半径、AP为高的小圆锥,∴﹣=.…(12分).【点评】本题考查线面角,考查几何体的体积,确定线面角,明确几何体的形状是解题的关键.18.(14分)已知函数f(x)=.(1)当x∈[0,]时,求f(x)的值域;(2)已知△ABC的内角A,B,C的对边分别为a,b,c,若f()=,a=4,b+c=5,求△ABC的面积.【分析】(1)由已知利用行列式的计算,三角函数恒等变换的应用化简可得函数解析式f(x)=sin(2x+)+,结合范围2x+∈[,],利用正弦函数的性质即可得解值域.(2)由已知可求sin(A+)=,结合范围A+∈(,),可得A=,由余弦定理解得:bc=3,利用三角形面积公式即可计算得解.【解答】(本题满分为14分,第1小题满分为6分,第2小题满分为8分)解:(1)∵f(x)==cos2x+sinxcosx=sin(2x+)+,∵x∈[0,],2x+∈[,],∴sin(2x+)∈[﹣,1],可得:f(x)=sin(2x+)+∈[0,1+].(2)∵f()=sin(A+)+=,可得:sin(A+)=,∵A∈(0,π),A+∈(,),可得:A+=,解得:A=.∵a=4,b+c=5,∴由余弦定理a2=b2+c2﹣2bccosA,可得:16=b2+c2﹣bc=(b+c)2﹣3bc=25﹣3bc,解得:bc=3,=bcsinA=3×=.∴S△ABC【点评】本题主要考查了行列式的计算,三角函数恒等变换的应用,正弦函数的图象和性质,余弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.(14分)某创业团队拟生产A、B两种产品,根据市场预测,A产品的利润与投资额成正比(如图1),B产品的利润与投资额的算术平方根成正比(如图2).(注:利润与投资额的单位均为万元)(1)分别将A、B两种产品的利润f(x)、g(x)表示为投资额x的函数;(2)该团队已筹到10万元资金,并打算全部投入A、B两种产品的生产,问:当B产品的投资额为多少万元时,生产A、B两种产品能获得最大利润,最大利润为多少?【分析】(1)由A产品的利润与投资额成正比,B产品的利润与投资额的算术平方根成正比,结合函数图象,我们可以利用待定系数法来求两种产品的收益与投资的函数关系;(2)由(1)的结论,我们设B产品的投资额为x万元,则A产品的投资额为10﹣x万元.这时可以构造出一个关于收益y的函数,然后利用求函数最大值的方法进行求解.【解答】解:(1)f(x)=k1x,g(x)=k2,f(1)=0.25=k1,g(4)=2k2=2.5,∴f(x)=0.25x(x≥0),g(x)=1.25(x≥0),(2)设B产品的投资额为x万元,则A产品的投资额为10﹣x万元.y=f(10﹣x)+g(x)=0.25(10﹣x)+1.25(0≤x≤10),令t=,则y=﹣0.25t2+1.25t+2.5,所以当t=2.5,即x=6.25万元时,收益最大,y max=万元.【点评】函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.20.(16分)如图,双曲线Γ:﹣y2=1的左、右焦点分别为F1,F2,过F2作直线l交y轴于点Q.(1)当直线l平行于Γ的一条渐近线时,求点F1到直线l的距离;(2)当直线l的斜率为1时,在Γ的右支上是否存在点P,满足=0?若存在,求出P点的坐标;若不存在,说明理由;(3)若直线l与Γ交于不同两点A、B,且Γ上存在一点M,满足++4=(其中O为坐标原点),求直线l的方程.【分析】(1)由双曲线Γ:﹣y2=1,焦点在x轴上,a=,b=1,c==2,则令k=,直线l的方程为:y=(x﹣2),即x﹣y﹣2=0,则点F1到直线l 的距离为d==2;(2)直线l的方程为y=x﹣2,点Q(0,﹣2),假设在Γ的右支上存在点P(x0,y0),则x0>0,=0,代入求得y0=x0+2,代入双曲线方程求得2+12x0+15=0,由△<0,所以不存在点P在右支上;(3)设直线l的方程为y=kx+b,联立方程组,由韦达定理则=(x3,y3),=﹣(+),M为双曲线上一点,即x32﹣3y32=3,则x1x2﹣3y1y2=21①由x1x2﹣3y1y2=x1x2﹣3(x1+b)(x2+b),=﹣2x1x2﹣3b(x1+x2)﹣3b2=﹣2•﹣3b•﹣3b2=21,即可求得k与b的值,求得直线l的方程;方法二:设直线l的方程为y=my+2,代入椭圆方程,由韦达定理及向量数量积的坐标运算,求得M点坐标,代入双曲线的方程,即可求得m的值.【解答】解:(1)双曲线Γ:﹣y2=1,焦点在x轴上,a=,b=1,c==2,则双曲线左、右焦点分别为F1(﹣2,0),F2(2,0),过F2作直线l,设直线l的斜率为k,l交y轴于点Q.当直线l平行于Γ的一条渐近线时,不妨令k=,则直线l的方程为:y=(x﹣2),即x﹣y﹣2=0,则点F1到直线l的距离为d==2;(2)当直线l的斜率为1时,直线l的方程为y=x﹣2,则点Q(0,﹣2);假设在Γ的右支上存在点P(x0,y0),则x0>0;∵=0,∴(x0+2)(0+2)+(y0﹣0)(﹣2﹣0)=0,整理得y0=x0+2,与双曲线方程﹣=1联立,消去y0,得2+12x0+15=0,△=24>0,方程有实根,解得:x=<,所以不存在点P在右支上;(3)当k=0时,直线l的方程x=2,则A(2,),B(2,﹣),由=﹣(+),∴M(1,0),则M不椭圆上,显然不存在,当直线l的斜率存在且不为0时,设直线l的方程为y=kx+b,联立方程组,消去y,得(1﹣3k2)x2﹣6kbx﹣3b2﹣3=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1•x2=,设=(x3,y3),++4=,=﹣(+),即,又M为双曲线上一点,即x32﹣3y32=3,由(x1+x2)2﹣3(y1+y2)2=48,化简得:(x12﹣3y12)+(x22﹣3y22)+2(x1x2﹣3y1y2)=48,又A(x1,y1),B(x2,y2)在双曲线上,所以x12﹣3y12=3,x22﹣3y22=3,∴x1x2﹣3y1y2=21,由直线l过椭圆的右焦点F(2,0),则k=﹣,①而x1x2﹣3y1y2=x1x2﹣3(kx1+b)(kx2+b),=x1x2﹣3k2x1x2﹣3kb(x1+x2)﹣3b2=﹣2•﹣3b•﹣3b2=21,②由①②解得:,或,∴直线l的方程x=±y+2.方法二:设直线l的方程为x=my+2,设A(x1,y1),B(x2,y2),M(x0,y0),整理得:(m2﹣3)y2+4my+1=0,则y1+y2=﹣,y1•y2=,x1+x2=m(y1+y2)+4=﹣,x1•x2=(my1+2)(my2+2)=m2y1•y2+2m(y1+y2)+4=﹣,+=﹣4,则(x1+x2,y1+y2)=﹣4,∴,求得:x0=,y0=,由M在椭圆方程,代入,求得m2=2,解得:m=±,直线l的方程x=±y+2.【点评】本题考查双曲线的标准方程及简单几何性质,考查直线与双曲线的位置关系,考查直线与双曲线的交点与△的关系,考查计算能力,属于难题.21.(18分)正整数列{a n},{b n}满足:a1≥b1,且对一切k≥2,k∈N*,a k是a k﹣1与b k﹣1的等差中项,b k是a k﹣1与b k﹣1的等比中项.(1)若a2=2,b2=1,求a1,b1的值;(2)求证:{a n}是等差数列的充要条件是{a n}为常数数列;(3)记c n=|a n﹣b n|,当n≥2(n∈N*)时,指出c2+…+c n与c1的大小关系并说明理由.【分析】(1)正整数列{a n},{b n}满足:a1≥b1,且对一切k≥2,k∈N*,a k是a k﹣1与b k﹣1的等差中项,b k是a k﹣1与b k﹣1的等比中项.可得2a k=a k﹣1+b k﹣1,b k2=a k ﹣1b k﹣1,对k取值即可得出.(2){a n}是等差数列,2a k=a k﹣1+b k﹣1,2a k=a k﹣1+a k+1,可得b k﹣1=a k+1,b k=a k+2,b k2=a k ﹣1b k﹣1,a k+22=a k﹣1a k+1,k=2时,a42=a1a3,(a1+3d)2=a1(a1+2d),可得d=0.即可证明.(3)对一切k ≥2,k ∈N *,a k 是a k ﹣1与b k ﹣1的等差中项,b k 是a k ﹣1与b k ﹣1的等比中项.2a n =a n ﹣1+b n ﹣1,b n 2=a n ﹣1b n ﹣1,利用基本不等式的性质可得a n ===bn ,c n =|a n ﹣b n |=a n ﹣b n .可得a n +1﹣b n +1=﹣=≤(a n +b n ﹣2b n )=,即.利用等比数列的求和公式即可得出.【解答】解:(1)正整数列{a n },{b n }满足:a 1≥b 1,且对一切k ≥2,k ∈N *, a k 是a k ﹣1与b k ﹣1的等差中项,b k 是a k ﹣1与b k ﹣1的等比中项.∴2a k =a k ﹣1+b k ﹣1,b k 2=a k ﹣1b k ﹣1,a 2=2,b 2=1,可得4=a 1+b 1,1=a 1b 1,解得a 1=2+,b 1=2﹣. (2)证明:{a n }是等差数列,2a k =a k ﹣1+b k ﹣1,2a k =a k ﹣1+a k +1,可得b k ﹣1=a k +1, 则b k =a k +2,∵b k 2=a k ﹣1b k ﹣1,∴a k +22=a k ﹣1a k +1,k=2时,a 42=a 1a 3,(a 1+3d )2=a 1(a 1+2d ),6a 1d +9d 2=2a 1d ,即d (4a 1+9d )=0,正整数列{a n },可知d ≥0,4a 1+9d >0,∴d=0.∴数列{a n }为常数数列.反之也成立.{a n }是等差数列的充要条件是{a n }为常数数列.(3)对一切k ≥2,k ∈N *,a k 是a k ﹣1与b k ﹣1的等差中项,b k 是a k ﹣1与b k ﹣1的等比中项.2a n =a n ﹣1+b n ﹣1,b n 2=a n ﹣1b n ﹣1,∴an ===b n ,又已知a 1≥b 1,∴c n =|a n ﹣b n |=a n ﹣b n .∴an +1﹣b n +1=﹣=≤(a n +b n ﹣2b n )=,即.∴≤…≤,∴c2+…+c n≤+…+=≤c1.∴当n≥2(n∈N*)时,c2+…+c n≤c1.【点评】本题考查了等差数列与等比数列的通项公式、基本不等式的性质、数列的单调性,考查了推理能力与计算能力,属于难题.。
