对称平移旋转知识点
- 格式:doc
- 大小:853.01 KB
- 文档页数:13
平移旋转与对称平移、旋转和对称是几何学中常见的变换形式,在数学中有着重要的应用和研究价值。
本文将介绍平移、旋转和对称的基本概念、性质以及它们之间的关系。
一、平移平移是指将一个图形在平面上沿着某个方向移动一定的距离,移动后的图形与原来的图形形状完全相同。
我们可以通过向量来描述平移。
设有平面上的一点A,平移的向量为v,则A点平移后得到的点A'可表示为A + v。
简单来说,平移是保持形状不变的移动。
平移的性质:1. 平移不改变图形的形状和大小,只改变图形的位置。
2. 平移保持图形上的任意两点之间的距离和夹角不变。
3. 平移具有可逆性,即可以通过反向平移将图形移回原来的位置。
二、旋转旋转是指将一个图形绕着某个点或某条线旋转一定的角度,使得旋转后的图形在形状上与原来的图形相似。
我们可以通过旋转矩阵来描述旋转变换。
设有平面上的一点A,绕O点逆时针旋转θ度后得到的点A'可表示为:[x' y'] = [cosθ -sinθ] [x - x0] + [x0][y - y0]其中(x0, y0)为旋转中心坐标。
旋转的性质:1. 旋转不改变图形的大小,只改变图形的位置和方向。
2. 绕同一个点旋转的图形之间的大小和形状相似。
3. 旋转保持图形上的任意两点之间的距离和夹角不变。
4. 旋转也具有可逆性,即可以通过逆时针旋转将图形旋转回原来的位置。
三、对称对称是指将一个图形中的点绕着一个轴进行翻转,使得翻转后的图形与原来的图形完全重合。
我们可以通过对称轴来描述对称变换。
设有平面上的一点A,关于对称轴l对称后得到的点A'可表示为A' = 2l - A。
简单来说,对称是保持形状不变的镜像变换。
对称的性质:1. 对称不改变图形的大小和方向,只改变图形的位置。
2. 关于直线对称的图形之间的大小和形状完全相同。
3. 对称保持图形上的任意两点关于对称轴的距离不变。
4. 对称具有可逆性,即可以通过再次对称将图形还原到原来的位置。
旋转平移和轴对称的知识点
嘿,朋友!今天咱来好好唠唠旋转、平移和轴对称这些超有意思的知识点!
先说旋转吧,你就想象一下,一个东西像个小陀螺一样围着一个中心点转圈,这就是旋转啦!比如说,家里的电风扇在呼呼转,那就是在做旋转运动呀!旋转可是有角度的哦,转多少度可是很关键的呢!
平移呢,就好像一个小玩具车在直直地往前跑,没有拐弯,也没有转圈,就是平平地移动。
就像你在操场上笔直地向前走,这就是平移呀!教室里的桌子从这边挪到那边,也是平移呢!
接下来就是轴对称啦!哎呀呀,这就像是有个神奇的镜子,能把一个东西分成两边,两边完全对称,可神奇啦!你看,蝴蝶的翅膀不就是轴对称的嘛!
旋转、平移和轴对称在生活中可到处都是呢!它们可不只是书本上的知识哟!你想想看,那些漂亮的图案、建筑,不都有它们的功劳嘛!它们就像隐藏在生活中的小魔法,让一切变得更有趣、更有秩序!难道不是吗?所以呀,好好了解它们,会发现好多好玩的东西呢!。
新人教版初中数学——图形的轴对称、平移与旋转知识点归纳及中考典型题解析一、轴对称图形与轴对称轴对称图形轴对称图形定义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性质对应线段相等AB=ACAB=A′B′,BC=B′C′,AC=A′C′对应角相等∠B=∠C∠A=∠A′,∠B=∠B′,∠C=∠C′对应点所连的线段被对称轴垂直平分区别(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴关系(1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤(1)过已知点作已知直线(对称轴)的垂线,标出垂足;(2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤(1)作出图形的关键点关于这条直线的对称点;(2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素一是平移的起点,二是平移的方向,三是平移的距离.3.性质(1)平移前后,对应线段平行且相等、对应角相等;(2)各对应点所连接的线段平行(或在同一条直线上)且相等;(3)平移前后的图形全等.4.作图步骤(1)根据题意,确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;(4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素旋转中心、旋转方向和旋转角度.3.性质(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.4.作图步骤(1)根据题意,确定旋转中心、旋转方向及旋转角;(2)找出原图形的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;(4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.考向一轴对称轴对称图形与轴对称的区别与联系区别:轴对称图形是针对一个图形而言,它是指一个图形所具有的对称性质,而轴对称则是针对两个图形而言的,它描述的是两个图形的一种位置关系,轴对称图形沿对称轴对折后,其自身的一部分与另一部分重合,而成轴对称的两个图形沿对称轴对折后,一个图形与另一个图形重合.联系:把成轴对称的两个图形看成一个整体时,它就成了一个轴对称图形.典例1第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行,全国上下掀起喜迎冬奥热潮,下列四个汉字中是轴对称图形的是A.B.C.D.