《新课标下的数学概念教学》专题讲座
- 格式:ppt
- 大小:2.61 MB
- 文档页数:84
高中数学概念教学在新课标指导下的实施概念是思维的基本形式,具有确定研究对象和任务的作用。
由于数学高度抽象的特点,注重体现基本概念的来龙去脉。
在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。
如何搞好新课标下的高中数学概念教学?笔者结合参加新课程的学习和教学中的实践,谈一些粗浅的看法。
一、注重概念的本源,体验数学概念的形成过程每一个概念的产生都有着丰富的知识背景,舍弃这些背景,直接抛给学生一连串的概念是传统教学模式中司空见惯的做法,这种做法常常会使学生感到茫然。
由于概念教学在整个数学教学中起着举足轻重的作用,我们应重视在数学概念教学中培养学生的创造性思维。
引入是概念教学的第一步,也是形成概念的基础。
概念引入时教师要鼓励学生猜想,即让学生依据已有的知识和材料作出符合事实的推测性想象,让学生经历数学家发现新概念的最初阶段。
牛顿曾说:“没有大胆的猜想,就做不出伟大的发现。
”猜想作为数学想象表现形式的最高层次,属于创造性想象,是推动数学发展的强大动力。
因此,在概念引入时培养学生敢于猜想的习惯,是发展数学思维,获得数学发现的基本素质,也是培养创造性思维的重要因素。
比如在立体几何“异面直线的距离”概念的教学中,传统的教学方法是给出异面直线公垂线的概念,然后指出两垂足间的线段长就叫做两条异面直线的距离。
这样做并不能让学生认识到距离这个概念的本质。
教学中可以先让学生回顾一下过去学过的有关距离的概念,如两点之间的距离,点到直线的距离,两条平行线之间的距离,引导学生思考这些距离有什么特点。
回顾之后发现共同的特点是最短与垂直。
然后,启发学生思索在两条异面直线上是否也存在这样的两点,它们之间的距离是否是最短的?如果存在,应当有什么特征?于是经过共同探索、猜想,如果连结这两点的线段和两条异面直线都垂直,则其长是否是最短的呢?最后通过实物模型演示确认这样的线段存在,且其长是最短的。
在此基础上,自然地给出异面直线距离的概念。
《新课标》下的数学概念教学《新课标》的实施,既是数学教育改革的大胆举措,适应时代要求,适应社会要求,也是对中学数学教师——数学教育一线工作者的一次重大挑战。
在新情况下,数学教师应该根据《新课标》的要求,在实践中不断提高自身的教学意识,激发学生学习数学的探索精神,激发学生学习数学的兴趣,以及进行有效的概念教学。
一、数学知识是人类活动的结果数学一向以抽象闻名,数学教材更是令学生厌烦。
除了所谓的未知数x,y,z,就是三角形ABC,学生很难对数学产生好感。
事实上,数学学科是数学家活动的结果的记录。
数学知识作为数学活动的结果,完全掩盖了数学家活动作为人类实践活动所具有的‘人’性,其曲折、丰富及其生活意义和包含于其中的人文精神,全被湮没在符号化的概念、命题之中。
若只操作这些“符号”与学生进行教学交往,它们就象无源之水,无本之木,令学生感到厌倦。
这时,教育者作为实践活动的主导者,让这些实践活动当着学生的面展开,实践知识的获得及其在获得过程中所付出的“人的意义”全象地展现在学生面前。
这就要数学教师用深厚的数学基础,广博的知识和良好的表达能力来将数学教材“解释”得更美妙,生动一些。
二、有策略地进行概念教学《新课标》强调对数学本质的认识,淡化数学的形式表达。
例如统计,《新课标》将内容设置为统计案例,使学生能通过案例来学习它的思想和方法,理解其意义和作用。
又如对导数概念的理解,《新课标》也要求通过实例的分析,让学生经历从平均变化率过渡到瞬时变化率的过程。