2017年上海市松江区高考数学一模试卷一.填空题(本大题满分56分)本大题共有12题,考生必须在答题纸相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分.1.设集合M={x |x 2=x },N={x |lgx ≤0},则M ∩N .2.已知a ,b ∈R ,i 是虚数单位.若a +i=2﹣bi ,则(a +bi )2= . 3.已知函数f (x )=a x ﹣1的图象经过(1,1)点,则f ﹣1(3) . 4.不等式x |x ﹣1|>0的解集为的解集为 .5.已知向量=(sinx ,cosx ),=(sinx ,sinx ),则函数f (x )=•的最小正周期为期为 .6.里约奥运会游泳小组赛采用抽签方法决定运动员比赛的泳道.在由2名中国运动员和6名外国运动员组成的小组中,2名中国运动员恰好抽在相邻泳道的概率为率为 .7.按如图所示的程序框图运算:若输入x=17,则输出的x 值是值是 .8.设(1+x )n =a 0+a 1x +a 2x 2+a 3x 3+…+a n x n ,若=,则n= .9.已知圆锥底面半径与球的半径都是1cm ,如果圆锥的体积与球的体积恰好也相等,那么这个圆锥的侧面积是相等,那么这个圆锥的侧面积是 cm 2.10.设P (x ,y )是曲线C : +=1上的点,F 1(﹣4,0),F 2(4,0),则|PF 1|+|PF 2|的最大值= .11.已知函数f (x )=,若F (x )=f (x )﹣kx 在其定义域内有3个零点,则实数k ∈ .12.已知数列.已知数列{{a n }满足a 1=1,a 2=3,若,若||a n +1﹣a n |=2n (n ∈N *),且,且{{a 2n ﹣1}是递增数列、数列、{{a 2n }是递减数列,则= .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.已知a ,b ∈R ,则“ab >0“是“+>2”的(的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件.充要条件 D .既非充分也非必要条件14.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,点P 在截面A 1DB 上,则线段AP 的最小值等于(的最小值等于( )A .B .C .D .15.若矩阵满足:a 11,a 12,a 21,a 22∈{0,1},且=0,则这样的互不相等的矩阵共有(样的互不相等的矩阵共有( ) A .2个 B .6个 C .8个 D .10个16.解不等式()x ﹣x +>0时,可构造函数f (x )=()x ﹣x ,由f (x )在x ∈R 是减函数,及f (x )>f (1),可得x <1.用类似的方法可求得不等式arcsinx 2+arcsinx +x 6+x 3>0的解集为(的解集为() A .(0,1] B .(﹣1,1) C .(﹣1,1] D .(﹣1,0)三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.如图,在正四棱锥P ﹣ABCD 中,PA=AB=a ,E 是棱PC 的中点.(1)求证:PC ⊥BD ;(2)求直线BE 与P A 所成角的余弦值.18.已知函数F(x)=,(a为实数).(1)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由;(2)若对任意的x≥1,都有1≤f(x)≤3,求a的取值范围.19.上海市松江区天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”.兴趣小组同学实施如下方案来测量塔的倾斜度和塔高:如图,记O点为塔基、P点为塔尖、点P在地面上的射影为点H.在塔身OP射影所在直线上选点A,使仰角k∠HAP=45°,过O点与OA成120°的地面上选B点,使仰角∠HPB=45°(点A、B、O都在同一水平面上),此时测得∠OAB=27°,A与B之间距离为33.6米.试求:(1)塔高(即线段PH的长,精确到0.1米);(2)塔身的倾斜度(即PO与PH的夹角,精确到0.1°).20.已知双曲线C:﹣=1经过点(2,3),两条渐近线的夹角为60°,直线l交双曲线于A、B两点.(1)求双曲线C的方程;(2)若l过原点,P为双曲线上异于A,B的一点,且直线P A、PB的斜率k P A,k PB均存在,求证:k P A•k PB为定值;(3)若l过双曲线的右焦点F1,是否存在x轴上的点M(m,0),使得直线l 绕点F1无论怎样转动,都有•=0成立?若存在,求出M的坐标;若不存在,请说明理由.21.如果一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为“H型数列”.)若数列{{a n}为“H型数列”,且a1=﹣3,a2=,a3=4,求实数m的取值范(1)若数列围;的等差数列{{a n}为“H型数列”,且其前n项和S n满足S n (2)是否存在首项为1的等差数列)?若存在,请求出{{a n}的通项公式;若不存在,请说明理由. <n2+n(n∈N*)?若存在,请求出的每一项均为正整数,且{{a n}为“H型数列”,b n=a n,)已知等比数列{{a n}的每一项均为正整数,且(3)已知等比数列c n=,当数列,当数列{{b n}不是“H型数列”时,试判断数列时,试判断数列{{c n}是否为“H型数列”,并说明理由.2017年上海市松江区高考数学一模试卷参考答案与试题解析一.填空题(本大题满分56分)本大题共有12题,考生必须在答题纸相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分.1.设集合M={x|x2=x},N={x|lgx≤0},则M∩N {1}} ..【考点】交集及其运算.【分析】先求出集合M和N,由此能求出M∩N.【解答】解:∵集合M={x|x2=x}={0,1},N={x|lgx≤0}{x|0<x≤1},∴M∩N={1}.故答案为:{{1}.故答案为:2.已知a,b∈R,i是虚数单位.若a+i=2﹣bi,则(a+bi)2= 3﹣4i . 【考点】复数代数形式的乘除运算.【分析】由已知等式结合复数相等的条件求得a,b的值,则复数a+bi可求,然后利用复数代数形式的乘法运算得答案.【解答】解:由a,b∈R,且a+i=2﹣bi,得,即a=2,b=﹣1.∴a+bi=2﹣i.∴(a+bi)2=(2﹣i)2=3﹣4i.故答案为:3﹣4i.3.已知函数f(x)=a x﹣1的图象经过(1,1)点,则f﹣1(3) 2 .【考点】反函数.【分析】根据反函数的与原函数的关系,原函数的定义域是反函数的值域可得答案.【解答】解:函数f(x)=a x﹣1的图象经过(1,1)点,可得:1=a﹣1,解得:a=2.∴f(x)=2x﹣1那么:f﹣1(3)的值即为2x﹣1=3时,x的值.由2x﹣1=3,解得:x=2.∴f﹣1(3)=2.故答案为2.4.不等式x|x﹣1|>0的解集为的解集为 (0,1)∪(1,+∞)∞) .【考点】绝对值不等式的解法.【分析】通过讨论x的范围,去掉绝对值号,求出不等式的解集即可.【解答】解:∵x |x ﹣1|>0, ∴x >0,|x ﹣1|>0, 故x ﹣1>0或x ﹣1<0, 解得:x >1或0<x <1,故不等式的解集是(0,1)∪(1,+∞), 故答案为:(0,1)∪(1,+∞).5.已知向量=(sinx ,cosx ),=(sinx ,sinx ),则函数f (x )=•的最小正周期为期为 π .【考点】平面向量数量积的运算.【分析】由平面向量的坐标运算可得f (x ),再由辅助角公式化积,利用周期公式求得周期.【解答】解:∵=(sinx ,cosx ),=(sinx ,sinx ),∴f (x )=•=sin 2x ﹣sinxcosx===.∴T=.故答案为:π.6.里约奥运会游泳小组赛采用抽签方法决定运动员比赛的泳道.在由2名中国运动员和6名外国运动员组成的小组中,2名中国运动员恰好抽在相邻泳道的概率为率为 .【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数n=,再求出2名中国运动员恰好抽在相邻泳道的概率为m=,由此能求出2名中国运动员恰好抽在相邻泳道的概率.【解答】解:里约奥运会游泳小组赛采用抽签方法决定运动员比赛的泳道. 在由2名中国运动员和6名外国运动员组成的小组中,基本事件总数n=,2名中国运动员恰好抽在相邻泳道的概率为m=,∴2名中国运动员恰好抽在相邻泳道的概率为p===.故答案为:.7.按如图所示的程序框图运算:若输入x=17,则输出的x 值是值是 143 .【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的x ,k 的值,当x=143时满足条件x >115,退出循环,输出x 的值为143,即可得解. 【解答】解:模拟程序的运行,可得 x=17,k=0执行循环体,x=35,k=1不满足条件x >115,执行循环体,x=71,k=2 不满足条件x >115,执行循环体,x=143,k=3 满足条件x >115,退出循环,输出x 的值为143. 故答案为:143.8.设(1+x )n =a 0+a 1x +a 2x 2+a 3x 3+…+a n x n ,若=,则n= 11 .【考点】二项式系数的性质.【分析】利用二项式定理展开可得:(1+x )n=+x 3+…=a 0+a 1x +a 2x 2+a 3x 3+…+a n x n ,比较系数即可得出.【解答】解:∵(1+x )n=+x 3+…=a 0+a 1x +a 2x 2+a 3x 3+…+a n x n,又=,∴=,∴=,n ﹣2=9,则n=11.故答案为:11.9.已知圆锥底面半径与球的半径都是1cm ,如果圆锥的体积与球的体积恰好也相等,那么这个圆锥的侧面积是相等,那么这个圆锥的侧面积是π cm 2.【考点】旋转体(圆柱、圆锥、圆台).【分析】由已知求出圆锥的母线长,代入圆锥的侧面积公式,可得答案.【解答】解:由题意可知球的体积为:×13=cm 3,圆锥的体积为:×π×12×h=hcm 3,因为圆锥的体积恰好也与球的体积相等,所以所以=h ,所以h=4cm ,圆锥的母线:l==cm .故圆锥的侧面积S=πrl=πcm 2,故答案为:π10.设P (x ,y )是曲线C : +=1上的点,F 1(﹣4,0),F 2(4,0),则|PF 1|+|PF 2|的最大值= 10 . 【考点】曲线与方程.【分析】先将曲线方程化简,再根据图形的对称性可知先将曲线方程化简,再根据图形的对称性可知||PF 1|+|PF 2|的最大值为10.【解答】解:曲线C 可化为: =1,它表示顶点分别为(±5,0),(0,±3)的平行四边形,根据图形的对称性可知根据图形的对称性可知||PF 1|+|PF 2|的最大值为10,当且仅当点P 为(0,±3)时取最大值, 故答案为10.11.已知函数f(x)=,若F(x)=f(x)﹣kx在其定义域内有3个零点,则实数k∈ (0,) .【考点】根的存在性及根的个数判断.【分析】问题转化为f(x)和y=kx有3个交点,画出函数f(x)和y=kx的图象,求出临界值,从而求出k的范围即可.