水环境化学
- 格式:doc
- 大小:37.00 KB
- 文档页数:4
《水环境化学》课程标准一、前言(一)课程基本信息1.课程名称:水环境化学2.课程类别:专业基础课3.学时:60-804.适用专业:水环境监测与治理/城市水净化技术(二)课程性质本课程是高职高专水环境监测与治理专业基础课程。
本课程是培养和锻炼学生水环境污染分析能力的核心课程,使学生了解常见化学污染物质在水体环境中的行为、效应及其影响因素,掌握典型水污染事件的分析方法,获得水质关键指标的测定分析能力。
通过对《水环境化学》这门课程的学习,将使学生了解当代水环境问题,熟悉和掌握有关污染物在水环境介质中迁移、转化规律的基本知识、基本理论、基本技能和基本方法,使学生今后能够在水文水资源工程的专业岗位上,对各自区域内的水质和水量问题和水质问题作本课程以《分析化学》、《有机化学》和《仪器分析》等课程的学习为基础,为进一步学习《水质检验技术》、《给水处理》、《水污染控制技术》和《工业废水处理》等专业技术课程服务,为学生练就水质与水环境分析、水净化工程设计和水处理设施运行维护等岗位工作能力奠定知识和能力基础。
(三)课程标准的设计思路1.课程设置的依据经过企业调研、往届毕业生就业岗位调研和行业专家座谈,决定把水质检验分析岗位、水净化工程、水处理设施运行维护和水质工程辅助设计岗位作为城市水净化技术专业的就业核心岗位群,把水环境化学课程作为培养学生水质及水环境污染分析能力的核心专业基础课程。
2.课程改革的基本理念课程以工作任务确定职业能力,以职业能力为目标,对接行业标准,关注职业素养,构建由项目带动、任务驱动的工作过程化课程;教学中贯穿工学结合,体现工作过程,达到教、学、做的融合;注重运用多媒体教学、现场教学等教学手段;实施多元评价,全方位关注学生对知识和技能的掌握。
以现实存在的水环境污染事件为载体组织课程内容和课程教学,让学生在完成具体案例分析的过程中掌握知识和技能,通过一个个污染事件的分析、讨论和总结训练最终提高学生的行业知识和分析能力。
第三章水环境化学1、水中八大离子:K+、Na+、Ca2+、Mg2+、HCO3-、NO3-、Cl-和SO42-为常见八种离子2、溶解气体与Henry定律:溶解于水中的气体与大气中的气体存在平衡关系,气体的大气分压P G与气体的溶解度的比表现为常数关系,称为Henry定律,该常数称为Henry定律常数K H。
[G(aq)] = K H PG K H-气体在一定温度下的亨利定理常数 (mol/L.Pa) PG -各种气体的分压 (Pa)3、水体中可能存在的碳酸组分 CO2、CO32-、HCO3-、H2CO3 ( H2CO3*)4、天然水中的碱度和酸度:碱度:水中能与强酸发生中和作用的全部物质,即能够接受质子H+的物质总量;酸度:凡在水中离解或水解后生成可与强碱(OH-)反应的物质(包括强酸、弱酸和强酸弱碱盐)总量;即水中能与强碱发生中和作用的物质总量。
5、天然水中的总碱度=HCO3-+2CO32-+ OH- —H+6、水体中颗粒物的类别(1)矿物微粒和粘土矿物(铝或镁的硅酸盐)(2)金属水合氧化物(铝、铁、锰、硅等金属)(3)腐殖质 (4)水体悬浮沉积物 (5)其他(藻类、细菌、病毒等)影响水体中颗粒物吸附作用的因素有:颗粒物浓度、温度、PH。
7、水环境中胶体颗粒物的吸附作用有表面吸附、化学吸附、离子交换吸附和专属吸附。
8、天然水的PE随水中溶解氧的减少而降低,因而表层水呈氧化性环境。
9、吸附等温线:在一定温度,处于平衡状态时被吸附的物质和该物质在溶液中的浓度的关系曲线称为吸附等温线;水环境中常见的吸附等温线主要有L-型、F-型和H-型。
