小学四年级数学 第17讲数阵图(二)
- 格式:doc
- 大小:80.31 KB
- 文档页数:3
小学四年级逻辑思维学习—数阵图与幻方”知识定位一、什么是数阵图?在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察上面两个图:右图(1)中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右图(2)就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从如何来填好数阵图开始。
如何填好数阵图?数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这一类问题可以按以下步骤解决问题:第一步:区分数阵图中的普通点(或方格),和交叉点(方格)第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算各个点与该点被重复计算次数之积的和的代数式,即数阵图关系线(关系区域)上和的总和,这个和是关系线(关系区域)的个数的整数倍.第三步:判断少数关键点上可以填入的数的余数性质,并得出相应的数阵图关系线(关系区域)和.第四步:运用已经得到的信息进行尝试:数阵图还有一类题型比较少见,解决这一类问题需要理清数阵中数与数之间的相关关系,找出问题关键.【授课批注】数阵图问题千变万化,一般没有特定的解法,往往需要综合运用掌握的各种数学知识来解决问题. 本讲出了要讲授填数阵图的主要技巧,还有以下注意点:1.引导学生从整体到局部对问题进行观察和判断;2.教授巧妙利用容斥原理、余数的性质、整除性质的数学方法;3.锻炼学生利用已知信息枚举,尝试的能力;4.培养学生综合运用各种数学知识,分析问题,找问题关键,解决问题的能力.二、什么是幻方?同学们是否知道我国古代有关“洛书”的神话传说?传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:三、如何解决幻方问题?幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,三阶幻方的中心位置上的数等于所有所填数的平均数,也等于横行、竖列、对角线上数和的三分之一.解决数表类问题中,首先要找出数填写的规律,再从规律中找到数表的数量关系,从而找出解决问题的关键.知识梳理987653421987654321(一)封闭型数阵问题(二)辐射型数阵(三)其它类型的数阵图(四)幻方例题精讲【试题来源】【题目】将1~6填入左下图的六个○中,使三角形每条边上的三个数之和都等于k,请指出k的取值范围.k=9 k=10 k=11 k=12【题目】小猴聪聪有一天捡到像左下图的模具,它试着将1~10分别填入图中,使得每个小三角形3个顶点上的数字之和为图中所表示的数值,你能做到吗?【题目】图中的6条线分别连接着9个圆圈,其中一个圆圈里的数是6.请你选9个连续自然数(包括6在内)填人圆圈内,使每条线上各数的和都等于23.6543216543216543216543216【题目】小兔子在森林玩耍,遇到一个画着奇怪图形的树桩,上面写着:把10至20这11个数分别填入下图的各圆圈内,使每条线段上3个圆内所填数的和都相等.如果中心圆内填的数相等,那么就视为同一种填法,请写出所有可能的填法,小兔子发了愁,你能帮它吗?【题目】海豚是很聪明的动物,它能将1~9填入右下图的九个○内,并且使得每个圆周和每条直线上的三数之和都相等,并且7,8,9依次位于小、中、大圆周上,你能做到吗?【题目】在下图中的10个○内填入0~9这10个数字,使得循环式成立:【题目】请在图中的每个圆圈内填入不同的自然数,使得图中每个圆圈中所填的数都是上一行与它相邻的两个圆圈中所填数的和,最下面的数是20.+=====----20【题目】请你将2~10这九个自然数填入图中的空格内每行、每列、每条对角线上的三数之和相等.【题目】请你将1~25这二十五个自然数填入图中的空格内每行、每列、每条对角线上的五数之和相等.【题目】将九个数填入左下图的九个空格中,使得任一行、任一列以及两条对角线上的三个数之和都等于定数k,则中心方格中的数必为k÷3【题目】在下图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21.【题目】将前9个自然数填入右图的9个方格中,使得任一行、任一列以及两条对角线上的三个数之和互不相同,并且相邻的两个自然数在图中的位置也相邻.【题目】将1、2、3、4、5、6、7、8、9这九个数字,分别填入3×3阵列中的九个方格,使第二行组成的三位数是第一行组成的三位数的2倍,第三行组成的三位数是第一行组成的三位数的3倍.【题目】在一个3×3的网格中填入9个数使得每一横行、竖行、对角线上三个数的乘积相等.习题演练【题目】将1~7这七个数分别填入图中的○里,使每条直线上的三个数之和都等于12。