【解答】解:若F(x)=f(x)﹣kx在其定义域内有3个零点,即f(x)和y=kx有3个交点,画出函数f(x)和y=kx的图象,如图示:,点(2,0)到直线y=kx的距离d==1,解得:k=,故:0<k<;故答案为:(0,).12.已知数列.已知数列{{a n}满足a1=1,a2=3,若,若||a n+1﹣a n|=2n(n∈N*),且}是递增,且{{a2n﹣1数列、{{a2n}是递减数列,则= ﹣ .数列、【考点】数列的极限.【分析】依题意,可求得a3﹣a2=22,a4﹣a3=﹣23,…,a2n﹣a2n﹣1=﹣22n﹣1,累加求和,可得a2n=﹣•22n,a2n﹣1=a2n+22n﹣1=+•22n;从而可求得的值.【解答】解:∵a1=1,a2=3,|a n+1﹣a n|=2n(n∈N*),∴a3﹣a2=±22,又{a2n﹣1}是递增数列、是递增数列、{{a2n}是递减数列,∴a3﹣a2=4=22;同理可得,a4﹣a3=﹣23,a5﹣a4=24,a6﹣a5=﹣25,…,a2n﹣1﹣a2n﹣2=22n﹣2,a2n﹣a2n﹣1=﹣22n﹣1,∴a2n=(a2n﹣a2n﹣1)+(a2n﹣1﹣a2n﹣2)+…+(a3﹣a2)+(a2﹣a1)+a1=1+2+(22﹣23+24﹣…+22n﹣2﹣22n﹣1)=3+=﹣•22n﹣2=﹣•22n;∴a2n﹣1=a2n+22n﹣1=+•22n;∴则===﹣.故答案为:﹣.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.已知a,b∈R,则“ab>0“是“+>2”的(的( )A.充分非必要条件 B.必要非充分条件C.充要条件.充要条件 D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义判断即可.【解答】解:由+>2,得:>0,故ab >0且a ≠b ,故“ab >0“是“+>2”的必要不充分条件, 故选:B .14.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,点P 在截面A 1DB 上,则线段AP 的最小值等于(的最小值等于( )A .B .C .D .【考点】点、线、面间的距离计算.【分析】由已知可得AC 1⊥平面A 1DB ,可得P 为AC 1与截面A 1DB 的垂足时线段AP 最小,然后利用等积法求解.【解答】解:如图,连接AC 1交截面A 1DB 于P ,由CC 1⊥底面,可得CC 1⊥BD ,又AC ⊥BD ,可得BD ⊥平面ACC 1,则AC 1⊥BD .同理可得AC 1⊥A 1B ,得到AC 1⊥平面A 1DB ,此时线段AP 最小.由棱长为1,可得等边三角形A 1DB 的边长为,∴.由,可得,得AP=.故选:C .15.若矩阵满足:a 11,a 12,a 21,a 22∈{0,1},且=0,则这样的互不相等的矩阵共有(样的互不相等的矩阵共有( ) A .2个 B .6个 C .8个 D .10个【考点】几种特殊的矩阵变换.【分析】根据题意,分类讨论,考虑全为0;全为1;三个0,一个1;两个0,两个1,即可得出结论.解:由=0,【解答】解:由可得a11a22﹣a12a21=0,由于a11,a12,a21,a22∈{0,1},可得矩阵可以是,,,,,,,,,.则这样的互不相等的矩阵共有10个.故选:D.16.解不等式()x﹣x+>0时,可构造函数f(x)=()x﹣x,由f(x)在x∈R是减函数,及f(x)>f(1),可得x<1.用类似的方法可求得不等式arcsinx2+arcsinx+x6+x3>0的解集为()的解集为(A.(0,1] B.(﹣1,1) C.(﹣1,1] D.(﹣1,0)【考点】类比推理.【分析】由题意,构造函数g(x)=arcsinx+x3,在x∈[﹣1,1]上是增函数,且是奇函数,不等式arcsinx2+arcsinx+x6+x3>0可化为g(x2)>g(﹣x),即可得出结论.【解答】解:由题意,构造函数g(x)=arcsinx+x3,在x∈[﹣1,1]上是增函数,且是奇函数,不等式arcsinx2+arcsinx+x6+x3>0可化为g(x2)>g(﹣x),∴﹣1≤﹣x<x2≤1,∴0<x≤1,故选:A.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.如图,在正四棱锥P ﹣ABCD 中,PA=AB=a ,E 是棱PC 的中点.(1)求证:PC ⊥BD ;(2)求直线BE 与P A 所成角的余弦值.【考点】异面直线及其所成的角;直线与平面垂直的性质.【分析】(1)推导出△PBC ,△PDC 都是等边三角形,从而BE ⊥PC ,DE ⊥PC ,由此能证明PC ⊥BD .(2)连接AC ,交BD 于点O ,连OE ,则AP ∥OE ,∠BOE 即为BE 与P A 所成的角,由此能求出直线BE 与P A 所成角的余弦值.【解答】证明:(1)∵四边形ABCD 为正方形,且PA=AB=a , ∴△PBC ,△PDC 都是等边三角形,… ∵E 是棱PC 的中点,∴BE ⊥PC ,DE ⊥PC ,又,又 BE ∩DE=E , ∴PC ⊥平面BDE… 又BD ⊂平面BDE , ∴PC ⊥BD…解:(2)连接AC ,交BD 于点O ,连OE .四边形ABCD 为正方形,∴O 是AC 的中点… 又E 是PC 的中点∴OE 为△ACP 的中位线,∴AP ∥OE ∴∠BOE 即为BE 与P A 所成的角所成的角 …在Rt △BOE 中,BE=,EO=,…∴.∴直线BE与P A所成角的余弦值为.…18.已知函数F(x)=,(a为实数).(1)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由;(2)若对任意的x≥1,都有1≤f(x)≤3,求a的取值范围.【考点】函数恒成立问题.【分析】(1)、根据题意,先求出函数的定义域,易得其定义域关于原点对称,求出F(﹣x)的解析式,进而分2种情况讨论:①若y=f(x)是偶函数,②若y=f(x)是奇函数,分别求出每种情况下a的值,综合即可得答案;(2)根据题意,由f(x)的范围,分2种情况进行讨论:f(x)≥1以及f(x)≤3,分析求出每种情况下函数的恒成立的条件,可得a的值,进而综合2种情况,可得答案.【解答】解:(1)函数F(x)=定义域为R,且F(﹣x)==,①若y=f(x)是偶函数,则对任意的x 都有f(x)=f(﹣x),即=,即2x(a+1)=a+1,解可得a=﹣1;②若y=f(x)是奇函数,则对任意的x 都有f(x)=﹣f(﹣x),即=﹣,即2x(a﹣1)=1﹣a,解可得a=1;故当a=﹣1时,y=f(x)是偶函数,当a=1时,y=f(x)是奇函数,当a≠±1时,y=f(x)既非偶函数也非奇函数,(2)由f(x)≥1可得:2x+1≤a•2x﹣1,即≤a﹣1 …∵当x≥1时,函数y1= 单调递减,其最大值为1,则必有a≥2,同理,由f(x)≤3 可得:a•2x﹣1≤3•2x+3,即a﹣3≤,∵当x≥1时,y2=单调递减,且无限趋近于0,故a≤3,综合可得:2≤a≤3.19.上海市松江区天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”.兴趣小组同学实施如下方案来测量塔的倾斜度和塔高:如图,记O点为塔基、P点为塔尖、点P在地面上的射影为点H.在塔身OP射影所在直线上选点A,使仰角k∠HAP=45°,过O点与OA成120°的地面上选B点,使仰角∠HPB=45°(点A、B、O都在同一水平面上),此时测得∠OAB=27°,A与B之间距离为33.6米.试求:(1)塔高(即线段PH的长,精确到0.1米);(2)塔身的倾斜度(即PO与PH的夹角,精确到0.1°).【考点】点、线、面间的距离计算;异面直线及其所成的角.【分析】(1)由题意可知:△PAH ,△PBH 均为等腰直角三角形,AH=BH=x ,∠HAB=27°,AB=33.6,即可求得x===18.86;(2)∠OBH=180°﹣120°﹣2×27°27°=6°=6°,BH=18.86,由正弦定理可知:=,OH==2.28,则倾斜角∠OPH=arctan=arctan=6.89°.【解答】解:(1)设塔高PH=x ,由题意知,∠HAP=45°,∠HBP=45°, ∴△PAH ,△PBH 均为等腰直角三角形, ∴AH=BH=x…在△AHB 中,AH=BH=x ,∠HAB=27°,AB=33.6,∴x===18.86…(2)在△BOH 中,∠BOH=120°,∴∠OBH=180°﹣120°﹣2×27°27°=6°=6°,BH=18.86,由=,得OH==2.28,…∴∠OPH=arctan=arctan=6.89°,…∴塔高18.9米,塔的倾斜度为6.8°. …20.已知双曲线C:﹣=1经过点(2,3),两条渐近线的夹角为60°,直线l交双曲线于A、B两点.(1)求双曲线C的方程;(2)若l过原点,P为双曲线上异于A,B的一点,且直线P A、PB的斜率k P A,k PB均存在,求证:k P A•k PB为定值;(3)若l过双曲线的右焦点F1,是否存在x轴上的点M(m,0),使得直线l绕点F1无论怎样转动,都有•=0成立?若存在,求出M的坐标;若不存在,请说明理由.【考点】直线与双曲线的位置关系.【分析】(1)利用双曲线C:﹣=1经过点(2,3),两条渐近线的夹角为60°,建立方程,即可求双曲线C的方程;(2)设M(x0,y0),由双曲线的对称性,可得N的坐标,设P(x,y),结合题意,又由M、P在双曲线上,可得y02=3x02﹣3,y2=3x2﹣3,将其坐标代入k PM•k PN 中,计算可得答案.(3)先假设存在定点M,使MA⊥MB恒成立,设出M点坐标,根据数量级为0,求得结论.…【解答】(1)解:由题意得)解:由题意得解得a=1,b= …∴双曲线C的方程为; …(2)证明:设A (x 0,y 0),由双曲线的对称性,可得B (﹣x 0,﹣y 0). 设P (x ,y ),…则k P A •k PB =,∵y 02=3x 02﹣3,y 2=3x 2﹣3,…所以k P A •k PB ==3… (3)解:由(1)得点F 1为(2,0)当直线l 的斜率存在时,设直线方程y=k (x ﹣2),A (x 1,y 1),B (x 2,y 2) 将方程y=k (x ﹣2)与双曲线方程联立消去y 得:(k 2﹣3)x 2﹣4k 2x +4k 2+3=0,∴x 1+x 2=,x 1x 2=假设双曲线C 上存在定点M ,使MA ⊥MB 恒成立,设为M (m ,n )则•=(x 1﹣m )(x 2﹣m )+[k (x 1﹣2)﹣n ][k (x 2﹣2)﹣n ] =(k 2+1)x 1x 2﹣(2k 2+kn +m )(x 1+x 2)+m 2+4k 2+4kn +n 2==0,故得:(m 2+n 2﹣4m ﹣5)k 2﹣12nk ﹣3(m 2+n 2﹣1)=0对任意的k 2>3恒成立,∴,解得m=﹣1,n=0∴当点M 为(﹣1,0)时,MA ⊥MB 恒成立;当直线l 的斜率不存在时,由A (2,3),B (2,﹣3)知点M (﹣1,0)使得MA ⊥MB 也成立.