10、无机物在水中的迁移转化过程:分配作用、挥发作用、水解作用、光解作用、生物富集、生物降解作用。
11、PE:pE 越小,电子活度越高,提供电子的倾向越强,水体呈还原性。
pE 越大,电子活度越低,接受电子的倾向越强,水体呈氧化性。
pe影响因素:1)天然水的pE随水中溶解氧的减少而降低;2)天然水的pE随其pH减少而增大。
1.水温的垂直分布有明显的季节特点1)冬季的逆分层期2)春季的全同温期3)夏季的正分层期(停滞期)4)秋季的全同温期2.硬度硬度是指水中的二价及多价金属离子含量的总和。
3.水硬度单位的换算关系1mmol/L=2.804O H C=50.05mg/(CaCO3)4.天然水硬度的分类德国度(O H C)极软水0~4软水4~8中等软水8~16硬水16~30极硬水30以上5.养殖用水碱度的适宜量以1~3mmol/L较好。
除天然浓度较低者外,为了保护淡水生物,以CaCO3表示的碱度应不小于20mg/L。
四大家鱼养殖用水的碱度的危险指标值是10mmol/L。
6.海水主要离子组成的恒定性海水中的主要成分的含量比例几乎是恒定的,只是盐分含量总值不同。
原因:大洋海水通过潮汐、环流、垂直流及风浪长期不断的混合作用,是主要成分混合均匀,且因水体体积大,分钟欧诺个变化因素都很难明显改变各组分的比例关系。
7.影响气体在水中溶解度的因素1)温度:一般温度升高气体在水中的溶解度降低。
2)含盐量:当温度、压力一定时,水含盐量增加,会使气体在水中的溶解度降低。
3)气体分压力:在温度与含盐量一定时,气体在水中的溶解度随气体的分压增加而增加。
8.影响气体溶解速率的因素1)气体的不饱和程度2)水的单位体积表面积3)扰动状况9.日较差:溶解日变化中,最高值与最低值之差称为昼夜变化幅度,简称“日较差”。
日较差的大小可反映水体产氧与耗氧的相对强度.10.必需元素是直接参与生物的营养、其功能不能被别的元素替代、生物生命活动不可缺少的元素。
11.藻类对营养盐的吸收特点通常把天然水中的溶性氮、磷、硅的无机化合物称为水生植物营养盐。
12.天然水中氮的来源和转化1)氮化作用含氮有机物在微生物作用下分解释放氨态氮的过程。
2)同化作用水生植物通过吸收利用天然水中的NH+4(NH3)、NO-2、NO-3等合成自身的物质。
3)硝化作用在通气良好的天然水中,经硝化细菌的作用,氨可进一步被氧化为NO3。
养殖水环境化学一、养殖水环境化学的概念养殖水环境化学是研究养殖水体中各种化学物质的含量、种类、性质及其对养殖生物和人类健康的影响,以及污染防治和生态修复的学科。
它是水产养殖学、环境科学和化学等多个学科的交叉领域。
二、养殖水环境化学的研究内容1、养殖水体中各种化学物质的种类和含量养殖水体中包含大量的化学物质,如溶解氧、pH值、氨氮、亚硝酸盐、硝酸盐等,这些物质对养殖生物的生长和生存都有着重要的影响。
因此,了解这些物质的种类和含量是非常重要的。
2、养殖水体中化学物质的性质及其对养殖生物和人类健康的影响不同的化学物质对养殖生物和人类健康的影响是不同的。
例如,高浓度的氨氮和亚硝酸盐会对养殖生物产生毒害作用,而低浓度的溶解氧则会对养殖生物的生长和生存产生负面影响。
因此,了解这些化学物质的性质及其对养殖生物和人类健康的影响是非常重要的。
3、养殖水体中化学物质的污染防治和生态修复随着养殖业的不断发展,养殖水体中的化学物质污染问题也越来越严重。
因此,如何进行污染防治和生态修复是养殖水环境化学研究的重要内容之一。