简单数阵图一、辐射型数阵图从一个中心出发,向外作若干条射线,在每条射线上安放同样多个数,使其和是一个不变的数。
突破关键:确定中心数,多算的次数,公共的和。
先求重叠数。
数总和+中心数×重复次数=公共的和×线数重叠部分=线总和-数总和/线总和=公共的和×线数数和:指所有要填的数字加起来的和中心数:指中间那数字,即重复计算那数字(重叠数)重复次数:中心数多算的次数,一般比线数少1公共的和:指每条直线上几个数的和线数:指算公共和的线条数例1、把1-5这五个数分别填在左下图中的方格中,使得横行三数与竖列三数之和都等于9。
例2、把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以:总和数=(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。
分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。
例3、把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等例4、将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10。
分析与解:例1是知道每条直线上的三数之和,不知道重叠数;例2是知道重叠数,不知道两条直线上的三个数之和;本例是这两样什么都不知道。
但由例1、例2的分析知道,(1+2+3+4+5)+重叠数=每条直线三数之和×2,每条直线上三数之和=(15+重叠数)÷2。
四年级奥数:数阵图(一)我们在三年级已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数”。
本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”。
我们先从一道典型的例题开始。
例1把1~9这九个数字填写在右图正方形的九个方格中,使得每一横行、每一竖列和每条对角线上的三个数之和都相等。
分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。
我们可以这样去想:因为1~9这九个数字之和是45,正好是三个横行数字之和,所以每一横行的数字之和等于45÷3=15。
也就是说,每一横行、每一竖列以及每条对角线上三个数字之和都等于15。
在1~9这九个数字中,三个不同的数相加等于15的有:9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3,6+5+4。
因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。
因为中心方格中的数既在一个横行中,又在一个竖列中,还在两对角线上,所以它应同时出现在上述的四个算式中,只有5符合条件,因此应将5填在中心方格中。
同理,四个角上的数既在一个横行中,又在一个竖列中,还在一条对角线上,所以它应同时出现在上述的三个算式中,符合条件的有2,4,6,8,因此应将2,4,6,8填在四个角的方格中,同时应保证对角线两数的和相等。
经试验,有下面八种不同填法:上面的八个图,都可以通过一个图的旋转和翻转得到。
例如,第一行的后三个图,依次由第一个图顺时针旋转90°,180°,270°得到。
又如,第二行的各图,都是由它上面的图沿竖轴翻转得到。
所以,这八个图本质上是相同的,可以看作是一种填法。
例1中的数阵图,我国古代称为“纵横图”、“九宫算”。
一般地,将九个不同的数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等,那么这样的图称为三阶幻方。
小学四年级奥数专题讲座第十六讲数阵图(一)奥数梦园 2009-05-03 00:00 阅读1454 评论1字号:大中小第16讲数阵图(一)我们在三年级已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数”。
本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”。