【答案】A【解析】A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选A.1.下列图形中不是轴对称图形的是A.B.C.D.考向二平移1.平移后,对应线段相等且平行,对应点所连的线段平行(或共线)且相等.2.平移后,对应角相等且对应角的两边分别平行或一条边共线,方向相同.3.平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等.典例2下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有A.4个B.3个C.2个D.1个【答案】C【解析】①荡秋千,是旋转,不是平移;②钟摆的摆动,是旋转,不是平移;③拉抽屉时抽屉的运动,是平移;④工厂里的输送带上的物品运动,是平移;故选C.2.下列四组图形都含有两个可以重合的三角形,其中可以通过平移其中一个三角形得到另一个三角形的是A.B.C.D.3.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定考向三旋转通过旋转,图形中的每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等.在旋转过程中,图形的形状与大小都没有发生变化.典例3 如图,在ABC △中,65BAC ∠=︒,以点A 为旋转中心,将ABC △绕点A 逆时针旋转,得AB C ''△,连接BB ',若BB'AC ∥,则BAC '∠的大小是A .15︒B .25︒C .35︒D .45︒【答案】A【解析】∵△ABC 绕点A 逆时针旋转到△AB ′C ′的位置, ∴AB ′=AB ,∠B ′AC ′=∠BAC =65︒, ∴∠AB ′B =∠ABB ′, ∵BB ′∥AC ,∴∠ABB ′=∠CAB =65°, ∴∠AB ′B =∠ABB ′=65°, ∴∠BAB ′=180°–2×65°=50°,∴∠BAC ′=∠B ′AC ′–∠BAB ′=65°–50°=15°, 故选A .4.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是A .36°B .60°C .72°D .90°5.如图将△ABC 绕点A 顺时针旋转90°得到△AED ,若点B 、D 、E 在同一条直线上,∠BAC =20°,则∠ADB的度数为A.55°B.60°C.65°D.70°考向四中心对称识别轴对称图形与中心对称图形:①识别轴对称图形:轴对称图形是一类具有特殊形状的图形,若把一个图形沿某条直线对称,直线两旁的部分能完全重合,则称该图形为轴对称图形.这条直线为它的一条对称轴.轴对称图形有一条或几条对称轴.②中心对称图形识别:看是否存在一点,把图形绕该点旋转180°后能与原图形重合.典例4下列图形中,既是中心对称图形,又是轴对称图形的是A.B.C.D.【答案】B【解析】A、不是中心对称图形,也不是轴对称图形,故此选项错误;B、是中心对称图形,又是轴对称图形,故此选项正确;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、不是中心对称图形,也不是轴对称图形,故此选项错误,故选B.6.下列图形中,△A′B′C′与△ABC成中心对称的是A.B.C.D.1.下列四个图形中,不是轴对称图形的是A.B.C.D.2.已知点A的坐标为(3,–2),则点A向右平移3个单位后的坐标为A.(0,–2)B.(6,–2)C.(3,1)D.(3,–5)3.下列说法中正确的有①旋转中心到对应点的距离相等;②对称中心是对称点所连线段的中点;③旋转后的两个图形的对应边所在直线的夹角等于旋转角;④任意一个等边三角形都是中心对称图形.A.1个B.2个C.3个D.4个4.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格5.如图,已知菱形OABC的顶点O(0,0),B(–2,–2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为A.(1,–1)B.(–1,–1)C.(1,1)D.(–1,1)6.在菱形ABCD中,AB=2,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B’始终落在边CD上,则A、E两点之间的最大距离为__________.7.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=__________°.8.如图所示,直线EF过平行四边形ABCD对角线的交点O,且分别交AD、BC于E、F,那么阴影部分的面积是平行四边形ABCD面积的____.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α=__________°.10.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为__________; (2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为__________; (3)画出△ABC 绕O 点顺时针方向旋转90°得到的△A 3B 3C 3,并求点C 走过的路径长.11.如图,在ABC △中,D 为BC 上任一点,DE AC ∥交AB 于点E DF AB ,∥交AC 于点F ,求证:点E F ,关于AD 的中点对称.12.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.13.如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合,连接CE.