又因为点(﹣1,0)是双曲线C 的左顶点,的左顶点,所以双曲线C 上存在定点M (﹣1,0),使MA ⊥MB 恒成立.…21.如果一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为“H 型数列”.(1)若数列)若数列{{a n }为“H 型数列”,且a 1=﹣3,a 2=,a 3=4,求实数m 的取值范围;(2)是否存在首项为1的等差数列的等差数列{{a n }为“H 型数列”,且其前n 项和S n 满足S n <n 2+n (n ∈N *)?若存在,请求出)?若存在,请求出{{a n }的通项公式;若不存在,请说明理由.(3)已知等比数列)已知等比数列{{a n }的每一项均为正整数,且的每一项均为正整数,且{{a n }为“H 型数列”,b n =a n ,c n =,当数列,当数列{{b n }不是“H 型数列”时,试判断数列时,试判断数列{{c n }是否为“H 型数列”,并说明理由. 【考点】数列的求和.【分析】(1)由题意得,a 2﹣a 1=3>2,a 3﹣a 2=4﹣>2,即2﹣=>0,解得m 范围即可得出.(2)假设存在等差数列)假设存在等差数列{{a n }为“H 型数列”,设公差为d ,则d >2,由a 1=1,可得:S n =n +,由题意可得:n +<n 2+n 对n ∈N *都成立,即d都成立.解出即可判断出结论.都成立.解出即可判断出结论.(3)设等比数列)设等比数列{{a n }的公比为q ,则a n =,且每一项均为正整数,且a n +1﹣a n =a n (q ﹣1)>2>0,可得a n +1﹣a n =a n (q ﹣1)>a n ﹣a n ﹣1,即在数列,即在数列{{a n ﹣a n﹣1}(n ≥2)中,“a 2﹣a 1”为最小项.同理在数列为最小项.同理在数列{{b n ﹣b n ﹣1}(n ≥2)中,“b 2﹣b 1”为最小项.由为最小项.由{{a n }为“H 型数列”,可知只需a 2﹣a 1>2,即,即 a 1(q ﹣1)>2,又因为{b n }不是“H 型数列”,且“b 2﹣b 1”为最小项,可得b 2﹣b 1≤2,即,即 a 1(q ﹣1)≤3,由数列,由数列{{a n }的每一项均为正整数,可得的每一项均为正整数,可得 a 1(q ﹣1)=3,a 1=1,q=4或a 1=3,q=2,通过分类讨论即可判断出结论.【解答】解:(1)由题意得,a 2﹣a 1=3>2,a 3﹣a 2=4﹣>2,即2﹣=>0,解得m或m <0.∴实数m 的取值范围时(﹣∞,0)∪.(2)假设存在等差数列)假设存在等差数列{{a n }为“H 型数列”,设公差为d ,则d >2,由a 1=1,可得:S n =n +,由题意可得:n +<n 2+n 对n ∈N *都成立,即d都成立.∵=2+>2,且=2,∴d ≤2,与d >2矛盾,因此不存在等差数列因此不存在等差数列{{a n }为“H 型数列”.(3)设等比数列)设等比数列{{a n }的公比为q ,则a n =,且每一项均为正整数,且a n +1﹣a n =a n (q ﹣1)>2>0,∴a 1>0,q >1.∵a n +1﹣a n =a n (q ﹣1)>a n ﹣a n ﹣1,即在数列,即在数列{{a n ﹣a n ﹣1}(n ≥2)中,“a 2﹣a 1”为最小项.同理在数列同理在数列{{b n ﹣b n ﹣1}(n ≥2)中,“b 2﹣b 1”为最小项.由为最小项.由{{a n }为“H 型数列”,可知只需a 2﹣a 1>2,即 a 1(q ﹣1)>2,又因为,又因为{{b n }不是“H 型数列”,且“b 2﹣b 1”为最小项,∴b 2﹣b 1≤2,即,即a 1(q ﹣1)≤3 ,由数列,由数列{{a n }的每一项均为正整数,可得的每一项均为正整数,可得 a 1(q ﹣1)=3,∴a 1=1,q=4或a 1=3,q=2,①当a 1=1,q=4时,,则,令,则,令,则=,∴{d n }为递增数列,为递增数列, 即d n >d n ﹣1>d n ﹣2>…>d 1,即c n +1﹣c n >c n ﹣c n ﹣1>c n ﹣1﹣c n ﹣2>…>c 2﹣c 1,∵,所以,对任意的n ∈N *都有c n +1﹣c n >2,即数列即数列{{c n }为“H 型数列”.②当a 1=3,q=2时,,则,显然,,显然,{{c n }为递减数列,c 2﹣c 1<0≤2,故数列故数列{{c n }不是“H 型数列”;综上:当时,数列时,数列{{c n }为“H 型数列”,当时,数列时,数列{{c n }不是“H 型数列”.。
开始结束x输入0x ≤?12x y ⎛⎫← ⎪⎝⎭y输出3x x ←-否是松江区2017学年度第一学期期末质量监控试卷高三数学(满分150分,完卷时间120分钟) 2017.12一.填空题(本大题满分54分)本大题共有12题,考生必须在答题纸相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分. 1.计算:2lim31n nn →∞=- ▲ .2.已知集合{|03}A x x =<<,2{|4}B x x =≥,则A B = ▲ .3.已知{}n a 为等差数列,n S 为其前n 项和,若1918a a +=,47a =,则10S = ▲ . 4.已知函数)(log )(2a x x f +=的反函数为)(1x fy -=,且1)2(1=-f ,则实数a = ▲ .5.已知角α的终边与单位圆221x y +=交于点01(,)2P y ,则cos2α= ▲ . 6.右图是一个算法的程序框图,当输入值x 为8时,则其输出的结果是 ▲ .7.函数sin 2y x =的图像与cos y x =的图像在区间[]0,2π上交点的个数是 ▲ .8.若直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于A 、B 两点,且23AB =,则a = ▲ .9.在ABC ∆中,90A ∠=︒,ABC ∆的面积为1.若MC BM =,NC BN 4=,则AN AM ⋅的最小值为▲ .10. 已知函数()21f x x x a =--有三个零点,则实数a 的取值范围为 ▲ .11. 定义,(,),a a bF a b b a b≤⎧=⎨>⎩,已知函数(),()f x g x 的定义域都是R ,则下列四个命题中为真命题的是 ▲ .(写出所有真命题的序号 )① 若(),()f x g x 都是奇函数,则函数((),())F f x g x 为奇函数. ② 若(),()f x g x 都是偶函数,则函数((),())F f x g x 为偶函数. ③ 若(),()f x g x 都是增函数,则函数((),())F f x g x 为增函数. ④ 若(),()f x g x 都是减函数,则函数((),())F f x g x 为减函数.12.已知数列{}n a 的通项公式为*2(0,)n n a q q q n N =+<∈,若对任意*,m n N ∈都有1(,6)6m n a a ∈,则实数q 的取值范围为 ▲ .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.若i -2是关于x 的方程02=++q px x 的一个根(其中i 为虚数单位,R q p ∈,),则q 的值为A. 5-B. 5C. 3-D. 314.已知()f x 是R 上的偶函数,则“120x x +=”是“12()()0f x f x -=”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件15.若存在[0,)x ∈+∞使221xxm x<成立,则实数m 的取值范围是 A. (,1)-∞B. (1,)-+∞C. (,1]-∞-D. [1,)+∞16. 已知曲线1:2C y x -=与曲线222:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是 A. (,1][0,1)-∞-B. (1,1]-C. [1,1)-D. [1,0](1,)-+∞三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分在ABC ∆中,6,32AB AC ==,18AB AC ⋅=-. (1)求BC 边的长; (2)求ABC ∆的面积.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分已知函数 ()1,(0af x x x=-≠,常数)a R ∈ . (1)讨论函数()f x 的奇偶性,并说明理由;(2)当0a >时,研究函数()f x 在(0,)x ∈+∞内的单调性.19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利.已知某条线路通车后,电车的发车时间间隔t (单位:分钟)满足202≤≤t .经市场调研测算,电车载客量与发车时间间隔t 相关,当2010≤≤t 时电车为满载状态,载客量为400人,当102<≤t 时,载客量会减少,减少的人数.....与)10(t -的平方成正比,且发车时间间隔 为2分钟时的载客量为272人.记电车载客量为()p t .(1)求()p t 的表达式,并求当发车时间间隔为6分钟时,电车的载客量; (2)若该线路每分钟的净收益为6()150060p t Q t-=-(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?C D MBAOFxy 20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分已知椭圆2222:1(0)x y E a b a b +=>>经过点3(1,)2,其左焦点为F (3,0)-.过F 点的直线l 交椭圆于A 、B 两点,交y 轴的正半轴于点M . (1)求椭圆E 的方程;(2)过点F 且与l 垂直的直线交椭圆于C 、D 两点,若四边形ACBD 的面积为43,求直线l 的方程;(3)设1MA AF λ=,2MB BF λ=,求证:12λλ+为定值.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分已知有穷数列{}n a 共有m 项(*,2N m m ∈≥),且n a a n n =-+1(*,11N n m n ∈-≤≤). (1)若5m =,11=a ,53a =,试写出一个满足条件的数列{}n a ;(2)若64=m ,21=a ,求证:数列{}n a 为递增数列的充要条件是201864=a ; (3)若01=a ,则m a 所有可能的取值共有多少个?请说明理由.松江区2017学年度第一学期高三期末考试数学试卷参考答案一.填空题1.232.[)2,3 3.100 4.3 5.