我们先从一道典型的例题开始。
例1把1~9这九个数字填写在右图正方形的九个方格中,使得每一横行、每一竖列和每条对角线上的三个数之和都相等。
分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。
我们可以这样去想:因为1~9这九个数字之和是45,正好是三个横行数字之和,所以每一横行的数字之和等于45÷3=15。
也就是说,每一横行、每一竖列以及每条对角线上三个数字之和都等于15。
在1~9这九个数字中,三个不同的数相加等于15的有:9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3,6+5+4。
因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。
因为中心方格中的数既在一个横行中,又在一个竖列中,还在两对角线上,所以它应同时出现在上述的四个算式中,只有5符合条件,因此应将5填在中心方格中。
同理,四个角上的数既在一个横行中,又在一个竖列中,还在一条对角线上,所以它应同时出现在上述的三个算式中,符合条件的有2,4,6,8,因此应将2,4,6,8填在四个角的方格中,同时应保证对角线两数的和相等。
经试验,有下面八种不同填法:上面的八个图,都可以通过一个图的旋转和翻转得到。
例如,第一行的后三个图,依次由第一个图顺时针旋转90°,180°,270°得到。
又如,第二行的各图,都是由它上面的图沿竖轴翻转得到。
所以,这八个图本质上是相同的,可以看作是一种填法。
例1中的数阵图,我国古代称为“纵横图”、“九宫算”。
第17讲数阵图(二)例1在右图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21。
解:由上一讲例4知中间方格中的数为7。
再设右下角的数为x,然后根据任一行、任一列及每条对角线上的三个数之和都等于21,如下图所示填上各数(含x)。
因为九个数都不大于12,由16-x≤12知4≤x,由x+2≤12知x≤10,即4≤x≤10。
考虑到5,7,9已填好,所以x只能取4,6,8或10。
经验证,当x=6或8时,九个数中均有两个数相同,不合题意;当x=4或10时可得两个解(见下图)。
这两个解实际上一样,只是方向不同而已。
例2将九个数填入右图的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有证明:设中心数为d。
由上讲例4知每行、每列、每条对角线上的三个数之和都等于3d。
由此计算出第一行中间的数为2d——b,右下角的数为2d-c(见下图)。
根据第一行和第三列都可以求出上图中★处的数由此得到3d-c-(2d-b)=3d-a-(2d-c),3d-c-2d+b=3d-a-2d+c,d——c+b=d——a+c,2c=a+b,a+bc=2。
值得注意的是,这个结论对于a和b并没有什么限制,可以是自然数,也可以是分数、小数;可以相同,也可以不同。
例3在下页右上图的空格中填入七个自然数,使得每一行、每一列及每一条对角线上的三个数之和都等于90。
解:由上一讲例4知,中心数为90÷3=30;由本讲例2知,右上角的数为(23+57)÷2=40(见左下图)。
其它数依次可填(见右下图)。
例4在右图的每个空格中填入个自然数,使得每一行、每一列及每条对角线上的三个数之和都相等。
解:由例2知,右下角的数为(8+10)÷2=9;由上一讲例4知,中心数为(5+9)÷2=7(见左下图),且每行、每列、每条对角线上的三数之和都等于7×3=21。
3年级数字谜2(数阵图初步)数学游戏将1至6分别填入右图中的圆圈内, 使得图中三角形每条边上三个数的和都等于10. 现在已经填好了其中三个, 请你在图中填出剩下的数.例题例1、将1至9分别填入右图中的圆圈内, 可以使得图中所有三角形(共七个)的三个顶点上的数之和都等于15.现在已经填好了其中三个, 请你在图中填出剩下的数.例2、在右图中的八个圆圈内分别填入八个不同的自然数. 使得正方形每条边上三个数的和相等. 现在如果已经填好了五个数, 那么每条边上各数之和应该是多少? 并将其补充完整.例3、小悦是8月11日15点整出生的, 她想把1,2,3,4,5,6,7这七个数填入图4-18的七个方框里, 每个数只填一次, 使三条直线上的三个数之和恰好是8,11,15. 问:在圆上的三个数的乘积最大可能是多少?例4、把1至8分别填入右图的八个圆圈内, 使得任意两个有线段直接相连的圆圈内的数字之差都不等于1.