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状.(3)若∠ACE=20°,求∠AEC的度数.1.下列四个图形中,可以由下图通过平移得到的是A.B.C.D.2.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5)B.(5,1)C.(2,4)D.(4,2)3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1)B.(1,0)C.(–1,0)D.(3,0)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°5.如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.216.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于A.2 B.3 C.4 D.3 27.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为A.4 B.25C.6 D.268.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB 绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是__________.9.如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,点D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为__________cm.10.如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.11.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).12.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O 逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.13.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.变式拓展1.【答案】A【解析】A.不是轴对称图形,故本选项符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意.故选A.2.【答案】D【解析】A、可以通过轴对称得到,故此选项错误;B、可以通过旋转得到,故此选项错误;C、可以通过轴对称得到,故此选项错误;D、可通过平移得到,故此选项正确;故选D.3.【答案】C【解析】由平移的性质可知,甲、乙两只蚂蚁的行走的路程相同,且两只蚂蚁的速度相同,所以两只蚂蚁同时到达,故选C.4.【答案】C【解析】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.5.【答案】C【解析】∵将△ABC绕点A顺时针旋转90°得到△AED,∴∠BAC=∠DAE=20°,AB=AE,∠BAE=90°,∴∠BEA=45°,∵∠BDA=∠BEA+∠DAE=45°+20°,∴∠BDA=65°.故选C.6.【答案】A【解析】A、是中心对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是旋转变换图形,故本选项错误;D、是旋转变换图形,故本选项错误.1.【答案】C【解析】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选C.2.【答案】B【解析】∵将点A(3,–2)向右平移3个单位所得点的坐标为(6,–2),∴正确答案是B选项.故选B.3.【答案】C【解析】①旋转中心到对应点的距离相等,正确;②对称中心是对称点所连线段的中点,正确;③旋转后的两个图形的对应边所在直线的夹角等于旋转角,正确;④任意一个等边三角形都是中心对称图形,错误.说法正确的有3个,故选C.4.【答案】D【解析】根据图象,△ABC 绕着点A 逆时针方向90°旋转与△DEF 形状相同,向右平移6格就可以与△DEF 重合.故选D . 5.【答案】C【解析】菱形OABC 的顶点O (0,0),B (–2,–2), 得D 点坐标为(022-,022-),即(–1,–1). 每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360°=7.5周, OD 旋转了7周半,菱形的对角线交点D 的坐标为(1,1); 故选C . 6.【答案】23-【解析】如图,作AH ⊥CD 于H .∵四边形ABCD 是菱形,∠BAD =120°, ∴AB ∥CD ,∴∠D +∠BAD =180°, ∴∠D =60°, ∵AD =AB =2,∴AH =AD ·sin60°3= ∵B ,B ′关于EF 对称, ∴BE =EB ′,当BE 的值最小时,AE 的值最大,根据垂线段最短可知,当EB ′3AH ==时,BE 的值最小, ∴AE 的最大值=23, 故答案为:23. 7.【答案】55【解析】∵1110∠=︒,纸条的两边互相平行,∴3180118011070.∠=︒-∠=︒-︒=︒根据翻折的性质,()()1121803180705522∠=⨯︒-∠=⨯︒-︒=︒.故答案为:55. 8.【答案】14【解析】根据中心对称图形的性质,得AOE COF △≌△,则阴影部分的面积等于BOC △的面积,为平行四边形ABCD 面积的14.故答案为:14. 9.【答案】22【解析】如图,∵21112∠=∠=︒(对顶角相等),∴336090211268.