-12 6. 27. 4 8.0 9.45. 10.(22,)+∞ 11.②③④ 12.1(,0)4-二、选择题13.B 14.A 15.B 16.C三.解答题17. 解:(1)由cos 18AB AC AB AC A ⋅=⋅⋅=-,且6,32AB AC ==, ………2分222226(32)2(18)310BC AB AC AB AC cosA =+-⋅⋅=+-⋅-=………6分(2)在ABC ∆中,6,32AB AC ==,310BC =,2222226(32)(310)2cos 222632AB AC BC A AB AC +-+-===-⋅⋅⋅⋅………10分 22sin 1cos 2A A =-=, ……… ……… ……… ………12分所以112sin 6329222ABC S AB AC A ∆=⋅⋅=⋅⋅⋅=……… ……… ………14分18. 解:(1)当0=a 时,()1(0)f x x =≠, 对任意(0)(0)x ∈-∞+∞,,,()1()f x f x -==, )(x f ∴为偶函数.………3分当0≠a 时,()0f a =,()2f a -= ……… ……… ………………4分 ()(),()()f a f a f a f a ∴-≠-≠- ……… ……… …………………5分 ∴ 函数)(x f 既不是奇函数,也不是偶函数. ……… ……… ……………6分(2)0a >时,()f x 在(0,)x a ∈内单调递减,在[,)x a ∈+∞内单调递增.……8分 此时,当(0,)x a ∈时,0x a << ,()1af x x=- ……… ……… ………10分 由()ag x x=单调递减知()f x 单调递减 ……… ……… …………………11分 当[,)x a ∈+∞时,0a x << ,()1af x x=- ……… ……… ……………13分由()ag x x=- 单调递增知()f x 单调递增 ……… ……… …………………14分19. 解:(1)由题意知2400(10)210()4001020k t t p t t ⎧--≤<=⎨≤≤⎩(k 为常数 )………2分∵ 2(2)400(102)272p k =--= ∴2k = ……… ………4分∴ 24002(10)210()4001020t t p t t ⎧--≤<=⎨≤≤⎩………5分 ∴2(6)4002(106)368p =--=(人) ………7分(2)由6()150060p t Q t -=-可得21(12180300)2101(60900)1020t t t t Q t t t⎧-+-≤<⎪⎪=⎨⎪-+≤<⎪⎩ ………9分 当210t ≤<时,300180(12)180********Q t t=-+≤-⨯=, 当且仅当5t =时等号成立 ………11分当1020t ≤≤时,90060609030Q t=-+≤-+=,当10t =时等号成立 ………13分 ∴当发车时间间隔5t =分钟时,该线路每分钟的净收益最大,最大值为60元.………14分20.解:(1)由题意得222231413a b a b ⎧⎪⎪+=⎨⎪-=⎪⎩, ………2分解得2241a b ⎧=⎨=⎩………3分 ∴椭圆E 的方程为 2214x y += ………4分设直线l :(3)y k x =+, 1122(,),(,)A x y B x y ………5分由2244(3)x y y k x ⎧+=⎪⎨=+⎪⎩ 消去y 得2222(14)831240k x k x k +++-=, ………6分 则21228314k x x k+=-+,212212414k x x k -⋅=+,……(*) ………8分 (2)222121224(1)(1)[()4]14k AB k x x x x k +=++-=+ 同理224(1)1k CD k +=+………10分∴222218(1)42(4)(14)3k S AB CD k k +=⋅==++ ∴422520k k -+= C D MBAOFxy解得22k =或212k =∴2k =±,或22k =± 因为0k >,所以2k =,或22k =∴直线AB 的方程为230x y -+=,或260x y -+= ………12分(3)1MA AF λ=,得111(3)x x λ=--,222(3)x x λ=-- ∴1113x x λ=--,2223x x λ=-- ………14分1212121212121223()()8333()3x x x x x x x x x x x x λλ+++=-+=-=-+++++.………16分21.解:(1)1,2,4,7,3和1,0,2,1,3-; ………4分 (2)证明:必要性 若{}n a 为递增数列,由题意可得 ………5分211a a -= 322a a -= … 646363a a -=于是得到641(163)6320162a a +⨯-==,因为12a =,所以642018a =; ………7分充分性 由题意*1,163,n n a a n n n N +-=≤≤∈,所以211a a -≤ 322a a -≤ … 646363a a -≤………8分因此6412016a a -≤,即642018a ≤, 又因为642018a =,所以*1,163,n n a a n n n N +-=≤≤∈,因此{}n a 是递增数列;综上:结论得证; ………10分 (3)解:由题意得211a a -=±,322a a -=±,,1(1)m m a a m --=±-, 假设1231m m a b b b b -=++++,其中{}*,,(,11)i b i i i N i m ∈-∈≤≤-,显然,max (1)()12(1)2m m m a m -=+++-=, min (1)()12(1)2m m m a m -=-----=-………12分 若 m a 中有k 项123,,,,k s s s s b b b b 取负值,则有123max ()2()k m m s s s s a a b b b b =-++++ ………(*)因此,m a 的所有可能值与max ()m a 的差必为偶数 ………14分下面用数学归纳法证明m a 可以取到(1)2m m --与(1)2m m -之间相差2的所有整数, 由(*)知,只需证明从1,2,3,,1m -中任取一项或若干项相加,可以得到从1到(1)2m m -的所有整数值即可。
2017-2018学年上海市松江区六年级(下)期末数学试卷2017-2018学年上海市松江区六年级(下)期末数学试卷一、填空题(本大题共有14题,每题2分,满分28分)1.(2分)-1的倒数是-1.2.(2分)计算:(-5)÷(-10)=1/2.3.(2分)-2x+2与3x-1互为相反数,则x=1.4.(2分)不等式组{x-4,x<-3}的解集是{x|x<-3}。
5.(2分)将方程2x-y=5变形为用含x的式子表示y,那么y=2x-5.6.(2分)已知{x=-2,y=5}是方程2x+ay=6的一个解,那么a=-2.7.(2分)地球的半径约为6.37×10^6米。
8.(2分)设一件商品的原价为x元,降价12%后的售价为176元,则可列方程为0.88x=176.9.(2分)已知∠A的补角等于57°,那么∠A=33°。
10.(2分)计算:55°28′+37°57′=93°25′。
11.(2分)如图,已知线段AB=12cm,AD=2cm,D为线段AC的中点,则CB=7cm。
12.(2分)已知A、B两个城市的位置如图所示,那么用规范的数学语言表示为B城在A城的东南方向。
13.(2分)某长方体中,一个公共顶点的三条棱长度之比为5:8:10,长方体中最小的一个面的面积是120cm²,则最大的一个面的面积是480cm²。
14.(2分)已知线段AB=4cm,在直线AB上找一点C,使AC=3BC,则线段AC=3cm。
二、单项选择题(本大题共有4题,每题3分,满分12分)15.(3分)下列说法正确的是(B) -a是负数。
16.(3分)已知有理数a、b、c在数轴上的位置如图所示,下列结论正确的是(D) |c-b|=c-b。
17.(3分)在长方体ABCD-EFGH中,与面ABCD平行的棱共有(B) 2条。
18.(3分)甲、乙两人从同一地点出发,如果甲先出发2小时后,乙从后面追赶,那么当乙追上甲时,下列说法正确的是(C) 甲、乙所用的时间相等。
2017年上海市青浦区高考数学一模试卷一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.已知复数z=2+i(i为虚数单位),则.2.已知集合,则A∩B=.3.在二项式(x+)6的展开式中,常数项是.4.等轴双曲线C:x2﹣y2=a2与抛物线y2=16x的准线交于A、B两点,|AB|=4,则双曲线C的实轴长等于.5.如果由矩阵=表示x,y的二元一次方程组无解,则实数a=.6.执行如图所示的程序框图,若输入n=1的,则输出S=.7.若圆锥的侧面积为20π,且母线与底面所成的角为,则该圆锥的体积为.8.设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b 的取值范围为.9.将边长为10的正三角形ABC,按“斜二测”画法在水平放置的平面上画出为△A′B′C′,则△A′B′C′中最短边的边长为.(精确到0.01)10.已知点A是圆O:x2+y2=4上的一个定点,点B是圆O上的一个动点,若满足|+|=|﹣|,则•=.11.若定义域均为D的三个函数f(x),g(x),h(x)满足条件:对任意x∈D,点(x,g(x)与点(x,h(x)都关于点(x,f(x)对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=,f(x)=2x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是.=ka n+3k﹣3,其中k为不等于0 12.已知数列{a n}满足:对任意的n∈N*均有a n+1与1的常数,若a i∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,则满足条件的a1所有可能值的和为.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.已知f(x)=sin x,A={1,2,3,4,5,6,7,8}现从集合A中任取两个不同元素s、t,则使得f(s)•f(t)=0的可能情况为()A.12种B.13种C.14种D.15种14.已知空间两条直线m,n两个平面α,β,给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊊α,n⊊β⇒n⊥α;③m∥n;m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β.其中正确的序号是()A.①④B.②③C.①②④D.①③④15.