进而了解导数概念的实际背景,知道导数就是瞬时变化率,体会导数的思想及其内涵。
显然,《新课标》这样的处理,就是把形式化数学的学术形态转化成了学生易于接受的教育形态。
由此,进行概念教学,必须舍弃以往的形式教学,而是帮助学生形成概念,操作概念。
“现代教学论认为,概念教学实质上是教师帮助学生获得概念的过程。
它有着双层含义:概念的形式和概念的操作,即将自我认识上升为抽象的规定,同时使抽象的规定在思维过程中导致具体再现。
高中数学新课标准讲座全文共四篇示例,供读者参考第一篇示例:高中数学新课标的出台,是为了适应当今社会对数学素养的需求,培养学生的数学思维和解决问题的能力。
作为高中数学教师,我们应该深刻理解新课标的精神和要求,结合自身的教学实践,不断探索创新,提高教学质量,帮助学生更好地掌握数学知识和方法。
高中数学新课标要求学生建立数学模型,能够应用数学知识解决实际问题。
在教学中,我们应该引导学生从生活中的问题出发,通过分析、建模和求解,培养学生的数学建模能力和创新思维。
可以设计实际生活中的数学问题,让学生运用所学知识制定数学模型,并用数学方法求解,培养他们解决问题的能力。
高中数学新课标注重数学原理的理解和数学方法的掌握。
我们教师要注意帮助学生理解数学概念和定理的内涵,引导学生深入思考并灵活应用所学的数学方法。
在教学中,可以通过拓展课外知识、引入历史背景等方式,加深学生对数学知识的认识和理解,提高他们的学习兴趣和主动性。
高中数学新课标要求学生在学习中注重数学实践和技术工具的应用。
我们教师应该引导学生熟练掌握数学工具的使用,如计算机软件、数学软件等,培养学生的实际操作能力和数学技术能力。
在教学中,可以使用数学软件辅助教学,引导学生利用数学工具解决问题,提高他们的数学实践能力和技术应用水平。
第二篇示例:高中数学新课标的推行,主要着眼于培养学生的数学素养和解题能力,强调数学知识与实际生活的联系,注重培养学生的数学思维和解决问题的能力。
新课标着重强调数学的整体性和系统性,注重数学知识的深度和广度,引导学生掌握一定的数学核心知识,培养学生的数学思维和解决问题的能力,提高学生的数学创新意识和实践能力。
为了更好地落实高中数学新课标,各地积极举办了高中数学新课标讲座,邀请专家学者和一线教师就新课标的理念、内容和实施方案进行深入讨论和探讨。
通过讲座,教师们可以更清晰地了解新课标的精神和要求,提高教学质量和水平,进一步拓宽教学思路和教学方法,培养学生的实际解决问题的能力和数学创新意识,引导学生在数学学习中注重实际应用和实践操作,激发学生的学习兴趣和动力。
专题讲座新课标下的小学数学学法指导赵联忠从时代发展和教育改革的潮流来看,21世纪是知识经济时代,知识发展和更新日益加速,欲成为新时代的有用人才,必须善于学习、实践和创造。
现代教育观念强调以学生为主,要求受教育者不仅是学到什么,更重要的是学会怎样学习。
《新课程标准》中也指出,“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”。
近几年来,旨在教会学生会学习、提高学生自学能力的学法指导的研究和实践已是基础教育改革的一个热门课题,让学生学会学习已经成为广大教育工作者的共识。
学习成绩优秀学生之所以成绩优秀,重要原因之一,是因为他们学习方法比较科学;学习困难学生之所以学习困难,也往往是由于学习方法不当。
要使全体学生都得到快速发展,教师必须加强学法指导。
一、更新观念、改变教法课堂教学是教学的基本形式,而教学的本质是教与学的对立统一关系。
