数学概念,命题的教学
- 格式:ppt
- 大小:168.50 KB
- 文档页数:28
高中数学命题与逻辑题教案
教案主题:数学命题与逻辑题
教学目标:
1.了解命题的概念和基本性质
2.掌握逻辑联结词的运用
3.学会使用数学语言描述命题与逻辑问题
教学内容:
1.命题的定义和基本性质
2.逻辑联结词的分类和运用
3.数学语言描述命题与逻辑问题
教学步骤:
一、导入(5分钟)
老师引导学生回顾自然语言中的命题及其特点,引出命题在数学中的应用。
二、讲解与示范(15分钟)
1.讲解命题的定义和基本性质,引导学生通过举例理解命题的概念。
2.介绍逻辑联结词的分类和运用,让学生了解与理解逻辑关系的表达方式。
三、练习与巩固(20分钟)
1.学生通过练习题巩固所学知识,包括判断命题的真假和逻辑关系的运用。
2.学生分组进行逻辑题讨论,通过解题方式提高逻辑思维能力。
四、拓展与延伸(10分钟)
老师布置拓展练习,让学生尝试更复杂的命题和逻辑问题,拓展思维边界。
五、总结与展望(5分钟)
1.老师对本节课内容进行小结,强调重点和易错处。
2.展望下节课的主题,激发学生学习兴趣。
教学辅助:
1.多媒体教学设备
2.教材与练习题册
3.小组讨论环节
教学反馈:
学生通过课后练习、小组讨论和课堂互动等方式进行自我巩固与反馈,老师及时纠正错误,并指导学生进一步提高逻辑思维能力。
教学延伸:
老师鼓励学生独立思考和解决问题,引导学生进行更深入的逻辑思考,培养学生的创新意
识和数学智力。
第五章 数学概念、命题与问题解决教学[教学目标] 了解数学概念的意义和结构,概念的定义和分类;理解数学概念之间的关系、定义方式、定义的规则以及分类的基本方法和规则,使学生明确数学概念教学的重要性、基本要求,并对概念教学进行若干教法探讨。
[学时] 8[教学方法] 课堂讲解;课外阅读[重点、难点] 数学概念的意义、定义方式和分类的基本方法;定义的规则,分类的规则,概念的限制与概括[教学过程]§5.1 数学概念及其教学一、数学概念(Mathematical Concept)的意义和结构概念是最基本的思维形式的一种,它与其他形式—判断、推理—是有密切联系的。
人们必须先具有关于某事物的概念。
然后才能作出关于某事物的判断、推理。
概念是判断推理的基础。
另一方面,人们通过判断、推理所获得的新认识,又要形成新的较深刻的概念,所以概念又是判断、推理的结晶。
科学史表明:“科学是与概念并肩成长起来的”。
概念具有如此重要的作用,我们在学习和数学过程中必须十分重视对概念的理解和掌握。
1、数学概念的意义[引题]师问:“等式12)1(22++=+x x x 是不是方程?”生答:“不是。
”“为什么?”“因为这个等式是个恒等式,不论x 取什么数,等式都成立,可以这个等式不是方程。
”师问:“什么叫方程?”生答:“含有未知数的等式叫做方程。
”师问:“等式12)1(22++=+x x x 含有未知数吗?”生答:“含有未知数x ,这是方程。
原来我认为含有未知数的恒等式不是方程,这是不对的。
”师问:“既然这个等式是方程,那么,这个方程有多少根?”生答:“有无穷多解。
”师问:“对。
有的方程有有限个解,例如:x +1=0只有一个解;有的方程无解,例如: 012=+x 在实数范围内无解;有的方程有无穷多解,方程12)1(22++=+x x x 就是一例。
”——以上对话是教师在引导学生明确“方程”这个概念的内涵与外延。
什么是概念的内涵和外延?先从“概念”谈起。
初中数学命题的试讲教案教学目标:1. 理解命题的概念和构成要素;2. 学会如何表述一个完整的命题;3. 掌握命题的逆否关系和真假判断;4. 能够运用命题的知识解决实际问题。
教学重点:命题的概念和构成要素,命题的逆否关系和真假判断。
教学难点:命题的逆否关系和真假判断。