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4m和am(0<a<12),不考虑树的粗细.现用16m长的篱笆,借助墙角围成一个矩形花圃ABCD.设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位m2)的图象大致是()A.B.C.D.16.已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=log2x};③M={(x,y)|y=2x﹣2};④M={(x,y)|y=sinx+1}.其中是“垂直对点集”的序号是()A.①②③B.①②④C.①③④D.②③④三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在如图所示的组合体中,三棱柱ABC﹣A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合的一个点.(Ⅰ)若圆柱的轴截面是正方形,当点C是弧AB的中点时,求异面直线A1C与AB1的所成角的大小;(Ⅱ)当点C是弧AB的中点时,求四棱锥A1﹣BCC1B1与圆柱的体积比.18.已知函数f(x)=sin2x+cos2(﹣x)﹣(x∈R).(1)求函数f(x)在区间[0,]上的最大值;(2)在△ABC中,若A<B,且f(A)=f(B)=,求的值.19.如图,F1,F2分别是椭圆C: +=1(a>b>0)的左、右焦点,且焦距为2,动弦AB平行于x轴,且|F1A|+|F1B|=4.(1)求椭圆C的方程;(2)若点P是椭圆C上异于点、A,B的任意一点,且直线PA、PB分别与y轴交于点M、N,若MF2、NF2的斜率分别为k1、k2,求证:k1•k2是定值.20.如图,已知曲线及曲线,C1上的点P1的横坐标为.从C1上的点作直线平行于x轴,交曲线C2于Q n点,再从C2上的点作直线平行于y轴,交曲线C1于P n点,点P n(n=1,2,3…)的横坐标构成数列{a n}.+1(1)求曲线C1和曲线C2的交点坐标;与a n之间的关系;(2)试求a n+1(3)证明:.21.已知函数f(x)=x2﹣2ax(a>0).(1)当a=2时,解关于x的不等式﹣3<f(x)<5;(2)对于给定的正数a,有一个最大的正数M(a),使得在整个区间[0,M(a)]上,不等式|f(x)|≤5恒成立.求出M(a)的解析式;(3)函数y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.2017年上海市青浦区高考数学一模试卷参考答案与试题解析一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.已知复数z=2+i(i为虚数单位),则=3﹣4i.【考点】复数代数形式的乘除运算.【分析】把复数z代入z2,然后展开,再求出得答案.【解答】解:由z=2+i,得z2=(2+i)2=3+4i,则=3﹣4i.故答案为:3﹣4i.2.已知集合,则A∩B=[﹣1,3).【考点】交集及其运算.【分析】利用指数函数的性质求出集合A中不等式的解集,确定出集合A,求出集合B中函数的定义域,确定出B,找出两集合的公共部分,即可求出两集合的交集.【解答】解:集合A中的不等式变形得:2﹣1≤2x<24,解得:﹣1≤x<4,∴A=[﹣1,4);由集合B中函数得:9﹣x2>0,即x2<9,解得:﹣3<x<3,∴B=(﹣3,3),则A∩B=[﹣1,3).故答案为:[﹣1,3)3.在二项式(x+)6的展开式中,常数项是4320.【考点】二项式定理的应用.【分析】在二项展开式的通项公式中,令x的幂指数等于零,求得r的值,可得展开式的常数项.=•6r•x6﹣2r,【解答】解:二项式(x+)6的展开式的通项公式为T r+1令6﹣2r=0,求得r=3,可得常数项为=4320,故答案为:4320.4.等轴双曲线C:x2﹣y2=a2与抛物线y2=16x的准线交于A、B两点,|AB|=4,则双曲线C的实轴长等于4.【考点】双曲线的简单性质.【分析】抛物线y2=16x的准线为x=﹣4.与双曲线的方程联立解得.可得4=|AB|=,解出a 即可得出.【解答】解:抛物线y2=16x的准线为x=﹣4.联立,解得.∴4=|AB|=,解得a2=4.∴a=2.∴双曲线C的实轴长等于4.故答案为:4.5.如果由矩阵=表示x,y的二元一次方程组无解,则实数a=﹣2.【考点】几种特殊的矩阵变换.【分析】由矩阵=表示x,y的二元一次方程组无解,得到,即可求出a.【解答】解:∵由矩阵=表示x,y的二元一次方程组无解,∴,∴a=﹣2.故答案为﹣2.6.执行如图所示的程序框图,若输入n=1的,则输出S=log319.【考点】程序框图.【分析】模拟程序的运行,当n=19时满足条件n>3,退出循环,可得:S=log319,即可得解.【解答】解:模拟程序的运行,可得n=1不满足条件n>3,执行循环体,n=3,不满足条件n>3,执行循环体,n=19,满足条件n>3,退出循环,可得:S=log319.故答案为:log319.7.若圆锥的侧面积为20π,且母线与底面所成的角为,则该圆锥的体积为16π.【考点】旋转体(圆柱、圆锥、圆台).【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【解答】解:∵设圆锥的母线长是l,底面半径为r,母线与底面所成的角为,可得①∵侧面积是20π,∴πrl=20π,②由①②解得:r=4,l=5,故圆锥的高h===3则该圆锥的体积为:×πr2×3=16π故答案为:16π.8.设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b 的取值范围为(﹣3,+∞).【考点】数列的函数特性.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).9.将边长为10的正三角形ABC,按“斜二测”画法在水平放置的平面上画出为△A′B′C′,则△A′B′C′中最短边的边长为 3.62.(精确到0.01)【考点】斜二测法画直观图.【分析】由题意,正三角形ABC的高为5,利用余弦定理求出△A′B′C′中最短边的边长.【解答】解:由题意,正三角形ABC的高为5,∴△A′B′C′中最短边的边长为≈3.62.故答案为3.62.10.已知点A是圆O:x2+y2=4上的一个定点,点B是圆O上的一个动点,若满足|+|=|﹣|,则•=4.【考点】向量在几何中的应用.【分析】由|+|=|﹣|⇒(+)2=(﹣)2⇒•=0,∴AO⊥BO,∴△AOB是边长为2的等腰直角三角形,即可求•=||||cos45°.【解答】解:由|+|=|﹣|⇒(+)2=(﹣)2⇒•=0,∴AO⊥BO,∴△AOB是边长为2的等腰直角三角形,则•=||||cos45°=2×=4.故答案为:411.若定义域均为D的三个函数f(x),g(x),h(x)满足条件:对任意x∈D,点(x,g(x)与点(x,h(x)都关于点(x,f(x)对称,则称h(x)是g(x)关于f(x)的“对称函数”.已知g(x)=,f(x)=2x+b,h(x)是g(x)关于f(x)的“对称函数”,且h(x)≥g(x)恒成立,则实数b的取值范围是[,+∞).【考点】函数与方程的综合运用.【分析】根据对称函数的定义,结合h(x)≥g(x)恒成立,转化为点到直线的距离d≥1,利用点到直线的距离公式进行求解即可.【解答】解:解:∵x∈D,点(x,g(x))与点(x,h(x))都关于点(x,f (x))对称,∴g(x)+h(x)=2f(x),∵h(x)≥g(x)恒成立,∴2f(x)=g(x)+h(x)≥g(x)+g(x)=2g(x),即f(x)≥g(x)恒成立,作出g(x)和f(x)的图象,若h(x)≥g(x)恒成立,则h(x)在直线f(x)的上方,即g(x)在直线f(x)的下方,则直线f(x)的截距b>0,且原点到直线y=3x+b的距离d≥1,d=⇒b≥或b(舍去)即实数b的取值范围是[,+∞),12.已知数列{a n}满足:对任意的n∈N*均有a n=ka n+3k﹣3,其中k为不等于0+1与1的常数,若a i∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,则满足条件的a1所有可能值的和为.【考点】数列递推式.+3=k(a n+3),再对a1=﹣3与a1≠﹣3讨论,特别是【分析】依题意,可得a n+1a1≠﹣3时对公比k分|k|>1与|k|<1,即可求得a1所有可能值,从而可得答案.=ka n+3k﹣3,【解答】解:∵a n+1∴a n+3=k(a n+3),+1∴①若a1=﹣3,则a1+1+3=k(a1+3)=0,a2=﹣3,同理可得,a3=a4=a5=﹣3,即a1=﹣3复合题意;②若a1≠﹣3,k为不等于0与1的常数,则数列{a n+3}是以k为公比的等比数列,∵a i∈{﹣678,﹣78,﹣3,22,222,2222},i=2,3,4,5,a n+3可以取﹣675,﹣75,25,225,∵﹣75=25×(﹣3),225=﹣75×(﹣3),﹣675=225×(﹣3),∴若公比|k|>1,则k=﹣3,由a2+3=22+3=﹣3(a1+3)得:a1=﹣﹣3=﹣;若公比|k|<1,则k=﹣,由a2+3=﹣675=﹣(a1+3)得:a1=2025﹣3=2022;综上所述,满足条件的a1所有可能值为﹣3,﹣,2022.∴a1所有可能值的和为:﹣3﹣+2022=..故答案为:.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.已知f(x)=sin x,A={1,2,3,4,5,6,7,8}现从集合A中任取两个不同元素s、t,则使得f(s)•f(t)=0的可能情况为()A.12种B.13种C.14种D.15种【考点】三角函数的化简求值.【分析】对于s值,求出函数的值,然后用排列组合求出满足f(s)•f(t)=0的个数.【解答】解:已知函数f(x)=sin x,A={1,2,3,4,5,6,7,8},现从A中任取两个不同的元素s、t,则使得f(s)•f(t)=0,s=3时f(s)=cos=0,满足f(s)•f(t)=0的个数为s=3时8个t=3时8个,重复1个,共有15个.故选D.14.已知空间两条直线m,n两个平面α,β,给出下面四个命题:①m∥n,m⊥α⇒n⊥α;②α∥β,m⊊α,n⊊β⇒n⊥α;③m∥n;m∥α⇒n∥α④α∥β,m∥n,m⊥α⇒n⊥β.其中正确的序号是()A.①④B.②③C.①②④D.①③④【考点】命题的真假判断与应用.【分析】①,两条平行线中的一条垂直一个平面,另一条也垂直此平面;②,n与α不一定垂直;③,m∥n;m∥α⇒n∥α或n⊂α;④,m∥n,m⊥α⇒n⊥α,又∵α∥β⇒n⊥β.【解答】解:已知空间两条直线m,n两个平面α,β对于①,两条平行线中的一条垂直一个平面,另一条也垂直此平面,故正确;对于②,n与α不一定垂直,显然错误;对于③,m∥n;m∥α⇒n∥α或n⊂α,故错;对于④,m∥n,m⊥α⇒n⊥α,又∵α∥β⇒n⊥β,故正确.