著名的教育家陶行知先生说:“教的法子要根据学的法子”。
所以要探讨如何进行有效的学习方法指导,首先必须从教师的“教”开始。
1、备课:变备教材为备学生教师在备课过程中备教的方法很多,备学生的学习方法少。
老师注意到自身要有良好的语言表达能力(如语言应简明扼要、准确、生动等),注意到实验操作应规范、熟练,注意到文字的表达(如板书编写有序、图示清晰、工整等),也注意对学生的组织管理,但对学生的学考虑不够。
老师的备课要探讨学生如何学,要根据不同的内容确定不同的学习目标;要根据不同年级的学生指导如何进行预习、听课、记笔记、做复习、做作业等;要考虑到观察能力、想象能力、思维能力、推理能力及总结归纳能力的培养。
一位老师教学水平的高低,不仅仅表现他对知识的传授,更主要表现在他对学生学习能力的培养。
2、上课:变“走教案”为生成性课堂教学过程是一个极具变化发展的动态生成的过程,其间必然有许多非预期的因素,即便教师对学情考虑再充分,也有“无法预知”的场景发生,尤其当师生的主动性、积极性都充分发挥时,实际的教育过程远远要比预定的、计划中的过程生动、活泼、丰富得多。
新课标下的初中数学概念教学一、数学概念的本质数学概念是反映思考对象空间形式和数量关系本质属性的思维形式.数学概念是数学的细胞,也是判断、推理、论证或计算的根据,理解和掌握好概念是学好数学的根基.学习概念要准确、清晰,例如,梯形这个数学概念,它具有方位、大小、形状诸多方面的属性.但只要抓住“四条边”这条属性,就可把它与多边形相区分;“四条边”、“只有一组对边平行”就是梯形这个概念的本质属性.一旦把本质属性从众多属性中分离出来,并把这些属性作为一个“整体”,我们便形成了“梯形”这个清晰的数学概念.因此,我们说概念是事物本质属性的反映指的是整体反映.二、初中数学概念教学的现状新课标下尽管教学大纲强调了概念的重要性和基础性.但现在一部分教师仍然按照传统的教学模式——给出数学基本概念,得出定理和性质,再加上例题.他们忽视概念教学是初中数学学习中至关重要的一个环节,是基础知识和基本技能教学的核心.三、初中数学概念教学的实施策略新课标下教师要更新教学理念,重视概念课教学;根据学生知识水平特点,正确选择教学方法改进概念课的教学过程;精心设计问题情境,激发学生的学习兴趣;体现学生主体地位,倡导学生自主探索,合作交流,优化学生的学习方式;引导学生重视概念的学习,提高应用概念解决问题的能力.1.重视数学概念的引入方法,创设故事情境和实验情境引出数学概念新课标指出,概念教学要引导学生经历从具体的实例抽象出数学概念的过程.因此,引入数学概念就要以具体的典型的材料和实例为基础.揭示概念形成的实际背景,要创设好的问题情境,帮助学生完成由材料感知认识的过程,并引导学生把背景材料与原有认知结构建立起实质性联系.学生往往对历史故事和历史人物感兴趣,这恰恰是增添数学课堂活动的切入点.教学中,教师可结合概念适当引入一些数学典故、数学史和数学家的故事,激发学生的数学学习兴趣.如引入概率概念的时候,教师可以介绍概率理论的始祖惠更斯的有关故事.引入一元二次方程的时候,教师可以介绍杨辉用一元二次方程解决田亩的故事,使学生在轻松的气氛中接受这些新的数学概念,同时调动学习的积极性.心理学家认为,学生自己动手做实验,能够在脑海中留下深刻的印象.因此,在讲解新概念的时候,教师可以改自己讲,学生听的传统做法,引导学生动手做实验,从实验中抽象出数学概念并了解数学概念的有关性质.如讲授圆的定义之前,教师可以让学生准备纸板,图钉和绳子等工具,课堂中引导学生动手实践利用这些工具画出不同的圆,通过自己探索,合作交流,从而得出圆的概念和圆的有关性质.2.