教学准备:黑板、粉笔、教学PPT。
教学过程:一、导入(5分钟)1. 引导学生回顾小学学过的数学知识,如加减乘除、几何图形等;2. 提问:这些知识都是通过什么方式来表达的?(答案:公式、定理、法则等);3. 引出本节课的主题:命题。
二、新课讲解(15分钟)1. 讲解命题的概念:命题是用来描述数学对象之间关系的语句;2. 讲解命题的构成要素:题设和结论。
题设是已知事项,结论是由已知事项推出的事项;3. 举例说明如何表述一个完整的命题;4. 讲解命题的逆否关系:逆否命题是将原命题的题设和结论都取反得到的命题;5. 讲解命题的真假判断:真命题是指命题的题设和结论都为真;假命题是指命题的题设和结论有假;6. 举例说明如何判断一个命题的真假。
三、课堂练习(15分钟)1. 让学生独立完成教材上的练习题;2. 引导学生互相讨论,共同解决问题;3. 教师选取部分学生的作业进行讲解和点评。
四、总结与拓展(5分钟)1. 总结本节课所学的内容,让学生明确命题的概念、构成要素、逆否关系和真假判断;2. 提问:命题的知识如何应用到实际问题中?引导学生思考和探讨;3. 拓展学习:让学生课后查阅相关资料,了解命题在其他学科中的应用。
教学反思:本节课通过讲解和练习,使学生掌握了命题的概念、构成要素、逆否关系和真假判断。
在教学过程中,要注意引导学生积极参与课堂活动,提高学生的动手能力和思维能力。
同时,要关注学生的学习情况,及时发现和解决学生遇到的问题。
在课后,要鼓励学生进行拓展学习,提高学生的自主学习能力。
教学设计案例:数学命题的教学学习目标:学生能够理解和解答数学命题,包括判断命题的真假和证明命题的方法。
教学步骤:引入:通过一个具体的例子引入数学命题的概念。
例如,假设有命题:“如果一个数是偶数,则它的平方也是偶数。
”让学生思考这个命题的真假以及如何判断它的真假。
讨论命题的特点:与学生一起讨论数学命题的特点,包括命题的组成、命题的真假和命题的证明。
解释什么是真命题、假命题和无法判断的命题。
判断命题的真假:给学生一些简单的命题,让他们使用自己的数学知识和推理能力判断命题的真假。
鼓励学生提供解释和推理的过程。
证明命题的方法:介绍一些常见的数学证明方法,如直接证明、间接证明、数学归纳法等。
通过具体的例子演示这些证明方法的应用,引导学生理解证明的过程和思维方式。
练习:提供一系列的练习题,让学生应用所学的知识和方法判断命题的真假并进行证明。
可以根据学生的程度和年级设置适当难度的练习。
总结:总结本节课的学习内容,强调数学命题的重要性和应用价值。
鼓励学生思考数学命题背后的逻辑和推理,培养他们的数学思维能力。
扩展活动:鼓励学生设计自己的数学命题并进行判断和证明。
提供更复杂的命题和证明问题,挑战学生的思维和解决问题的能力。
探讨数学命题在实际生活中的应用,如数学推理在科学研究中的作用等。
评估方法:教师观察学生在课堂上的参与和回答问题的能力。
批改学生的练习题和作业,评估他们对数学命题的理解和应用能力。
进行小组或个人项目展示,评估学生在设计和解答数学命题方面的表现。
通过这样的教学设计,学生将能够理解数学命题的概念,学会判断命题的真假和运用证明方法解决问题。
同时,培养了学生的逻辑思维、推理能力和问题解决能力,提高他们的数学素养和学习能力。
高中数学命题形式分析教案
教学目标:
1.理解数学命题的概念和分类。
2.掌握数学命题的逻辑联结词和逻辑运算。
3.能够准确分析和解决数学问题中的命题形式。
教学重点:
1.数学命题的定义和分类。
2.逻辑联结词的使用和理解。
3.逻辑运算的应用和分析。
教学难点:
1.命题形式分析的推理过程。
2.命题逻辑运算的综合运用。
教学过程:
一、导入(5分钟)
介绍数学命题的概念和重要性,引导学生思考数学问题中的命题形式。
二、讲解(15分钟)