例如,通过改善水体中的溶解氧含量、降低氨氮和亚硝酸盐的浓度等措施可以有效地防治养殖水体的污染。
三、养殖水环境化学的意义1、有利于保护水资源和生态环境随着养殖业的不断发展,养殖水体的污染问题也越来越严重。
通过研究养殖水环境化学,可以了解养殖水体中各种化学物质的性质及其对生态环境的影响,从而采取有效的措施进行污染防治和生态修复,保护水资源和生态环境。
2、有利于提高养殖生产效益和质量通过研究养殖水环境化学,可以了解各种化学物质对养殖生物生长和生存的影响,从而采取有效的措施调节水体中的化学物质含量,提高养殖生产效益和质量。
3、有利于保障人类健康和食品安全养殖水体中的化学物质不仅会对养殖生物产生影响,而且还会对人类健康和食品安全产生影响。
因此,通过研究养殖水环境化学,可以了解这些化学物质的性质及其对人类健康和食品安全的影响,从而采取有效的措施保障人类健康和食品安全。
水环境化学名词解释名词解释总硬度HT:在一般天然水中,主要是Ca2+和Mg2+,其他离子含量很少。
通常,水中Ca2+和Mg2+的总含量称为水的总硬度ht碳酸盐硬度(hc):由于水中含有ca(hco3)2和mg(hco3)2而形成的硬度,经煮沸后可把硬度去掉,这种硬度称为碳酸盐硬度,亦称暂时硬度。
非碳酸盐硬度(HN):由于水中含有CaSO4(CaCl2)和MgSO4(MgCl2)等盐类物质而形成的硬度,煮沸后无法去除。
这种硬度称为非碳酸盐硬度,也称为永久硬度。
当量粒子:对于还原性物质,一个当量粒子是指与1个氢原子具有相同的还原能力的粒子毫克当量:对于还原性物质,与1mg(1mmol)氢的还原能力相等的物质叫做1毫克当量。
含水率定义:树脂含水率一般以每克湿树脂(在水中充分膨胀)所含水分的百分比表示(约50%),并且相应地反映了树脂网架中的孔隙率溶胀性定义:树脂体积变化的现象称为溶胀总交换容量:一定量树脂的活性基团或可交换离子的总数。
工作交换容量:给定工作条件下的实际可用交换容量。
完交换容量:完全交换容量也称最大容量、理论容量,是干燥恒重的单位质量h型或cl型树脂中可交换离子(离子基团)的总数量。
固定床:在离子交换器中填充离子交换树脂(或磺化煤)。
在操作过程中,树脂不会被输送出去,因此被称为固定床复床指阳、阴离子交换器串联使用,达到水的除盐的目的。
半透膜:只允许溶质或溶剂透过的膜称为半透膜。
半透膜属于选择透过性膜。
选择渗透膜:如生物膜和细胞膜。
扩散方法包括自由扩散、辅助扩散和主动运输。
透析如果用膜把一个容器分隔成两部分,在膜的一侧放入溶液,在膜的另一侧放入纯水,则把小分子溶质透过膜向纯水侧的迁移过程称为渗析(溶质透过膜的现象)。
渗透如果只有纯水侧的纯水通过膜迁移到溶液侧,但溶质不穿透,则此过程称为渗透(溶剂穿透膜的现象)。
水面的综合散热系数:在单位时间内、水面温度变化1oc时,水体通过单位表面散失的热量变化量,单位:w/(m2?oc)湿空气:干空气和水蒸气的混合物。
水环境化学2000字介绍水环境化学是研究水圈中的化学物质在水中迁移、转化和积累的学科,涉及到水圈中的大气降水、地表水和地下水等各个领域。
随着人类活动对水环境的破坏日益严重,水环境化学的研究越来越重要。
本文将介绍水环境化学的基本概念、研究内容和应用价值,以及当前水环境化学研究的热点和挑战。
一、水环境化学的基本概念水环境化学是研究水圈中的化学物质在水中迁移、转化和积累的学科。
水圈中的化学物质包括自然因素和人类活动所排放的化学物质,如氮、磷、重金属、有机污染物等。