故选:A.15.如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4m和am(0<a<12),不考虑树的粗细.现用16m长的篱笆,借助墙角围成一个矩形花圃ABCD.设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位m2)的图象大致是()A.B.C.D.【考点】函数的图象.【分析】求矩形ABCD面积的表达式,又要注意P点在长方形ABCD内,所以要注意分析自变量的取值范围,并以自变量的限制条件为分类标准进行分类讨论.判断函数的图象即可.【解答】解:设AD长为x,则CD长为16﹣x又因为要将P点围在矩形ABCD内,∴a≤x≤12则矩形ABCD的面积为x(16﹣x),当0<a≤8时,当且仅当x=8时,S=64当8<a<12时,S=a(16﹣a)S=,分段画出函数图形可得其形状与C接近故选:B.16.已知集合M={(x,y)|y=f(x)},若对于任意实数对(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={(x,y)|y=};②M={(x,y)|y=log2x};③M={(x,y)|y=2x﹣2};④M={(x,y)|y=sinx+1}.其中是“垂直对点集”的序号是()A.①②③B.①②④C.①③④D.②③④【考点】命题的真假判断与应用.【分析】由题意可得:集合M是“垂直对点集”,即满足:曲线y=f(x)上过任意一点与原点的直线,都存在过另一点与原点的直线与之垂直.【解答】解:由题意可得:集合M是“垂直对点集”,即满足:曲线y=f(x)上过任意一点与原点的直线,都存在过另一点与原点的直线与之垂直.①M={(x,y)|y=},其图象向左向右和x轴无限接近,向上和y轴无限接近,据幂函数的图象和性质可知,在图象上任取一点A,连OA,过原点作OA的垂线OB必与y=的图象相交,即一定存在点B,使得OB⊥OA成立,故M={(x,y)|y=}是“垂直对点集”.②M={(x,y)|y=log2x},(x>0),取(1,0),则不存在点(x2,log2x2)(x2>0),满足1×x2+0=0,因此集合M不是“垂直对点集”;对于③M={(x,y)|y=2x﹣2},其图象过点(0,﹣1),且向右向上无限延展,向左向下无限延展,据指数函数的图象和性质可知,在图象上任取一点A,连OA,过原点作OA的垂线OB必与y=2x﹣2的图象相交,即一定存在点B,使得OB⊥OA成立,故M={(x,y)|y=2x﹣2}是“垂直对点集”.对于④M={(x,y)|y=sinx+1},在图象上任取一点A,连OA,过原点作直线OA的垂线OB,因为y=sinx+1的图象沿x轴向左向右无限延展,且与x轴相切,因此直线OB总会与y=sinx+1的图象相交.所以M={(x,y)|y=sinx+1}是“垂直对点集”,故④符合;综上可得:只有①③④是“垂直对点集”.故选:C三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.在如图所示的组合体中,三棱柱ABC﹣A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合的一个点.(Ⅰ)若圆柱的轴截面是正方形,当点C是弧AB的中点时,求异面直线A1C与AB1的所成角的大小;(Ⅱ)当点C是弧AB的中点时,求四棱锥A1﹣BCC1B1与圆柱的体积比.【考点】棱柱、棱锥、棱台的体积;旋转体(圆柱、圆锥、圆台);异面直线及其所成的角.【分析】(Ⅰ)取BC的中点D,连接OD,AD,则OD∥A1C,∠AOD(或其补角)为异面直线A1C与AB1的所成角,利用余弦定理,可求异面直线A1C与AB1的所成角的大小;(II)设圆柱的底面半径为r,母线长度为h,当点C是弧弧AB的中点时,求出三棱柱ABC﹣A1B1C1的体积,求出三棱锥A1﹣ABC的体积为,从而求出四棱锥A1﹣BCC1B1的体积,再求出圆柱的体积,即可求出四棱锥A1﹣BCC1B1与圆柱的体积比.【解答】解:(Ⅰ)如图,取BC的中点D,连接OD,AD,则OD∥A1C,∴∠AOD(或其补角)为异面直线A1C与AB1的所成角,设正方形的边长为2,则△AOD中,OD=A1C=,AO=,AD=,∴cos∠AOD==∴∠AOD=;(Ⅱ)设圆柱的底面半径为r,母线长度为h,当点C是弧AB的中点时,,,,∴.18.已知函数f(x)=sin2x+cos2(﹣x)﹣(x∈R).(1)求函数f(x)在区间[0,]上的最大值;(2)在△ABC中,若A<B,且f(A)=f(B)=,求的值.【考点】三角函数的最值.【分析】(1)利用三角恒等变换的应用可化简f(x)=sin(2x﹣),再利用正弦函数的单调性可求函数f(x)在区间[0,]上的最大值;(2)在△ABC中,由A<B,且f(A)=f(B)=,可求得A=,B=,再利用正弦定理即可求得的值.【解答】(本题满分14分)第(1)小题满分,第(2)小题满分.解:f(x)=sin2x+cos2(﹣x)﹣=•+﹣=sin2x﹣cos2x=sin(2x﹣)(1)由于0≤x≤,因此﹣≤2x﹣≤,所以当2x﹣=即x=时,f(x)取得最大值,最大值为1;(2)由已知,A、B是△ABC的内角,A<B,且f(A)=f(B)=,可得:2A﹣=,2B﹣=,解得A=,B=,所以C=π﹣A﹣B=,得==.19.如图,F1,F2分别是椭圆C: +=1(a>b>0)的左、右焦点,且焦距为2,动弦AB平行于x轴,且|F1A|+|F1B|=4.(1)求椭圆C的方程;(2)若点P是椭圆C上异于点、A,B的任意一点,且直线PA、PB分别与y轴交于点M、N,若MF2、NF2的斜率分别为k1、k2,求证:k1•k2是定值.【考点】直线与椭圆的位置关系.【分析】(1)由题意焦距求得c,由对称性结合|F1A|+|F1B|=4可得2a,再由隐含条件求得b,则椭圆方程可求;(2)设B(x0,y0),P(x1,y1),则A(﹣x0,y0),分别写出PA、PB所在直线方程,求出M、N的坐标,进一步求出MF2、NF2的斜率分别为k1、k2,结合A、B在椭圆上可得k1•k2是定值.【解答】解:(1)∵焦距,∴2c=2,得c=,由椭圆的对称性及已知得|F1A|=|F2B|,又∵|F1A|+|F1B|=4,|F1B|+|F2B|=4,因此2a=4,a=2,于是b=,因此椭圆方程为;(2)设B(x0,y0),P(x1,y1),则A(﹣x0,y0),直线PA的方程为,令x=0,得,故M(0,);直线PB的方程为,令x=0,得,故N(0,);∴,,因此.∵A,B在椭圆C上,∴,∴.20.如图,已知曲线及曲线,C1上的点P1的横坐标为.从C1上的点作直线平行于x轴,交曲线C2于Q n点,再从C2上的点作直线平行于y轴,交曲线C1于P n点,点P n(n=1,2,3…)的横坐标构成数列{a n}.+1(1)求曲线C1和曲线C2的交点坐标;(2)试求a n与a n之间的关系;+1(3)证明:.【考点】数列与解析几何的综合.【分析】(1)取立,能求出曲线C1和曲线C2的交点坐标.(2)设P n(),,由已知,能求出.(3)由,,得与异号,由.此能证明a2n﹣1【解答】解:(1)∵曲线及曲线,取立,得x=,y=,∴曲线C1和曲线C2的交点坐标是().(2)设P n(),,由已知,又,===,.证明:(3)a n>0,由,,得与异号,∵0<a1,,,,.∴a2n﹣121.已知函数f(x)=x2﹣2ax(a>0).(1)当a=2时,解关于x的不等式﹣3<f(x)<5;(2)对于给定的正数a,有一个最大的正数M(a),使得在整个区间[0,M(a)]上,不等式|f(x)|≤5恒成立.求出M(a)的解析式;(3)函数y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.【考点】二次函数的性质.【分析】(1)a=2时,把不等式﹣3<f(x)<5化为不等式组﹣3<x2﹣4x<5,求出解集即可;(2)由二次函数的图象与性质,讨论a>0时|f(x)|≤5在x∈[0,M(a)]上恒成立时,M(a)最大,此时对应的方程f(x)=±5根的情况,从而求出M (a)的解析式;(3)f(x)=(x﹣a)2﹣a2(t≤x≤t+2),显然f(0)=f(2a)=0,分类讨论,利用y=f(x)在[t,t+2]的最大值为0,最小值是﹣4,求实数a和t的值.【解答】解:(1)当a=2时,函数f(x)=x2﹣4x,∴不等式﹣3<f(x)<5可化为﹣3<x2﹣4x<5,解得,∴不等式的解集为(﹣1,1)∪(3,5);(2)∵a>0时,f(x)=x2﹣2ax=(x﹣a)2﹣a2,∴当﹣a2<﹣5,即a>时,要使|f(x)|≤5在x∈[0,M(a)]上恒成立,要使得M(a)最大,M(a)只能是x2﹣2ax=﹣5的较小的根,即M(a)=a﹣;当﹣a2≥﹣5,即0<a≤时,要使|f(x)|≤5在x∈[0,M(a)]上恒成立,要使得M(a)最大,M(a)只能是x2﹣2ax=5的较大的根,即M(a)=a+;综上,M(a)=.(3)f(x)=(x﹣a)2﹣a2(t≤x≤t+2),显然f(0)=f(2a)=0.①若t=0,则a≥t+1,且f(x)min=f(a)=﹣4,或f(x)min=f(2)=﹣4,当f(a)=﹣a2=﹣4时,a=±2,a=﹣2不合题意,舍去当f(2)=4﹣4a=﹣4时,a=2,②若t+2=2a,则a≤t+1,且f(x)min=f(a)=﹣4,或f(x)min=f(2a﹣2)=﹣4,当f(a)=﹣a2=﹣4时,a=±2,若a=2,t=2,符合题意;若a=﹣2,则与题设矛盾,不合题意,舍去当f(2a﹣2)=﹣4时,a=2,t=2综上所述,a=2,t=0和a=2,t=2符合题意.。