∠=-⨯︒-=︒︒︒ ∴'906822BAB ∠=-=︒︒︒,∴旋转角'22.BAB α∠=∠=︒故答案为:22.10.【解析】(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为(2,–3).(2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为(3,1). (3)将△ABC 绕O 点顺时针方向旋转90°,则点C 走过的路径长=90π2180=π.11.【解析】如图,连接EF 交AD 于点O .DE AC ∥交AB 于E DF AB ,∥交AC 于F ,∴四边形AEDF 是平行四边形, ∴点E F ,关于AD 的中点对称.12.【解析】(1)如图所示:(2)如图所示:'''A B C △即为所求:C '的坐标为()55-,; (3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=, ∴ABC △是直角三角形.13.【解析】(1)∵∠BAC =40°,∴∠BAD =140°,∴△ABC 旋转了140°.(2)由旋转的性质可知AC =AE ,∴△AEC 是等腰三角形. (3)由旋转的性质可知,∠CAE =∠BAD =140°,又AC =AE , ∴∠AEC =(180°–140°)÷2=20°.1.【答案】D【解析】∵只有D 的图形的形状和大小没有变化,符合平移的性质,属于平移得到; 故选D . 2.【答案】B【解析】将点(2,1)向右平移3个单位长度,则所得的点的坐标横坐标增加3,即(5,1).故选B . 3.【答案】【解析】由点A (2,1)平移后所得的点A 1的坐标为(–2,2),可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B 的对应点B 1的坐标为(–1,0).故选C . 4.【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C . 5.【答案】C【解析】由折叠可得,∠ACD =∠ACE =90°,∴∠BAC =90°, 又∵∠B =60°,∴∠ACB =30°,∴BC =2AB =6,∴AD =6,直通中考由折叠可得,∠E =∠D =∠B =60°,∴∠DAE =60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选C . 6.【答案】B【解析】∵S △ABC =16.S △A ′EF =9,且AD 为BC 边的中线,∴S △A ′DE =12S △A ′EF =92,S △ABD =12S △ABC =8, ∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ',∴A ′E ∥AB ,∴△DA ′E ∽△DAB , 则2()A'DE ABD S A'D AD S =△△,即299()1816A'D A'D ==+,解得A ′D =3或A ′D =﹣37(舍),故选B . 7.【答案】D【解析】∵△ADE 绕点A 顺时针旋转90°到△ABF 的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,∴AD =DC =2,∵DE =2,∴Rt △ADE 中,AE =22AD DE +=26,故选D .8.【答案】(﹣2,﹣23) 【解析】作BH ⊥y 轴于H ,如图,∵△OAB 为等边三角形,∴OH =AH =2,∠BOA =60°,∴BH =3OH =23,∴B 点坐标为(2,23), ∵等边△AOB 绕点O 顺时针旋转180°得到△A ′OB ′, ∴点B ′的坐标是(﹣2,﹣23). 故答案为:(﹣2,﹣23). 9.【答案】10–26【解析】如图,过点A 作AG ⊥DE 于点G ,由旋转知:AD =AE ,∠DAE =90°,∠CAE =∠BAD =15°,∴∠AED =∠ADG =45°,在△AEF 中,∠AFD =∠AED +∠CAE =60°,在Rt △ADG 中,AG =DG =2AD =32, 在Rt △AFG 中,GF =3AG =6,AF =2FG =26,∴CF =AC –AF =10–26, 故答案为:10–26.10.【答案】23–2【解析】根据旋转过程可知:∠CAD =30°=∠CAB ,AC =AD =4.∴∠BCA =∠ACD =∠ADC =75°.∴∠ECD =180°–2×75°=30°.∴∠E =75°–30°=45°.过点C 作CH ⊥AE 于H 点,在Rt △ACH 中,CH =12AC =2,AH =23. ∴HD =AD –AH =4–23.在Rt △CHE 中,∵∠E =45°,∴EH =CH =2.∴DE =EH –HD =2–(4–23)=23–2.故答案为3–2.11.【解析】(1)如下图所示,点A 1的坐标是(–4,1);(2)如下图所示,点A 2的坐标是(1,–4);(3)∵点A (4,1),∴OA 221417+=∴线段OA 290(17)⨯π⨯=174π.12.【解析】(1)∵对角线AC的中点为O,∴AO=CO,且AG=CH,∴GO=HO,∵四边形ABCD是矩形,∴AD=BC,CD=AB,CD∥AB,∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA,∴△COF≌△AOE(ASA),∴FO=EO,且GO=HO,∴四边形EHFG是平行四边形;(2)如图,连接CE,∵∠α=90°,∴EF⊥AC,且AO=CO,∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9–AE)2+9,∴AE=5.13.【解析】(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=12(180°–30°)=75°,∴∠ADE=90°–75°=15°;(2)如图2,∵点F是边AC中点,∴BF=12 AC,∵∠ACB=30°,∴AB=12AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.。
