- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a a 0
(a 0), (a 0),
- a
(a 0).
把 数 集 扩展 到 复数 后,复 数的 绝 对值 表 示 为| a bi |
= a2 +b2 (a,b 为实数)。
在数学教学中,认识概念的内涵与外延必须放在教材和一定的数
学学科体系中。 例如,角(平面几何 / 平面三角)
10
三、概念间的关系
物区别于另一种事物的根本依据。
数学概念是反映思考对象在空间形式和数量关系及其模式方面的本 质属性的思维形式。
(二)产生与发展途径
概念是通过概括以及与概括紧密相联系的抽象而形成的。 数学概念的产生和发展有各种不同的途径:
1)从现实模型中直接反映得来,如初等数学中的点、线、面、体、 自然数等;
2)在原有数学概念的基础上,经过多级抽象和概括而形成,如近
我们只研究可比较概念间的关系. 所谓可比较概念,就是指的在外延上具有某种可比较关
系的概念. 例如,“正数”和“整数”就是可比较的概念,
而“正数”和“多边形”就是不可比较的概念. 在可比较的概念间,有相容关系和不相容关系.
11
(一)相容关系 (Compatible relation ) 外延有公共部分的两个概念之间的关系称为相容关系, 这两个概念称为相容概念。 在相容关系里,又分为同一关系、交叉关系和从属关系 。
中学数学的逻辑基础
数学概念 数学命题 数学推理 数学证明
1
“初等数学,即常数的数学,是指形式逻辑的范围 内活动的,至少总的说来是这样。”(恩格斯) 中学数学的逻辑基础,主要指形式逻辑,部分地 涉及辩证逻辑。 形式逻辑是关于思维形式及其规律的科学。概念、 判断、推理是思维的三种基本形式。 辩证逻辑是关于思维的辩证发展规律的科学,是 唯物辩证法在思维领域中的应用。
在四边形的内涵中,增加“两组对边分别平行”这个性质 ,那就得到平行四边形的概念,而平行四边形的外延比四 边形的外延小。 在等腰三角形的内涵中减少“有两边相等”这个性质,就 得到三角形的概念,而三角形的外延比等腰三角形的外延 大。
注意,只有在改变内涵的过程中一个概念的外延是另一个概念外延 的子集的情况下,概念的内涵和外延间才会出现反变关系。 9
8
(二)内涵与外延之间的关系
概念的内涵严格确定了概念的外延;反过来,概念的外延完全 确定了概念的内涵。因此,对概念的内涵所作的改变一定 导致概念外延的改变。具体来说即:这两个方面是相互联 系、互相制约的:当概念的内涵扩大时,则概念的外延就缩 小;当概念的内涵缩小时,则概念的外延就扩大。反过来也 一样。内涵和外延之间的这种关系,称为反变关系。\例如,
每个概念都是以下两者的统一:
1)对象或关系的集合——这个概念的外延。
2)这个集合所固有的并且只有这个集合才具备的特征 性质——这个概念的内涵。
逻辑思维对概念的要求是:概念必须明确,即弄清一个 概念的内涵是什么,外延有哪些。从质和量两个方面 明确概念所反映的对象。
6
二、概念的内涵与外延 (一) 内涵与外延的含义
(三)内涵和外延的发展变化
概念不是一成不变的,随着事物的发展变化和人类实践的不断深 入,概念的内涵和外延也会不断地发展变化。
例如:角的概念、三角函数的概念、数的概念等。
又 如 ,“绝 对 值 ”符 号 的 概念 ,它 随 着数 集 的扩 充,其 内容 不 断 丰 富 、充 实。在 有理 数 集 中,规定 有 理数 的 绝对 值 是:一个 正 数 和 零 的绝 对 值是 它 本身 ,一 个 负数 的 绝 对值 是 它的 相 反数 。 当数念及其逻辑结构
目标: 理解概念的内涵和外延、概念间的关系; 掌握概念定义的方法以及概念划分的方法。
3
一、概念与数学概念的含义与发展途径
(一)含义 概念是反映事物本质属性的思维形式。 所谓“本质属性”,就是指可以用来从其他事物中区分这个事物的
特征性质。它构成某种事物的基本特征, 只为这类事物所具有,是一种事
代数学中的群、环、域、空间等;
4
3)从数学内部的需要产生出来,例如为了把正整数幂的运算法则 扩充到有理数幂、无理数幂、实数幂,产生了零指数、负整数 指数、分数指数、无理数指数等概念;为了使所有的代数方程 都有解,产生了虚数、复数的概念;
4)根据理论上有存在的可能而提出来,例如自然数集、无穷远点、 无穷小、圆周率π等;
概念的内涵就是概念所反映的事物的本质属性的总和,概 念的外延就是概念所反映的事物的总和(或范围).
例 如 ,“ 偶 数 ”这个 概 念 的内 涵 是“能 被 2 整 除的 整 数 ”这个性 质,外延是“所有能被 2 整除的整数构成的集合”。
“ 一 元 二 次方 程 ” 这个 概 念 的内 涵 是 “只 含 有 一个 未 知 数且 未 知数的最高次数是二次的等式”这个性质 ,其外延是“一切形 ax2+bx+c=0(a≠ 0)的 方 程 的全 体 ” 。
5)从一定的数学对象结构中产生出来的,例如多边形的顶点、对 角线、内角、外角等。
注意: 1.数学概念区别于其他领域概念的一个重要特征是:理想化、多级
抽象; 2. 在人的意识中形成概念,同表达它的语言、书写和符号分不开,
称表达数学概念的语词为数学概念的名称或术语。
5
概念是最基本的思维形式,任何一门学科,都是由一系列 的概念及其体系组成的。如果把人的思维比作一个有 机体,那么概念就是这个有机体上的细胞。
7
二、概念的内涵与外延
概念的内涵与外延明确了 ,就可以更好地认识概念 ,把握概 念 ,否 则 就 会 出 现 错误 。
例 如 ,若 对“ 算 术 平 方 根 ”这 个 概 念的 内 涵 不明 确 ,往 往 会 出 现 如 下 的 错误 : (-2)2 =-2, (x -1)2 = x -1 。
要对概念加深认识,不仅要明确概念的内涵与外延 ,还要掌 握概念的内涵与外延之间的关系。
1.同一关系(Identity) 外延完全重合的两个概念A和B之间的关系称为同一关系.
12
例如,“直线”与“一次函数的图像”这两个概念,虽然它们 是从不同的角度来说明问题的,但是,它们的外延完全重合,是指 同一类对象。 又比如,“等腰三角形底边上的中线”与 “等腰三角形底边上的 高”;“等边的矩形”与“直角的菱形”;在同一个圆中“直 径”与“最大的弦”等,它们之间的关系都是同一关系。