松江区2017学年度第一学期期末质量监控试卷高三数学(满分150分,完卷时间120分钟) 2017.12一.填空题(本大题满分54分)本大题共有12题,考生必须在答题纸相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分. 1.计算:2lim31n nn →∞=- ▲ .2.已知集合{|03}A x x =<<,2{|4}B x x =≥,则A B =I ▲ .3.已知{}n a 为等差数列,n S 为其前n 项和,若1918a a +=,47a =,则10S = ▲ . 4.已知函数)(log )(2a x x f +=的反函数为)(1x fy -=,且1)2(1=-f ,则实数a = ▲ .5.已知角α的终边与单位圆221x y +=交于点01(,)2P y ,则cos2α= ▲ . 6.右图是一个算法的程序框图,当输入值x 为8时,则其输出的结果是 ▲ .7.函数sin 2y x =的图像与cos y x =的图像在区间[]0,2π上交点的个数是 ▲ .8.若直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于A 、B 两点,且AB =a = ▲ .9.在ABC ∆中,90A ∠=︒,ABC ∆的面积为1.若BM =,4=,则⋅的最小值为▲ .10. 已知函数()21f x x x a =--有三个零点,则实数a 的取值范围为 ▲ .11. 定义,(,),a a bF a b b a b≤⎧=⎨>⎩,已知函数(),()f x g x 的定义域都是R ,则下列四个命题中为真命题的是 ▲ .(写出所有真命题的序号 )① 若(),()f x g x 都是奇函数,则函数((),())F f x g x 为奇函数. ② 若(),()f x g x 都是偶函数,则函数((),())F f x g x 为偶函数. ③ 若(),()f x g x 都是增函数,则函数((),())F f x g x 为增函数. ④ 若(),()f x g x 都是减函数,则函数((),())F f x g x 为减函数.12.已知数列{}n a 的通项公式为*2(0,)n n a q q q n N =+<∈,若对任意*,m n N ∈都有1(,6)6m n a a ∈,则实数q 的取值范围为 ▲ .二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.若i -2是关于x 的方程02=++q px x 的一个根(其中i 为虚数单位,R q p ∈,),则q 的值为A. 5-B. 5C. 3-D. 314.已知()f x 是R 上的偶函数,则“120x x +=”是“12()()0f x f x -=”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件15.若存在[0,)x ∈+∞使221xxm x<成立,则实数m 的取值范围是 A. (,1)-∞B. (1,)-+∞C. (,1]-∞-D. [1,)+∞16. 已知曲线1:2C y x -=与曲线222:4C x y λ+=恰好有两个不同的公共点,则实数λ的取值范围是 A. (,1][0,1)-∞-U B. (1,1]-C. [1,1)-D. [1,0](1,)-+∞U三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分在ABC ∆中,6,AB AC ==18AB AC ⋅=-u u u r u u u r.(1)求BC 边的长; (2)求ABC ∆的面积.18.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分已知函数 ()1,(0af x x x=-≠,常数)a R ∈ . (1)讨论函数()f x 的奇偶性,并说明理由;(2)当0a >时,研究函数()f x 在(0,)x ∈+∞内的单调性.19.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利.已知某条线路通车后,电车的发车时间间隔t (单位:分钟)满足202≤≤t .经市场调研测算,电车载客量与发车时间间隔t 相关,当2010≤≤t 时电车为满载状态,载客量为400人,当102<≤t 时,载客量会减少,减少的人数.....与)10(t -的平方成正比,且发车时间间隔 为2分钟时的载客量为272人.记电车载客量为()p t .(1)求()p t 的表达式,并求当发车时间间隔为6分钟时,电车的载客量; (2)若该线路每分钟的净收益为6()150060p t Q t-=-(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?20.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分已知椭圆2222:1(0)x y E a b a b +=>>经过点,其左焦点为F (.过F 点的直线l 交椭圆于A 、B 两点,交y 轴的正半轴于点M . (1)求椭圆E 的方程;(2)过点F 且与l 垂直的直线交椭圆于C 、D 两点,若四边形ACBD 的面积为43,求直线l 的方程;(3)设1MA AF λ=u u u r u u u r ,2MB BF λ=u u u r u u u r,求证:12λλ+为定值.21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分已知有穷数列{}n a 共有m 项(*,2N m m ∈≥),且n a a n n =-+1(*,11N n m n ∈-≤≤). (1)若5m =,11=a ,53a =,试写出一个满足条件的数列{}n a ;(2)若64=m ,21=a ,求证:数列{}n a 为递增数列的充要条件是201864=a ; (3)若01=a ,则m a 所有可能的取值共有多少个?请说明理由.松江区2017学年度第一学期高三期末考试数学试卷参考答案一.填空题1.232.[)2,3 3.100 4.3 5.-12 6. 27. 4 8.0 9.45. 10.(22,)+∞ 11.②③④ 12.1(,0)4-二、选择题13.B 14.A 15.B 16.C三.解答题17. 解:(1)由cos 18AB AC AB AC A ⋅=⋅⋅=-u u u r u u u r,且6,32AB AC == ………2分222226(32)2(18)310BC AB AC AB AC cosA =+-⋅⋅=+-⋅-=6分(2)在ABC ∆中,6,32AB AC ==310BC =2222226(32)(310)2cos 222632AB AC BC A AB AC +-+-===-⋅⋅⋅⋅………10分 22sin 1cos 2A A =-= ……… ……… ……… ………12分所以112sin 6329222ABC S AB AC A ∆=⋅⋅=⋅⋅=……… ……… ………14分18. 解:(1)当0=a 时,()1(0)f x x =≠,对任意(0)(0)x ∈-∞+∞U ,,,()1()f x f x -==, )(x f ∴为偶函数.………3分当0≠a 时,()0f a =,()2f a -= ……… ……… ………………4分 ()(),()()f a f a f a f a ∴-≠-≠- ……… ……… …………………5分 ∴ 函数)(x f 既不是奇函数,也不是偶函数. ……… ……… ……………6分(2)0a >时,()f x 在(0,)x a ∈内单调递减,在[,)x a ∈+∞内单调递增.……8分 此时,当(0,)x a ∈时,0x a << ,()1af x x=- ……… ……… ………10分 由()ag x x=单调递减知()f x 单调递减 ……… ……… …………………11分 当[,)x a ∈+∞时,0a x << ,()1af x x=- ……… ……… ……………13分由()ag x x=- 单调递增知()f x 单调递增 ……… ……… …………………14分19. 解:(1)由题意知2400(10)210()4001020k t t p t t ⎧--≤<=⎨≤≤⎩(k 为常数 )………2分∵ 2(2)400(102)272p k =--= ∴2k = ……… ………4分∴ 24002(10)210()4001020t t p t t ⎧--≤<=⎨≤≤⎩………5分 ∴2(6)4002(106)368p =--=(人) ………7分(2)由6()150060p t Q t -=-可得21(12180300)2101(60900)1020t t t t Q t t t⎧-+-≤<⎪⎪=⎨⎪-+≤<⎪⎩ ………9分 当210t ≤<时,300180(12)18060Q t t=-+≤-, 当且仅当5t =时等号成立 ………11分当1020t ≤≤时,90060609030Q t=-+≤-+=,当10t =时等号成立 ………13分 ∴当发车时间间隔5t =分钟时,该线路每分钟的净收益最大,最大值为60元.………14分20.解:(1)由题意得222231413a b a b ⎧⎪⎪+=⎨⎪-=⎪⎩,解得2241a b ⎧=⎨=⎩………3分 ∴椭圆E 的方程为 2214x y += ………4分设直线l :(y k x =+, 1122(,),(,A x y B x y 由2244(x y y k x ⎧+=⎪⎨=+⎪⎩ 消去y 得2222(14)1240k x x k +++-=, ………6分 则12x x +=,212212414k x x k -⋅=+,……(*) ………8分 (2)224(1)14k AB k +==+ 同理224(1)1k CD k +=+………10分∴222218(1)42(4)(14)3k S AB CD k k +=⋅==++ ∴422520k k -+=解得22k =或212k =∴k =k =因为0k >,所以k =2k =∴直线AB的方程为0x -+=0y -+= ………12分(3)1MA AF λ=u u u r u u u rQ,得111()x x λ=,222()x x λ=∴1λ=,2λ= ………14分128λλ+=-+==-.………16分21.解:(1)1,2,4,7,3和1,0,2,1,3-; ………4分 (2)证明:必要性 若{}n a 为递增数列,由题意可得 ………5分211a a -= 322a a -= … 646363a a -=于是得到641(163)6320162a a +⨯-==,因为12a =,所以642018a =; ………7分充分性 由题意*1,163,n n a a n n n N +-=≤≤∈,所以211a a -≤ 322a a -≤ … 646363a a -≤………8分因此6412016a a -≤,即642018a ≤, 又因为642018a =,所以*1,163,n n a a n n n N +-=≤≤∈,因此{}n a 是递增数列;综上:结论得证; ………10分 (3)解:由题意得211a a -=±,322a a -=±,L ,1(1)m m a a m --=±-,假设1231m m a b b b b -=++++L ,其中{}*,,(,11)i b i i i N i m ∈-∈≤≤-,显然,max (1)()12(1)2m m m a m -=+++-=L , min (1)()12(1)2m m m a m -=-----=-L………12分 若 m a 中有k 项123,,,,k s s s s b b b b L 取负值,则有123max ()2()k m m s s s s a a b b b b =-++++L ………(*)因此,m a 的所有可能值与max ()m a 的差必为偶数 ………14分下面用数学归纳法证明m a 可以取到(1)2m m --与(1)2m m -之间相差2的所有整数, 由(*)知,只需证明从1,2,3,,1m -L 中任取一项或若干项相加,可以得到从1到(1)2m m -的所有整数值即可。