生活中的平移旋转和对称图形的相似Ⅰ.考点透视一、生活中的平移、旋转和对称 1.平移(平移的概念与性质)例1、如图,由11个面积为6的等边三角形按下列方式排列,它们都有一边在同一直线上,每个三角形底边的中点恰为下一个三角形的一个顶点. (1)请说一说该图案的形成过程;(2)由这11个三角形所盖住的平面区域的面积是 。
2.旋转(旋转的概念与性质)例2、如图所示,O 是锐角三角形ABC 内一点,∠AOB =∠BOC =∠COA =120°,P 是ΔABC 内不同于O 的另一点; ΔA 1BO 1、ΔA 1BP 1分别由ΔAOB ,ΔAPB 旋转而得,旋转角都为60°,则下列结论:①ΔO 1BO 为等边三角形,且A 1、O 1、O 、C 在一条直线上;②A 1O 1+O 1O =AO +BO ;③A 1P 1+PP 1=PA +PB ;④PA +PB +PC>OA +OB +OC 。
其中正确的有 (填序号).3.对称(1)轴对称与轴对称图形(概念与性质)例3、已知∠MON=40°,P 为∠MON 内一定点,OM 上有一点A ,ON 上有一点B ,当△PAB 的周 长取最小值时,求∠APB 的度数.(2)中心对称(概念与性质)例4、下列图形中,一定不是中心对称图形的是( )A.至少旋转30°后才与自身重合B.至少旋转60°后才与自身重合C.至少旋转90°后才与自身重合D.、至少旋转120°后才与自身重合 二、图形的相似 1.比例的性质2.相似三角形(概念、判定与性质)3.位似图形例5、在如图所示的方格纸中,每个小正方形的边长差不多上1,若一个三角形的每个顶点都在小正方形的顶点上,则称那个三角形为格点三角形,请你在方格纸中任意画出两个相似但不全等的格点钝角三角形。
例6、假如正方形的一边落在三角形的一边上,其余两个顶点分别在三角形的另外两条边上,则如此的正方形叫做三角形的内接正方形。
第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。
平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。
知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。
旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。
注意:旋转分为顺时针旋转和逆时针旋转。
知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。
轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。
三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。
A.B.C.D.2.在括号中填“平移”或“旋转”。
(1)小明进教室开门时,门的运动是()。
(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。
(3)小红拉开窗帘,窗帘的运动是()。
(4)老师将课桌拖到最后一排,桌子的运动是()。
3.观察下面的图形,然后填空。
(1)小汽车向()平移了()格。
(2)小船向()平移了()格。
(3)飞机向()平移了()格。
4.如图所示。
(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。
(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。
A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。
7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。
用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。
观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。
一、轴对称1、轴对称图形概念轴对称图形:一个图形如果沿某条直线对折,对折后的两部分能完全重合,那么就称这样的图形为轴对称图形,这条直线叫作这个图形的对称轴.注:错误!对称轴是一条直线,不是线段,也不是射线.错误!一个轴对称图形的对称轴可以有一条,也可以有多条.错误!判断图形是不是轴对称图形的方法是折叠法,关键是看对折后的两部分能否完全重合.2、轴对称的概念把一个图形沿着某一条线直线翻折过去,如果它能够与另一个图形完全重合,那么就说这两个图形成轴对称,这条直线就是对称轴,两个图形的对应点叫作对称点.注:错误!对应点指两个图形重合时互相重合的点.错误!成轴对称的两个图形能够完全重合,这两个图形的形状和大小是相同的.错误!成轴对称是指两个图形某条直线成轴对称,只有一条对称轴.3、轴对称图形的性质轴对称图形或成轴对称的两个图形沿对称轴对折后的两部分是完全重合的,所以轴对称图形或成轴对称的两个图形的对应线段对折后重合的线段相等,对应角对折后重合的角相等.注:错误!轴对称图形或成轴对称的两个图形,如果对应线段或对应线段的延长线相交,那么交点在对称轴上.对应点的连线垂直于对称轴并且被对称轴分成相等的两部分.错误!成轴对称的两个图形的面积也相等.4、线段和角的轴对称性错误!线段是轴对称图形.