这些物质在水中会通过各种途径进行迁移和转化,例如通过地表水的流淌、地下水的渗透等方式进入水环境,也可以通过生物、化学等过程进行转化和降解。
水环境化学研究的主要目的是了解这些物质在水中的分布、迁移和转化规律,从而为环境保护和治理提供科学依据。
二、水环境化学的研究内容水环境化学的研究内容涵盖了水圈中的各个方面。
以下是一些主要的研究内容:1. 大气降水和地表水的化学组成及变化规律大气降水和地表水是水环境中最为重要的组成部分。
水环境化学研究大气降水和地表水的化学组成及变化规律,可以了解水圈中化学物质的分布和变化趋势,为环境保护和治理提供科学依据。
2. 地下水的化学组成及地下水污染修复地下水是许多城市和农村的重要水源,但是人类活动所排放的化学物质也可能导致地下水的污染。
水环境化学研究地下水的化学组成及地下水污染修复,可以帮助人们了解地下水的水质状况,制定有效的地下水污染防治措施,以及地下水的修复和治理方案。
3. 水环境中的生物群落和代谢过程水环境中的生物群落和代谢过程对水环境的化学稳定性具有重要影响。
水环境化学研究水环境中的生物群落和代谢过程,可以揭示人类活动对水环境中生物群落和代谢过程的影响,以及水环境中生物群落和代谢过程对化学物质的转化和降解作用。
三、水环境化学的应用价值水环境化学的研究可以为环境保护和治理提供科学依据,同时也具有广泛的应用价值。
以下是一些主要的应用价值:1. 水质监测水质监测是水环境化学研究中最基本的应用之一。
水环境化学1、水中八大离子:K +、Na +、Ca 2+、Mg 2+、HCO 3-、NO 3-、Cl -和SO 42-为常见八种离子2、溶解气体与Henry 定律:溶解于水中的气体与大气中的气体存在平衡关系,气体的大气分压P G 与气体的溶解度的比表现为常数关系,称为Henry 定律,该常数称为Henry 定律常数K H 。
[G(aq)] = K H PG K H -气体在一定温度下的亨利定理常数 (mol/L.Pa) PG -各种气体的分压 (Pa)3、水体中可能存在的碳酸组分 CO 2、CO 32-、HCO 3-、H 2CO 3 ( H 2CO 3*)4、天然水中的碱度和酸度:碱度:水中能与强酸发生中和作用的全部物质,即能够接受质子H+的物质总量;酸度:凡在水中离解或水解后生成可与强碱(OH -)反应的物质(包括强酸、弱酸和强酸弱碱盐)总量;即水中能与强碱发生中和作用的物质总量。
5、天然水中的总碱度=HCO3-+2CO32-+ OH- —H+6、水体中颗粒物的类别(1)矿物微粒和粘土矿物(铝或镁的硅酸盐 )(2)金属水合氧化物(铝、铁、锰、硅等金属 )(3)腐殖质 (4)水体悬浮沉积物 (5)其他(藻类、细菌、病毒等)影响水体中颗粒物吸附作用的因素有:颗粒物浓度、温度、PH 。
7、水环境中胶体颗粒物的吸附作用有 表面吸附 、化学吸附、离子交换吸附 和 专属吸附。
8、天然水的PE 随水中溶解氧的减少而 降低 ,因而表层水呈 氧化性 环境。
9、吸附等温线:在一定温度,处于平衡状态时被吸附的物质和该物质在溶液中的浓度的关系曲线称为吸附等温线;水环境中常见的吸附等温线主要有L -型、F -型和H -型。
10、无机物在水中的迁移转化过程:分配作用、挥发作用、水解作用、光解作用、生物富集、生物降解作用。
11、PE:pE 越小,电子活度越高,提供电子的倾向越强,水体呈还原性。
pE 越大,电子活度越低,接受电子的倾向越强,水体呈氧化性 。
pe 影响因素:1)天然水的pE 随水中溶解氧的减少而降低;2)天然水的pE 随其pH 减少而增大。