抓住本质,讲清概念,突出概念的本质特征,理清概念间的关系,讲解概念中词句的实际含义概念引入后,学生初步地了解了概念的定义,并不等于完全理解概念的本质.为此,还必须在感性认识的基础上,对概念做全面的分析,采用不同的方法从不同角度和方位揭示概念的本质.任何一个概念都有其各自的本质特征,要采用各种手段,分析概念本质特征,以带动对概念的全面理解.例如,三角函数这个概念,涉及面比较广,它涉及角、点的坐标、距离公式、相似三角形、函数、比的意义等知识.其中“比”是三角函数概念的本质特征,讲解的时候要突出“比”这一本质特征.数学概念并不是孤立存在的,而是一个概念都在其他概念的一定关系之中,概念中存在彼此的关系.这样就构成了一个数学知识概念网,从而系统地掌握数学基础知识,形成基本解题技能.为了使学生理清概念间的关系,教学中一般采用概念分类或比较概念内涵或外延,找出它们的共同点和不同点,从而确定它们的各种关系.新概念的引进,是对已有概念的继续、发展和完善.有些概念由于其内涵丰富,外延广泛,比较抽象,很难一步到位,此时需要分成若干个层次,逐步加深理解.比如三角函数的定义,经历了以下三个循序渐进、不断深化的过程:第一,用直角三角形边长的比刻画的锐角三角函数的定义;第二,用点的坐标表示的锐角三角函数的定义;第三,任意角的三角函数的定义.由此概念衍生出:(1)三角函数的值在各个象限的符号;(2)三角函数线;(3)同角三角函数的基本关系式;(4)三角函数的图象和性质;等等.可见,三角函数的概念在三角函数教学中的地位是重中之重,是整个三角函数部分的奠基石,它贯穿于与三角函数有关的各个部分内容并起着关键的作用.正所谓“磨刀不误砍柴工”,重视概念教学,挖掘概念的内涵和外延,更有利于学生理解概念.对于贯穿初中数学课程始终的核心概念,教学时应分层次去理解概念的本质,必要时还应从实际背景和定义两个方面帮助学生理解概念的本质.这样学生对这些概念可以多次接触,反复体会,螺旋上升,逐步加深理解,从而做到真正掌握,灵活运用.学习数学概念是为解决数学问题服务的,实际问题能否迎刃而解,关键在于能否真正掌握数学概念,领悟数学概念.总之,教师在数学概念教学中,要引导学生积极挖掘并掌握数学概念中所包含的数学思想方法,让学生知道数学思想方法不是谁给的,而是来源于数学概念,同时,向学生展示数学基本思想方法在后续学习中的作用,引起他们重视.可见,只要在教学中,狠抓学生对基本概念准确、实质性的理解,强化学生正确、灵活运用基本概念意识,加强基本技能训练,这样学生掌握基本技能才能落到实处.与此同时,数学运用、推理、证明必须以有关概念为依据,辅以有关数学思想方法和基本技能.综上所述,在新课标的指引下,教师要不断更新教学理念,切实抓好概念课的教学.这是提高教学质量,减轻师生负担的有效途径,是授学生以“渔”的关键所在.。
新课标下如何进行数学概念教学新课标下如何进行数学概念教学随着新课程标准基本理念的实施,传统的数学课堂概念教学模式已经不能适应新课程的需要,数学课堂概念教学模式必须作出相应的转变。
数学概念教学过程是在教师指导下,调动学生认知结构中的已有感性经验和知识,去感知理解材料,经过思维加工产生认识飞跃(包括概念转变),最后组织成完整的概念图式的过程。
为了使学生掌握概念、发展认识能力,必须扎扎实实地处理好每一个环节。
一.数学概念教学的现状:数学教学历来都十分重视数学概念的教学,但由于教学理念的不同造成了概念教学着重点各有不同,用新的教学理念和现代教学论来审视传统的数学概念教学,我们会发现有许多成功和不足之处。