课堂练习练习1、如图,在正方形的空格里填上适当的数,使每一横行,竖行,斜行的三个数相加的和都是18.练习2、在图中九个圆圈中分别填入九个不同的自然数, 使得图中六条直线上的三个数之和相等. 现在已经填入五个数, 请将其补充完整.练习3、把2、3、4、5、6、8、9、15、17、32这十个数填入下图的圆圈中, 使得除第一行之外的每个圆圈中的数都等于它上面的两个数之和.练习4、把1至7这七个数分别填入右图中各圆圈内, 使每条直线上三个圆圈内所填数之和都相等. 如果中心圆内填的数相等, 那么就视为同一种填法. 请写出所有可能的填法.数学思想、方法小结1. 俗话说:“射人先射马,擒贼先擒王”. 在很多数阵图中,都有一些位置是关键的位置,有一些数是关键的数, 分析这些关键的位置和关键的数往往是解决问题的突破口.2. 数量的性质:两个等量加上同一个量,和相等;两个等量减去同一个量,差相等.口诀:等量加等量,和________;等量减等量,差________.课后练习 得分__________________1、在右图中的三个圆圈内填入三个不同的自然数, 使得三角形每条边上的三个数之和都等于11.2、在右图中的四个圆圈内填入合适的自然数, 使得正方形每条边上的三个数之和都等于14.3、如右图所示, 请在三个空白圆圈内填入三个数, 使得每条直线上三个数之和都相等.4、把1~12这十二个数分别填入六角星图案的十二个圆圈中, 使得每条线段上的四个数之和相等. 现在如图已经填好了八个数, 请把数阵图补全.5、将1~7这七个自然数, 分别填在图中的圆圈内, 使得每条直线上的三个数的和都相等.【思考题】把1~8这八个数填入下面“十一”图形的八个空格内, 使得每一条直线上的三个数之和都相等.个性化补充练习。
小学奥数基础教程(四年级)目录第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)小学奥数举一反三(四年级)目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第21讲速算与巧算(二)第22讲平均数问题第23讲定义新运算第24讲差倍问题第25讲和差问题第26讲巧算年龄第27讲较复杂的和差倍问题第28讲周期问题第29讲行程问题(一)第30讲用假设法解题第31讲还原问题第32讲逻辑推理第33讲速算与巧算(三)第34讲行程问题(二)第35讲容斥原理第36讲二进制第37讲应用题(三)第38讲应用题(四)第39讲盈亏问题第40讲数学开放题。
第十七周数阵图把一些数字依据必定的要求,摆列成各种各种的图形,叫做数阵图。
数阵是由幻方演化出来的另一种数字图。
幻方一般均为正方形。
图中纵、横、对角线数字和相等。
数阵则不单有正方形、长方形,还有三角形、圆、多边形、星形、花瓣形、十字形,甚至多种图形的组合。
变化多姿,奇趣迷人。
一般按数字的组合形式,将其分为三类,即辐射型数阵、关闭型数阵、复合型数阵。
【解题技巧】数阵的分类:关闭型:关闭型数阵图的解题打破口,是确立各边极点所应填的数。
为确立这些数,采纳的方法是成立相关的等式,经过以最小值到最大值的议论,来确立每条边上的几个数之和,再将和数进行拆分以找到极点应填入的数,其余的数再利用和与极点的数就简单被填出。
(1—6)辐射型:辐射型数阵图,解法的重点是确立中心数。
详细方法是:经过所给条件成立相关等式,经过整除性的议论,确立出中心数的取值,而后求出各边上数的和,最后将和自然数分拆成中心数的若干个自然数之和,确立边上其余的数。
复合型:复合型数阵图,解题的重点是要以中心数和极点数为打破口。
数阵的特色:每一条直线段或由若干线段构成的关闭线上的数字和相等。
它的表达形式多为给出必定数目的数字,要求填入指定的图中,使其具备数阵的特色。
解数阵问题的一般思路是:1.求出条件中若干已知数字的和。
2.依据“和相等” ,列出关系式,找出重点数——重复使用的数。
3.确立重复用数后,比较“和相等”的条件,用试试的方法,求出其余各数。
有时,因数字存在不一样的组合方法,答案常常不是独一的。
【铜牌例题】将 2 、 3、 4、 5、 6、 7 、 8 、 9、 10 填入下列图中的9 个方格中,使每行、每列及对角线之和相等,小明已经填了 5 个数,请将其余 4 个数填入。
【答案】【分析】先依据最左侧一列求出幻和,然后依据这个和和给出的数字逐渐计算。