1.数学命题的定义和分类。
2.逻辑联结词的种类及含义。
3.逻辑运算的常见形式和规则。
三、练习(20分钟)
1.学生进行命题分析练习,理解命题形式的逻辑关系。
2.学生尝试推理和解答具体数学问题中的命题形式。
四、讨论(10分钟)
学生就练习中遇到的问题进行讨论和交流,互相学习和分享解题思路。
五、总结(5分钟)
复习本节课的知识点,强化学生对数学命题的理解和应用能力。
六、作业布置(5分钟)
布置相关练习作业,巩固学生对数学命题的掌握和应用。
教学评价:
通过学生的课堂表现和作业成绩,评价学生对数学命题形式分析的理解和应用水平,及时调整教学方式和提高教学效果。
命题教学设计方案(二)_七年级数学教案教学目标1.使学生了解命题、真命题和假命题等概念.2.使学生了解几何命题是由“题设”和“结论”两部分组成.能够初步区分命题的题设和结论,或把命题改写成“如果……,那么……”的形式重点和难点分清命题的题设和结论,既是教学的重点又是教学的难点.教学过程一、引入请大家随意说出一些语句,教师把它们写在黑板上.如:(1)对顶角相等吗?(2)作一条线段AB=2cm;(3)我爱初二(1)班;(4)两直线平行,同位角相等;(5)相等的两个角,一定是对顶角.二、新课问:上述语句中,哪些是判断一件事情的句子?答:(3)、(4)、(5)是判断一件事情的句子.教师指出:判断是对事物进行肯定或否定的一种思维形式,判断一件事情的句子,叫做命题.数学课堂里,只研究数学命题,如(4)、(5).例1 请大家说出若干个(数学)命题,再分析一下,每一个命题由几部分组成?(1)等角的补角相等;(2)有理数一定是自然数;(3)内错角相等两直线平行;(4)如果a是有理数,那么a2>a;(5)每一个大于4的偶数都可以表示成两个质数之和(即著名的哥德巴赫猜想).教师启发学生得出:一个命题,由题设和结论两部分组成,都可以写成“如果……,那么……”的形式,也可以简称为“若A则B”.练习:把上述(1)至(5),都按“如果……,那么……”的形式,表述一遍.例2 在例1的(1)至(5)个命题中,所作的判断是否都正确?怎么检验各个命题的真伪?如果两个角是等角的补角,那么这两个角相等.”是正确的命题,已经由补角的定义(l)“得到证明.(2)“如果是有理数,那么它一定是自然数”。
是不正确的命题(判断),反例如是有理数但不是自然数。
(3)“如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.”是正确的命题,已证.(4)“如果a是有理数,那么a2>a.”是不正确的命题,反例如a=1,a2=a.(5)“如果是一个大于4的偶数,那么它可以表示成两个质数之和.”这个命题,至今没人举出一个反例,说明它不正确;也没有人完全证明它正确.我国著名数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”,即已经证明了1+2”,离“ 1+1”这颗数学王冠上的珍珠,只差“一步之遥”.这是目前世界上对这个命题的“ 真伪的判定,所能达到的最好结果.教师帮助学生归纳:命题既然是一个判断,就有判断是否正确的区别.真命题---如果题设成立那么结论一定成立,这样的命题叫做真命题.假命题---如果题设成立,不能保证结论总是成立,也就是说结论不成立,这样的命题叫做假命题.注意:不是命题与假命题的区别!怎样判断一个命题的真假?检验真理的唯一标准是实践.数学中,判断一个命题是真命题,要经过证明(或以公理形式,即由实践证明的形式出现);判断一个命题是假命题,只需举出一个反例即可.例 3 试将下列各个命题的题设和结论相互颠倒或变为否定式,得到新的命题,并判断这些命题的真假.(1)对顶角相等;(2)两直线平行,同位角相等;(3)若a=0,则ab=0;(4)两条直线不平行,则一定相交;(5)凡相等的角都是直角.