1,成功之处:传统的概念教学着重从数学概念的内容出发,着力从两方面讲解和剖析数学概念:一讲清数学概念的内涵,即它们的数学内容和意义;二强调数学概念的应用,即它们的适用条件和范围;这样的教学严谨扎实,有利于学生在短时间内学习人类几百年甚至几千年积累的大量知识,形成学生自己的知识结构和技能技巧,进而运用知识。
2,不足之处:对概念形成过程的教学重视不够,直接扼杀了学生的探究创造过程,形成机械记忆运用的模式。
老师注重的是知识的历史传承,压缩了概念形成过程的教学,新授课教学“重结果”的情况非常严重,很多教师在引入概念时没有让学生对其必要性获得足够的感性认识而是直接给出数学概念,致使一部分学生只是死记概念的内容而没有真正理解概念的实质,概念在他们的头脑中成为空中楼阁。
题海战术成为他们学习数学的“捷径”,靠课后的练习再来探索概念的本质,有点本末倒置。
二.新课标下数学概念教学的建议1概念教学应由“知识型”向“过程型”转变任何一个概念知识的学习几乎都遵循这样的环节:概念引入------概念形成---概念巩固运用。
传统的概念教学将获得知识结论教学作为主要目标,忽视了学生在知识形成过程中的重要作用,使学生的学习行为更多的表现为机械记忆,而不是理性分析。
382020.03课程与教学Kechengyujiaoxue[摘 要]数学概念实际上就是指客观上数量关系和数学模型进行有效结合的一种理念。
它主要是对数学文字以及空间变化等进行一种描写和刻画。
在当前的教学中,教师需要认清楚数学教育的现状,进而以学生为主激发其学习兴趣,让学生能更好地学习数学概念,帮助整个数学教学水平稳步提高。
[关键词]初中数学 数学概念 教学方法数学概念是空间形式与数量关系的反映,是现实世界思维的本质属性。
数学是由概念和命题组成的知识体系。
数学概念课程被视为思维的细胞。
理解和掌握数学概念是学好数学的关键。
数学概念的内容有很多种,比如:复新课程标准下的初中数学概念教学山东省威海市石岛镇中学 唐玉洁杂运算的概念、几何的概念、函数的概念等等。
要想让学生能够对数学概念的学习更加上心,就需要教师在课堂方案以及教学模式上进行相应的调整,进而让学生对其数学知识的应用等方面都能够更加深入地了解,进而促进整体教学质量和效率的提高。
概念导入是数学概念教学中的一个必要环节。
通过这个过程,学生可以清楚地了解“为什么要引入这个概念”和“如何构建这个概念”,使学生明确活动目的,激发学习兴趣,提取相关知识,为构建复杂的智力活动概念。
一、新课程标准下初中数学概念教学的重要性在初中数学学习中,加强数学概念的学习和理解是解决数学问题的关键和基础。
学生只有 理解了数学概念的本质,才可以灵活运用数学知识,解决数学问题。
初中生刚刚开始深入学习数学,初中数学教材中有很多概念需要学生去理解,而数学概念正是解决数学问题的基础,在这个过程中,教师需要用适当的教学来引导学生方法和概念,使学生了解数学概念的本质,提高思维能力和空间想象能力,提高教学质量。
二、新课程标准下的初中数学概念教学策略1.注重初中数学的概念教学,加强课堂的引导思想数学概念在初中数学的教学中占有重要的地位,它是很重要的一个层面思想。
它不仅是我们数学基础知识的一种体现,更是学习其他知识的前提条件。
新课程理念下的数学概念教学摘要:概念教学是小学数学的重要组成部分。
数学概念是对客观事物的数量关系、空间形式或结构关系的特征概括,是对一类数学对象的本质属性的反映。
掌握正确的数学概念是学生学习数学知识的基石,是培养数学能力的前提,是解答数学实际问题的重要条件。
关键词:小学数学概念教学数学能力数学概念一般都比较抽象,这与小学生思维的形象性构成了一大矛盾。