把垂直并且平分一条线段的直线称为这条线段的垂直平分线.错误!角是轴对称图形,对称轴是它的角平分线所在的直线注:角平分线是一条射线,三角形的角平分线是一条线段,而角是轴对称图形,对称轴是角的平分线所在的直线.5、画图形的对称轴图形对称轴画法:错误!找出轴对称图形的任意一组对称点;错误!连接这组对称点;错误!画出对称点所连接线段的垂直平分线,这条垂直平分线就是该轴对称图形的对称轴.轴对称图形的性质:如果一个图形是轴对称图形,那么连接对称点的线段的垂直平分线就是该图形的对称轴.注:错误!画出轴对称图形的对称轴,关键是选取一些对称点如线段的端点、角的顶点,然后画对称点连线的垂直平分线.错误!轴对称图形的对称轴是一条直线,有时不只一条,甚至有无数条,如圆.6、画轴对称图形错误!先观察已知图形,并确定能代表已知图形的关键点;错误!分别作出这些关键点对称轴的对称点;错误!根据已知图形连接这些对称点,即可得到与已知图形成轴对称图形.二、平移1、平移的概念平面图形在平面上沿着一定的方向移动一定的距离,这种图形的平行移动称为平移;图形上每个点都沿同一个方向移动相同的距离;平移的方向:任意一对对应点从始点到终点的方向都可以看成平移的方向.平移的距离:连接任意一对对应点的线段长度都可以表示平移的距离对应点:平移前后,互相重合的点称为对称点;对应线段:平移前后,互相重合的线段称为对应线段;对应角:平移前后,互相重合的角称为对应角.注:错误!平移的前提示图形沿直线运动,而不是图形在曲面上沿曲线运动.错误!平移由平移的方向和距离决定.错误!平移可以是左右平移,也可以是上下平移,还可以按任意指定的方向对图形进行平移.错误!找平移图形的对应元素的关键是找对应点,由对应点确定对应角、对应线段.2、平移的特征平移特征:平移前后,图形的形状和大小不变,只是位置发生变化.对应点:对应点所连的线段平行或在同一条直线上且相等.对应角:对应角相等,对应角的两边分别平行或共线且方向一致.对应线段:对应线段平行或共线且相等.注:错误!对应线段、对应角必须在平移前后的两个图形中去找.错误!平移过程中,对应线段有可能在同一条直线上,对应点的连线也有可能在同一条直线上.错误!对应点所连的线段与对应线段不同.3、平移作图平移作图条件:1图形原来的位置;2平移方向;3平移距离平移步骤:1分析题目要求,找出平移方向和平移距离;2分析图形,找出构成图形的关键点;3沿一定的方向与距离平移各个关键点,确定关键点的对应点; 4顺次连接所作的各个对应点,并标上相应字母.5写出结论注:错误!图形上的每个点、每条线段平移的方向与距离一致的,所以确定图形的平移方向与距离,只要选择容易确定的一对对应点或一对对应线段即可.错误!作图过程要细心、认真,使作出的图形美观、正确.。
理解小学数学中的平移旋转对称的概念平移、旋转和对称是小学数学中重要的概念,通过理解这些概念,孩子们可以更好地理解和应用数学知识。
本文将介绍平移、旋转和对称的定义和性质,以及如何在小学数学教学中有效地教授这些概念。
一、平移的概念平移是指将一个图形在平面上沿着某个方向移动一定距离后所得到的新图形。
平移可以保持图形的大小、形状和方向不变,只改变其位置。
例如,我们可以将一个矩形沿着水平方向平移三个单位长度,得到一个新的矩形。
平移的性质:1. 平移前后图形的大小、形状和方向不变。
2. 平移是可逆的,即可以通过反向的平移将图形还原到原来的位置。
3. 平移后图形上的点与平移向量的关系是平行的。
在教学中,可以通过使用平移变换工具或手工制作的图形进行实际操作和观察,帮助学生理解平移的概念和性质。
二、旋转的概念旋转是指将一个图形绕着一个点旋转一定角度后所得到的新图形。
旋转可以保持图形的大小、形状和方向不变,只改变其位置。
例如,我们可以将一个三角形绕着一个定点顺时针旋转90度,得到一个新的三角形。
旋转的性质:1. 旋转前后图形的大小、形状和方向不变。
2. 旋转是可逆的,即可以通过反向的旋转将图形还原到原来的位置。
3. 旋转后图形上的点与旋转中心点的距离不变。
在教学中,可以使用旋转工具或手工制作的图形进行实际操作和观察,帮助学生理解旋转的概念和性质。
三、对称的概念对称是指一个图形中存在一个中心轴,图形中的点关于该中心轴对称。
对称可以分为镜像对称和旋转对称两种情况。
镜像对称是指图形绕中心轴对称,旋转对称是指图形绕中心点旋转180度后与自身重合。
对称的性质:1. 对称图形上的每个点关于对称轴对称的点在对称图形上也存在。
2. 对称是可逆的,即一个对称图形经过对称操作后可以还原到原来的位置。
在教学中,可以使用镜子或手工制作的图形进行实际操作和观察,帮助学生理解对称的概念和性质。
总结:通过对平移、旋转和对称的定义和性质的理解,孩子们可以更好地掌握这些概念,并在解决数学问题时灵活运用。
第一单元平移、旋转和轴对称(知识清单)(思维导图+知识盘点+易错攻略+典例精讲+巩固培优)知识点一:图形的平移1、平移的特点和方法。
在平面内,将一个图形沿着某个方向移动一定的距离,叫图形的平移。
平移的距离是物体某个点到移动后相应的点的距离,而不是两个物体间的距离。
图形平移的距离可以通过平移点或线段来确定平移了几格。
2、图形平移的两个关键要素。
平移的方向和平移距离。
3、在方格纸上画简单图形平移后的图形的方法。
(1)找出原图形中具有代表性的点(或线段)。
(2)将原图形各点(或线段)按要求平移。
(3)把平移后的点(或线段)顺次连接。
知识点二:图形的旋转1、旋转方向。
与时针旋转方向相同的是顺时针旋转,相反的是逆时针旋转。
2、旋转的三要素。
旋转中心、旋转方向和旋转角度。
注意旋转中心在选举逆转过程中是保持不动的。
3、在方格纸上画简单图形旋转90°后的图形的方法。
(1)确定旋转中心和关键线段。
(2)绕着旋转中心,根据旋转方向和旋转角度,画出旋转后的对应线段,注意与原线段长度相等。