12、什么是电子活度pE ,以及pE 和pH 的区别。
答:定义电极上电子有效浓度为电子活度,记作E ,其负对数记作pE 。
电子活度越大或pE 越小,电子供出电子的倾向越大。
在电化学研究中,通常用电极电位表示电极供出或接受电子的倾向,当给出电子活度E 和电子活度的负对数pE 明确的热力学意义之后,就可以明确地表示不同电对在反应条件下供出或接受电子能力的相对大小。
在一定温度下,pE 与电极电位成直线关系, pE越大,电子活度越小,电极的氧化能力或接受电子的能力越强,供出电子能力越弱,pE与电子活度的关系同pH与H+活度的关系相似。
pH亦称氢离子浓度指数,是溶液中氢离子活度的一种标度,也就是通常意义上溶液酸碱程度的衡量标准。
pH值越趋向于0表示溶液酸性越强,反之,越趋向于14表示溶液碱性越强,pH=7的溶液为中性溶液。
若水体的PE值高,有利于下列Cr、Mn在水体中迁移。
13、腐殖质的组成:由生物体物质在土壤、水体和沉积物中经腐败作用后的分解产物,是一种凝胶性有机高分子物质。
分为腐殖酸:溶于稀碱但不溶于酸的部分;富里酸:即可溶于碱又可溶于酸的部分;腐黑物:不能被酸和碱提取的部分。
一般认为,当浓度较高时,金属离子与腐殖质的反应以溶解为主,当金属离子浓度较低时,则以沉淀和凝聚为主。
14、沉淀物中重金属重新释放诱发因素:①盐浓度升高:碱金属和碱土金属阳离子可将被吸附在固体颗粒上的金属离子交换出来。
②氧化还原条件的变化:有机物增多,产生厌氧环境,铁猛氧化物还原溶解,使结合在其中的金属释放出来。
③pH值降低:氢离子的竞争吸附作用、金属在低pH值条件下致使金属难溶盐类以及配合物的溶解。
④增加水中配合剂的含量:天然或合成的配合剂使用量增加,能和重金属形成可溶性配合物,有时这种配合物稳定性较大,以溶解态形式存在,使重金属从固体颗粒上解吸下来。
15、凝聚过程:是在外来因素(如化学物质)作用下降低静电斥力,引力超过斥力时胶粒便合在一起。
絮凝过程:借助于某种架桥物质(聚合物)联结胶体粒子,使凝结的粒子变的更大。
简述胶体凝聚和絮凝之间的区别。
答:絮凝——在胶粒或悬浮体内加入极少量的可溶性高分子化合物,可导致溶胶迅速沉淀,沉淀呈疏松的棉絮状,这类沉淀称为絮凝物,这种现象呈絮凝作用。
聚沉——胶体粒子聚集由小变大,最终导致粒子从溶液中析出的过程。
高分子对溶胶的絮凝作用与电解质的聚沉作用完全不同,由电解质引起的聚沉作用缓慢,沉淀颗粒紧密、小;高分子的絮凝作用则是由于吸附了溶胶粒子以后,高分子化合物本身的链段旋转和运动,相当于本身的痉挛作用,将固体粒子聚集在一起而产生沉淀。
16、生物富集:生物从周围环境(水体、土壤、大气)吸收并积累某种元素或难降解的物质,使其在有机体内的浓度超过周围环境中浓度,该现象称为生物富集。
生物富集常用生物富集系数(BCF)表示,即生物体内污染物的浓度与其生存环境中该污染物浓度的比值。
17、水体富营养化:指在人类活动的影响下,生物所需的氮,磷等营养物质大量进入湖泊,河口,海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象. 发生在海域时叫赤潮,发生在湖泊时叫水华。