传统的概念教学在方式上以“告诉”为主让学生“接受”新概念,置学生于被动地位,使思维呈依赖性。
这不利于创新型人才的培养。
如何利用新课程理念来指导概念教学;如何把新课程理念内化,并通过课堂教学的实践活动外化,展示出来;如何引导学生理解并形成概念,将枯燥的数学概念生动化、具体化,使学生易于接受;如何让学生在获得概念的同时还能培养他们的创造精神……在实际教学中,我针对小学生的年龄特点和对概念掌握的物点,进行了有选择地尝试、探索,发现运用以下策略更能调动学生的学习积极性,效果颇好。
下面就结合自己的教学实践,谈几点体会:一、创设现实情境,引入概念概念是客观事物本质属性在人们头脑里的反映,是人们在实践中用科学方法从感觉到具体事物中抽象出来的。
概念引入是否得法直接关系到学生对概念的理解与形成。
由于小学生抽象思维差,生活经验少,如果教学中突兀、生硬地引入概念,学生大多会困惑、迷茫,难于接受,而丧失学习兴趣。
因此,教师要充分利用学生好奇、好动、好直观形象思维的特点,投其所好,通过创设情境来引入概念,让学生在故事、游戏、悬念等情境中慢慢进入思维轨道,激发进一步学习的兴趣和欲望。
如教学“圆的认识”时,可以这样进行:“同学们,我们平时所见的车轮都是什么样的?”学生会肯定地回答:“都是圆形的。
”“方的行不行?”“那怎么行,方的怎么滚动啊?”“这样的行吗?”教师随手在黑板上画一椭圆形问。
“也不行,颠得厉害。
”教师再问:“为什么圆的就行了呢?”当学生积极思考时,教师揭示课题:这节课,我们就来学习解决这个问题的方法。
新课标下的高中数学概念教学研究洪湖贺龙高中刘小晏内容提要:经过分析数学概念、数学命题、数学方法和数学思想的关系可以看到,数学概念是构建数学理论大厦的基石,掌握数学概念需要概括、表述、识别和运用四个阶段。
在新课标的教学理念下,结合多年的教学实践,本文提出在高中数学概念教学中应该遵循的原则:在体验数学概念产生的过程中认识概念,在挖掘新概念的内涵与外延的基础上理解概念,在寻找新旧概念之间联系的基础上掌握概念,在运用数学概念解决问题的过程中巩固概念。
主题词:数学概念数学认知结构教学原则一、问题的提出根据学习的认知理论,数学学习的实质是数学认知结构的组织和重新组织。
所谓数学认知结构,就是学生头脑里的数学知识按照自己的理解深度、广度,结合着自己的感觉、知觉、记忆、思维、联想等认知特点,组合成的一个具有内部规律的整体结构。
关于新学习内容的教学。
布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构。
”因为教给学生学科基本结构“可以使学科更容易理解”;把知识“放进构造的很好的模式里面”更易记忆;学习模式有助于理解遇到的其他类似事物,有助于知识的迁移;强调学科结构能缩小高级知识和初级知识之间的差距。
所以,在现代数学教学中,新学习内容一般是以数学知识结构的形式呈现的。
数学知识结构是学生数学认知结构发展的客观基础,在数学认知结构的建构过程中起着外界客体的作用,数学认知结构的建构过程就是学生头脑中的数学认知结构不断接受外界数学知识结构的过程。
数学知识结构和数学认知结构的关系如下图1图1 数学知识结构和数学认知结构关系图内化(主体的主观能动性)数学知识结构数学认知结构基本方式:同化和顺应数学知识结构是数学概念、数学命题按照其内在联系展开的体系以及其中渗透的数学思想和包涵的数学方法相互关联而形成的网络结构。
数学概念是反映一类对象本质属性的思维形式,主要由原始概念和基本概念组成,是数学知识的最基本形式。
数学概念间具有逻辑联系性。