3+8+7=18 ;第二行中间的数是:18-8-4=6;第三行中间的数是:18-7-9=2;第一行第一个数是:18-4-9=5;第一行中间的数是:18-3-5=10;【贯通融会 1 】(第十届走美杯初赛)小华需要结构一个3× 3 的乘积魔方,使得每行、每列、每条对角线上三个正整数的乘积都相等;此刻他已经填入了 2 , 3, 6 三个数,那当小华的乘积魔方结构完成后,x 等于 ______ 。
幻方与数阵图【知识要点】 一、幻方在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及对角线的几个数之和都相等,具有这种性质的图表,称为“幻方”。
我国古代称为“河图”、“洛书”,又叫“纵横图”。
三阶幻方的性质:1.中心位置上的数等于幻和除以3;2.角上得数等于和它不相邻的两条边上的数的平均数;3.中心数两头的数之和等于中心数的2倍。
二、数阵图数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这类问题可以按以下步骤解决问题:第一步:从整体考虑,将要求满足相等的几个数字和全部相加,一般为n ×s 的形式。
第二步:从个体考虑,分别计算每一个位置数字相加的次数,将比较特殊的(多加或少加几次)位置数字用未知数表示,全部相加,一般为题目所给全部数字和×一般位置数字相加次数±特殊位置数字和×多加或少加次数的形式。
第三步:格局整体与个体的关系,列出等式即n ×s=题目所给全部数字和×一般位置数字相加次数±特殊位置数字和×多加或少加次数。
第四步:根据数论植树即整除性确定特殊位置数的取值即相对应的S 值。
第四步:根据确定的特殊位置数字及S 值进行数字分组及尝试。
【典型例题】 一、幻方例1:如下图,将1—9填入3×3的方格表中,使得每行每列以及两条对角线上的三个数字之和都相等,你一共可以得到多少种填法?分析:首先,我们思考要填出一个三阶幻方,什么量的求出是最重要的?立刻我们就知道,那个所谓的“幻和”,即每行、每列、每条对角线三个数的和是最重要的量。
它是多少呢?如果我们按照行(按照列也一样)把幻方中的九个数加起来,那么它们的总和不就是3倍的“幻和”吗?而另一方面,我们也知道,由于1到9这九个数字都只各用了一次,所以3倍的的“幻和”第1题就等于1+2+3+4+5+6+7+8+9=45。
第17讲数阵图(二)
例1在右图的九个方格中填入不大于12且互不相同的九个自然数(其中已填好一个数),使得任一行、任一列及两条对角线上的三个数之和都等于21。
解:由上一讲例4知中间方格中的数为7。
再设右下角的数为x,然后根据任一行、任一列及每条对角线上的三个数之和都等于21,如下图所示填上各数(含x)。
因为九个数都不大于12,由16-x≤12知4≤x,由x+2≤12知
x≤10,即4≤x≤10。
考虑到5,7,9已填好,所以x只能取4,6,8或10。
经验证,当x=6或8时,九个数中均有两个数相同,不合题意;当x=4或10时可得两个解(见下图)。
这两个解实际上一样,只是方向不同而已。
例2将九个数填入右图的空格中,使得每行、每列、每条对角线上的三个数之和都相等,则一定有
证明:设中心数为d。
由上讲例4知每行、每列、每条对角线上的三个数之和都等于3d。
由此计算出第一行中间的数为2d——b,右下角的数为2d-c(见下图)。
根据第一行和第三列都可以求出上图中★处的数由此得到
3d-c-(2d-b)=3d-a-(2d-c),
3d-c-2d+b=3d-a-2d+c,
d——c+b=d——a+c,
2c=a+b,
a+b
c=2。
值得注意的是,这个结论对于a和b并没有什么限制,可以是自然数,也可以是分数、小数;可以相同,也可以不同。
例3在下页右上图的空格中填入七个自然数,使得每一行、每一列及每一条对角线上的三个数之和都等于90。
解:由上一讲例4知,中心数为90÷3=30;由本讲例2知,右上角的数为(23+57)÷2=40(见左下图)。
其它数依次可填(见右下图)。
例4在右图的每个空格中填入个自然数,使得每一行、每一列及每条对角线上的三个数之和都相等。
解:由例2知,右下角的数为
(8+10)÷2=9;由上一讲例4知,中心数为(5+9)÷2=7(见左下图),且每行、每列、每条对角线上的三数之和都等于7×3=21。
由此可得右下图的填法。
例5在下页上图的每个空格中填一个自然数,使得每行、每列及每条对角线上的三个数之和都相等。
解:由例2知,右下角的数为(6+12)÷2=9(左下图)。
因为左下图中两条虚线上的三个数之和相等,所以,
“中心数”=(10+6)-9=7。
其它依次可填(见右下图)。
由例3~5看出,在解答3×3方阵的问题时,上讲的例4与本讲的例2很有用处。