(3)顺次连接所画线段的端点。
知识点三:轴对称图形1、把一个图形对折,折痕两边完全重合的图形是轴对称图形,折痕所在的直线就是这个图形的对称轴。
2、要画轴对称图形的另一半,先要找到对称轴,想一想图形沿对称轴对折时的另一半的形状,然后找到几个关键点的对称点,如图形的顶点,相交点等对称点,最后顺次连接。
3、对称图形不管是水平方向的对称,还是竖直方向的对称,对称轴两侧相对的点到对称轴的距离都相等。
4、补全一个简单的轴对称图形的方法:(1)确定已知图形的几个关键点,如图形的顶点,相交点,端点等。
(2)数除或量出图形关键点到对称轴的距离。
(3)在对称轴的另一侧找出关键点的对应点。
(4)顺次连接对应点,画出轴对称图形的另一半。
1、图形平移时,形状、大小和自身方向均不发生变化。
2、图形平移的距离是指对应点或对应线段之间的距离,而不是指两个图形之间的距离。
新航道教育四年级寒假培优小册第一章平移、旋转、轴对称平移1、物体在同一平面上沿直线运动,这种现象叫做平移。
注意:平移只是沿水平方向左右移动(×)平移不仅仅局限于左右运动。
2、平移二要素:(1)平移方向;(2)平移距离。
将一个图形平移时,要先确定方向,再确定平移的距离,缺一不可。
3、平移的特征:物体或图形平移后,他们的形状、大小、方向都不改变,只是位置发生改变。
4、在方格纸上平移图形的方法:(1)找出图形的关键点;(2)以关键点为参照点,按指定方向数出平移的格数,描出平移后的点;(3)把各点按原图顺序连接,就得到平移后的图形。
注意:用箭头标明平移方向(→)旋转1、旋转:物体绕某一点或轴的转动。
2、旋转方向:与时针运动方向相同的是顺时针方向;与时针运动方向相反的是逆时针方向;3、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度。
4、图形旋转的特征:图形旋转后,形状、大小都没发生变化,只是位置和方向变了。
5、图形旋转的性质:图形绕某一点旋转一定的角度,图形中的对应点、对应线段都旋转相同的角度,对应点到旋转点的距离相等。
6、旋转的叙述方法:物体是绕哪个点向什么方向旋转了多少度。
7、简单图形旋转90°的画法:(1)找出原图形的关键线段或关键点,借助三角板作关键线段的垂线,或者作关键点与旋转点所在线段的垂线;(2)从旋转点开始,在所作的垂线上量出与原线段相等的长度取点,即所找的点是原图形关键点的对应点;(3)参照原图形顺次连接所画的对应点。
关键线段:水平的、竖直的、过旋转点的线段。
轴对称图形1、将图形沿着一条直线对折,如果直线两侧的部分能够完全重合,这样的图形叫做轴对称图形。
折痕所在的直线叫做对称轴。
注意:对称轴是直线,既不是线段,也不是射线,画时不用实线,用虚线(虚线、尺子、露头)2、轴对称图形性质:对称点到对称轴的距离相等。
3、对称点:轴对称图形沿对称轴对折后,互相重合的点叫做对称点。
4、在方格纸上补全轴对称图形关键:找出所给图形的关键点的对称点,要按照顺序将对称点连接起来。
5、不同的轴对称图形,对称轴的数量也不同,轴对称图形至少有一条对称轴。
图形正方形长方形等腰三角形等边三角形等腰梯形菱形圆形对称轴4条2条1条3条1条2条无数条第一章平移、旋转、轴对称复习题1、下面哪些是平移,哪些是旋转?()()()()()()()()()()()()()()()2、把小房图向右平移4格把金鱼图向左平移3格把火箭图向右平移3格把电脑图向左平移4格把下图先向右平移5格再向上平移3格把图2先向左平移5格再向上平移3格3、4、下面的图案是从哪张纸上剪下来的,请连一连。
5)里打√()()()()()()()()第二章认识多位数1、亿以内数的认识:10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。
整数部分数级…亿级万级个级数位…千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位计数单位…千亿百亿十亿亿千万百万十万万千百十一数字表示……………………1000100100 10 1小结:相邻两个计数单位之间的进率是“十”2、亿以内数的读法:(1)、从高位数读起,一级一级往下读。
(2)、万级的数要按照个级的数的读法来读,再在后面加一个万字。
(3)、每级末尾不管有几个零都不读,其他数位有一个“零”或连续几个“零”,都只读一个“零”。
例:读作:二千四百九十六万6407000 读作:六百四十万七千读作:八千五百万零三佰3、亿以内数的写法:(1)、从高级写起,一级一级往下写。
(2)、当哪一位上一个计数单位也没有,就在哪一位上写0 。
例:三千八百万零七百写作:四百六十六万八千写作:46680004、比较亿以内数的大小(1)、位数多的时候,这个数就比较大。
(2)、当这两个数位数相同的时候,我们就应该从左起的第一位比起,也就是从最高位开始比,哪个数最高位上的数大,这个数就大。
(3)、如果碰到最高位上的数相同的时候,就再比下一位,以此类推,直到我们比较出相同的数位上的那个数,哪个数大的时候,我们就可以断定这个数比较大。
随堂练习一、读一读,写一写(39分)1、读出、写出下面各数。
写作写作写作读作读作读作2、写出横线上的数。
写作写作写作写作3、10个一万是(),10个一百万是()。
4、一个五位数的最高数位是()位。
请写出一个你喜欢的五位()。
5、2个百亿,3个百万和4个百组成的数是()。
6、000是一个()位数,6在()位上,表示6个(),3 在()位上,表示()个()。
7、在○内填上“>”、“<”或“=”。
82006○82600 0○9亿 00○408、用6、7、8、9和三个0组成一个最小的七位数,并且这个数中一个0也不读,这个数是(),省略万后面的尾数是()。
5、“万”做单位的数:有时候,为了读写方便,我们把整万的数改写成有“万”做单位的数。