危害:1 使水味变得腥臭难闻 2 降低水体的透明度 3 影响水体的溶解氧 4 向水体释放有毒物质 5 影响供水水质并增加制水成本 6 对水生生态的影响,在正常情况下,湖泊水体中各种生物都处于相对平衡的状态.但是,一旦水体受到污染而呈现富营养状态时,水体的这种正常的生态平衡就会被扰乱,某些种类的生物明显减少,而另外一些生物种类则显著增加.这种生物种类演替会导致水生生物的稳定性和多样性降低,破坏了湖泊生态平衡.措施:1控制外源性营养物质输入①制订营养物质排放标准和水质标准. ②根据湖泊水环境磷容量,实施总量控制. ③实施截污工程或者引排污染源④合理使用土地,最大限制地减少土壤侵蚀,水土流失与肥料流失.2减少内源性营养物质负荷①生物性措施:是指利用水生生物吸收利用氮,磷元素进行代谢活动这一自然过程达到去除水体中氮,磷营养物质目的的方法. ②工程性措施:工程性措施主要包括挖掘底泥沉积物,进行水体深层曝气,注水冲稀等. ③化学方法:包括凝聚沉降和用化学药剂杀藻等.对那些溶解性营养物质如正磷酸盐等,采用往湖中投加化学物质使其生成沉淀而沉降.而使用杀藻剂可杀死藻类,这适合于水华盈湖的水体.藻类被杀死后,水藻腐烂分解仍旧会释放出磷,因此,死藻应及时捞出,或者再投加适当的化学药品,将藻类腐烂分解释放出的磷酸盐沉降.18、光解作用:光解反应能够使有机物结构发生不可逆转地改变,其对水环境有机污染物归趋有重要影响。
光解过程主要有直接光解和间接光解,间接光解又包含敏化光解和氧化光解。
直接光解指化合物本身直接吸收太阳能而发生的分解反应;间接光解指由其它化合物吸收光子生成多种活性物种,进而引发有机物发生光化学反应的过程。
敏化光解即水体中天然物质被阳光激发后又将其激发能转移至化合物而使其分解的反应;氧化反应是指阳光辐射产生的强氧化自由基等中间体与化合物作用而发生的转化反应。
19、微生物代谢途径:(1)通过酶催化的亲核水解反应(2)利用氧的亲电行为的氧化反应(3)通过氢化物亲核行为或还原金属的还原反应(4)加成反应或自由基H提取和富马酸加成反应20、降水中主要的阴离子有硫酸根离子、氯离子、硝酸根离子、亚硝酸根离子。
21、pH<pK1 6.35时,溶液中主要以H2CO3*为主; pH>pK210.33时,溶液中主要以CO32-为主;pH介于pK1与pK2之间时,溶液中主要以HCO3-为主。
22、金属污染物:Cd、 Hg、 Pb、 As、 Cr、Cu、 Zn、 Tl、 Ni、Be23、环境中某一重金属的毒性与其游离金属离子浓度、配合作用、和化学性质有关。
24、TN 、 TP 总磷、总氮和 COD常衡量水体富营养化的指标。
25、水体的自净作用可分为物理作用、化学作用和生物作用。
26、pE – pH 图:在高H+活度,高电子活度的酸性还原介质中,Fe2+为主要形态。
(酸性还原性介质);在高H+活度,低电子活度的酸性氧化介质中, Fe3+为主要形态。
(酸性氧化性介质);碱性氧化介质,Fe(OH)3(S)为主要形态;碱性还原介质,Fe(OH)2(S)为主要形态。
27、天然水体中重要的无机配体有:OH-、Cl-、CO32-、HCO3-、F-、S2-、CN-、NH328、不易水解的有机污染物:烷烃烯烃芳香烃硝基苯杂环化合物 PCBs醇类醚类羧酸易水解的有机污染物:卤代烷烃酰胺胺羧酸酯氨基甲酸盐环氧化物腈类有机磷酸酯尿素类磺酸酯酐29、简述有机配位体对水体中重金属迁移的影响。
答:水溶液中共存的金属离子和有机配位体经常生成金属配合物,这种配合物能够改变金属离子的特征从而对重金属离子的迁移产生影响,起通过影响颗粒物对重金属的吸附和影响重金属化合物的溶解度来实现。
30、碳水化合物生化水解最终产物为丙酮,在氧气充足时,能进一步分解为CO2和H2O。
31、适用于水体颗粒物对污染物吸附的等温式有 G=KC 、G=G°C/(A+C)两种方程。
其中G=G°C/(A+C) 可求饱和吸附量。
32、有机物的辛醇-水分配系数常用 Kow 表示。