解:(l)对顶角相等(真);相等的角是对顶角(假);不是对顶角不相等(假);不相等的角不是对顶角(真).(2)两直线平行,同位角相等(真);同位角相等,两直线平行(真);两直线不平行,同位角不相等(真);同位角不相等,两直线不平行(真).(3)若a=0,则ab=0(真);若ab=0,则a=0(假);若a≠0,则ab≠0(假);若ab≠0,则a≠0(真).(4)两条直线不平行,则一定相交(假);两条直线相交,则一定不平行(真);两条直线平行,则一定不相交(真);两条直线不相交,则一定平行(假).(注)本小题如果添上“在同一平面内”的大前提条件,那么假命题将变为真命题.(5)凡相等的角都是直角(假);凡直角都相等(真);凡不相等的角不都是直角(真);凡不都是直角的角不相等(假).说明:本例,尤其是第(5)小题,视学生接受情况,教师灵活掌握.讲还是不讲,讲到什么程度,介不介绍四种命题(原、逆、否、逆否),都有较大的伸缩性.小结:命题---判断一件事情的句子;命题的结构---;如果(题设)……,那么(结论)……;命题的真假---正确或错误的判断;四种命题---原、逆、否、逆否.(用投影片显示或挂小黑板)三、作业1.在下列语句中,指出哪些是命题,哪些不是命题.如果是命题,指出命题的真假,并仿照例3说出一些新的命题来.(l)如果AB⊥CD于O,那么∠AOC=90°;(2)取线段AB的中点C;(3)两条直线相交,有且只有一个交点;(4)一个平角的度数是180°;(5)若a=b,则a2=b2;(6)如果一个数的末位数字是0,那么它一定能够被5整除;(7)同角的余角相等;(8)周角的一半等于直角.2.选作题判断命题“如果n是自然数,那么n2+n+17是质数”的真假.在这节课的前一部分学习了名数、单名数、复名数的概念。
定义、命题、证明(1)教学目标1、知识与技能:了解命题、定义的含义;对命题的概念有准确的理解。
会区分命题的条件和结论。
重点与难点 1、重点:找出命题的条件(题设)和结论。
2、难点:命题概念的理解。
教学过程一、复习引入教师:我们已经学过一些图形的特性,如“三角形的内角和等于180度”,“等腰三角形两底角相等”等。
根据我们已学过的图形特性,试判断下列句子是否准确。
1、如果两个角是对顶角,那么这两个角相等;2、两直线平行,同位角相等;3、同旁内角相等,两直线平行;4、平行四边形的对角线相等;5、直角都相等。
二、探究新知(一)命题、真命题与假命题学生回答后,教师给出答案:根据已有的知识能够判断出句子1、2、5是准确的,句子3、4水错误的。
像这样能够判断出它是准确的还是错误的句子叫做命题。
教师:在数学中,很多命题是由题设(或已知条件)、结论两部分组成的。
题设是已知事项;结论是由已知事项推出的事项,这样的命题常可写成“如果.......,那么.......”的形式。
用“如果”开始的部分就是题设,而用“那么”开始的部分就是结论。
例如,在命题1中,“两个角是对顶角”是题设,“这两个角相等”就是结论。
有的命题的题设与结论不十分明显,能够将它写成“如果.........,那么...........”的形式,就能够分清它的题设和结论了。
例如,命题5可写成“如果两个角是直角,那么这两个角相等。
”(二)实例讲解1、教师提出问题1(例1):把命题“三个角都相等的三角形是等边三角形”改写成“如果.......,那么.......”的形式,并分别指出命题的题设和结论。
学生回答后,教师总结:这个命题能够写成“如果一个三角形的三个角都相等,那么这个三角形是等边三角形”。
这个命题的题设是“一个三角形的三个角都相等”,结论是“这个三角形是等边三角形”。
2、教师提出问题2:把下列命题写成“如果.....,那么......”的形式,并说出它们的条件和结论。