比如:5200000 可以写成:520万6、求近似数:常见求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数部分的最高位是小于5 还是等于或大于5 。
7、表示物体个数:1 2 3 4 5 6 ……. 自然数一个物体也没有:用0来表示。
0也是自然数。
最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
8、十进制计数法:每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
9、一亿有多大?100张纸的厚度是1厘米,一亿=一百万个100, 1厘米×一百万=1000000厘米=1万米典型例题例1.改写。
(4个0换一个“万”字,将整万的数改写成以“万”作单位的数;8个0换一个“亿”字,将整亿的数改写成以“亿”作单位的数。
)3000000=()万=()万00=()亿000=()亿例2.省略。
四舍五入法求近似数,见到0、1、2、3、4舍;见到5、6、7、8、9入(向前一位进一后省略尾数。
)省略万位后面的尾数,对千位进行四舍五入。
12678≈10000 439807≈440000省略百位后面的位数,对十位进行四舍五入。
12678≈12700 439807≈439800…………是舍还是入,看省略部分的最高位是几。
例3.346709≈()万≈()亿分两步:(1)求近似。
(2)改写。
第二章练习题一、按要求把下面各数改写成以“万”或“亿”作单位的数。
6000000= 万= 亿3900000= 万00= 亿7000000= 万00= 亿二、按要求把下面各数省略万位(或亿位)后面的尾数,求出近似数。
1284639≈万0≈亿1380859≈万0≈亿506400≈万65≈亿999742≈万001≈亿≈万三、在□里填上合适的数。
6□4000≈60万30□0000=300万9□000=10万49□200≈50万40□700≈40万27□700≈27万7□4000≈72万□98000≈50万7□9000≈80万四、拓展。
用1、3、7、9和二个“0”按要求组成数1、省略万后面的尾数约等于14万的数2、省略万后面的尾数约等于13万的数3、省略万后面的尾数约等于40万的数4、省略万后面的尾数约等于90万的数5、省略万后面的尾数约等于18万的数6、省略万后面的尾数约等于74万的数五、□里最大能填几?(11分)74□995≈74万74□9950000≈75亿565050>5□5049365874□021≈365875万9□999998<六.填空。
709□800≈709万□里最大能填( ) 709□800≈710万□里最小能填( )4□□9000000≈4亿□里最小能填( ) 49□0000000≈50亿□里最大能填( )□4988≈8万□里可以填( ) □5001≈8万□里可以填( )七.用“四舍五入”法省略“万”位或“亿”位后面的数。
(1)≈()万(2)0≈()亿(3)0≈()亿(4)0≈( )亿(5)00≈()万≈( )亿(6)7097344≈()万(7)≈()万(8) 0≈()万八.按要求把4个“6”和3个“0”组成七位数。
(1)一个零也不读出来:写作(),读作()。
(2)只读出一个0:写作(),读作()。
(3)读出两个0:写作(),读作()。
(4)三个0都读,写作(),读作()。
九将下列数由小到大排列。
1、54万539000 54000 5402002、0 0 00 003、7053300米、705千米、70533千米、7050000米第三章三位数乘两位数1、三位数乘两位数笔算:先用两位数的个位与三位数相乘,积的末尾与个位对齐;再用两位数的十位与三位数相乘,积的末尾与十位对齐;最后把两次的积相加。
例如:详细过程:649×73=47377 (1)数位对齐:把三位数写在第一行,两位数写在第二行,个位对个位,十位对十位(即3与9,7与4对齐)(2)3×649 3×9=27 在9,3的正下方写7进2,6 4 9 3×4=12 12+2(进位2)=14在4,7的正下方写4进1× 7 3 3×6=18 18+1(进位1)=19在6的正下方写9,在9前面写11 9 4 7 (3)7×649 7×9=63 在4,7,4的正下方写3进6, 4 5 4 3 7×4=28 28+6(进位6)=34在6,9的正下方写4进34 7 3 7 7 7×6=52 42+2(进位2)=44在1的正下方写4,在4前面写4(4)再把两次的积相加:7吊下来,4+3=7,在4,3正下方写7;9+4=13,在9,4正下方写3进1;1+5+1(进位1)=7,在1,5正下方写7;4吊下来。
(5)横式的结果写上。
2、因数中间有0,或因数的末尾有0的乘法:(1)中间有0的乘法:数中间的0也要乘,0乘任何数都得0,还要注意后面有无进位。
(2)末尾有0的乘法:先把0前面的数相乘,再看两个因数的末尾一共有几个0,就在积的末尾加上几个0。
例如:509×45=23905 806×70=56420 450×60=27000509 806 450× 45 × 70 × 602545 56420 270002036239053、积的变化规律:(1)两个数相乘,一个因数不变,另一个因数乘(或除以)几(0除外),积也乘(或除以)几。
例如:16 × 17 = 272 16 × 34 =?想: 17×2=34 所以:272×2=544 即:16×34=644(2)在乘法算式中,当两个因数同时乘(或除以)一个数(0除外),积就要乘(或除以)这个数两次。
例如:46 ×75=3450 (46×2)×(75×2)=3450×2×2=13800(3)在乘法算式中,一个因数乘(或除以)一个数(0除外),另一个因数除以(或乘)相同的数,他们的乘积不变。