基本不等式(第一课时)
- 格式:ppt
- 大小:342.50 KB
- 文档页数:12
基本不等式教学设计(第一课时)阮 晓 锋一、教学目标1.知识与技能目标: 学会推证基本不等式,了解基本不等式的应用。
2.过程与方法目标:通过代数、几何背景探究抽象出基本不等式;3.情感与价值目标:通过学习,体会数学来源于生活,提高学习数学的兴趣。
二、教学重点和难点重点:应用数形结合的思想理解基本不等式,并从不同角度探索其证明过程; 难点:在几何背景下抽象出基本不等式,并理解基本不等式.三、教学过程:1.设置情景,引入新课如图是2002年在北京召开的第24届国际数学家大会会标,会标是根据我国古代数学家赵爽的“弦图”设计的,该图给出了迄今为止对勾股定理最早、最简洁的证明。
探究一:在这张“弦图”中借助面积能找出一些相等关系和不等关系吗?问题1:它们有相等的情况吗?何时相等?结论:一般地,对于正实数a 、b ,我们有ab b a 222≥+当且仅当a=b 时等号成立.2.代数证明,推出结论问题2:你能给出它的代数证明吗?(请同学们用代数方法给出这个不等式的证明.)证明(作差法):∵,当时取等号. (在该过程中,可发现a,b 取值可以是全体实数)问题3:当 a,b 为任意实数时,上式还成立吗?重要不等式:对任意实数a 、b ,我们有ab b a 222≥+(当且仅当a=b 时等号成立)特别地,若a>0且b>0可得ab b a ≥+,即ab b a ≥+2(当且仅当a=b 时等号成立) 基本不等式:若a>0且b>0,则ab b a ≥+2(当且仅当a=b 时等号成立) 深化认识:(1)两个正数的等差中项不小于它们的等比中项.(2)若称2b a +为a 、b 的算术平均数,称ab 为它们的几何平均数,则基本不等式又可叙述为:两个正数的几何平均数不大于它们的算术平均数3.动手操作、几何证明,相见益彰探究二:先将两张正方形纸片沿它们的对角线折成两个等腰直角三角形,再用这两个三角形拼接构造出一个矩形(两边分别等于两个直角三角形的直角边,多余部分折叠).假设两个正方形的面积分别为a 和b (b a >),考察两个直角三角形的面积与矩形的面积,你能发现一个不等式吗?(通过学生动手操作,探索发现)探究三:如图,AB 是圆O 的直径,点C 是AB 上一点,AC=a ,BC=b .过点C 作垂直于AB 的弦DE ,连接AD 、BD .根据射影定理可得:ab BC AC CD =⨯=由于RtCOD 中斜边OD 大于直角边CD ,于是有ab b a ≥+2当且仅当点C 与圆心O 重合时,即a=b 时等号成立. (进一步加强数形结合的意识,提升思维的灵活性)4.应用举例,巩固新知例1.(1)用篱笆围一个面积为100平方米的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短,最短的篱笆是多少?(2)一段长为36米的篱笆围成一个矩形菜园,问这个矩形的长、宽为多少时,菜园的面积最大,最大面积是多少?(通过例1的讲析,总结归纳利用基本不等式求最值问题的特征,实现积与和的转化) 方法:一般地,对于R y x +∈,我们有:(1)若xy=p (p 为定值),则当且仅当a=b 时,x+y 有最小值xy 2; (2)若x+y=s (s 为定值),则当且仅当a=b 时,xy 有最大值2s 41. 上述应用基本不等式求最值的方法可简记为:在“一证、二定、三相等”的前提下有“积定和最小,和定积最大”。
2.2.1等式性质与不等式性质(第一课时)(人教A版普通高中教科书数学必修第一册第二章)一、教学目标1. 能用不等式(组)表示实际问题的不等关系,让学生感受在现实世界和日常生活中存在的不等关系;2. 灵活掌握作差法比较两实数的大小, 提高数学运算能力;3. 通过具体情景, 构建不等式,初步了解数学建模的思想.二、教学重难点1. 将不等关系用不等式表示出来,用作差法比较两个式子大小;2. 在实际情景中建立不等式(组),准确用作差法比较大小.三、教学过程1.用不等式(组)表示不等关系1.1创设情境,引发思考【实际情境】中国“神舟七号”宇宙飞船飞天取得了圆满的成功.我们知道,它的飞行速度(v)不小于第一宇宙速度(记作v2),且小于第二宇宙速度(记作v1).问题1:你能用不等式和不等式组表示下面的不等关系吗?(1)某路段限速40km/h;(2)某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%;(3)三角形的两边之和大于第三边、两边之差小于第三边;(4)连接直线外一点与直线上各点的所有线段中,垂线段最短.【预设的答案】0 <v ≤40;{f≥ 2.5p≥ 2.3%;设△ABC的三条边为a,b,c,则a + b >c ,a – b<c ;设C是直线AB外的任意一点,CD⊥AB于点D,E是直线AB上不同于D的任意一点,连接线段CE,则CD<CE.【设计意图】不等式和不等式组不是凭空产生的,用这些生活实例所蕴含的不等关系抽象出不等式,让学生感受“不等式和不等式组”来简化表达.问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调査,杂志的单价每提高0.1元,销售量就可能减少2000本,如何定价才能使提价后的销售总收入不低于20万元?【活动预设】(1)第一步:审题找出题中数量关系;(2)第二步:根据数量关系构建不等式或者不等式(组).【设计意图】从引例中的具体问题入手,思考指数x的存在性,唯一性和大致范围,为了表示指数,引入对数符号,在具体问题中体验用对数符号表示指数的过程.问题3:如何比较两个实数的大小关系?你能比较(x+2)(x+3)与(x+1)(x+4)的大小关系吗?【活动预设】(1)化简题设中的代数式,观察结构,利用作差法比大小;(2)总结:实数大小的基本事实.教师讲授:如果a-b是正数,那么a>b; 如果a-b等于0,那么a=b;如果a-b是负数,那么a<b.反过来也对.比较大小常用方法: 作差比较法由于(x+2)(x+3)-(x+1)(x+4)=2>0,所以(x+2)(x+3)>(x+1)(x+4).【设计意图】在探究实数大小的基本事实的基础上,总结比较大小的常用方法“作差比大小”.1.2探究典例,理性分析典例1:用一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,要求菜园的面积不小于110 m2,靠墙的一边长为x m.试用不等式表示其中的不等关系.[变条件]本例中,若矩形的长、宽都不能超过11 m,对面积没有要求,则x应满足的不等关系是什么?[变条件]本例中,若要求x∈N,则x可以取哪些值?【活动预设】感受在列不等式的过程中,变量的范围的重要性及不可缺少性.【设计意图】为加强不等式或不等式(组)中变量范围的限制.典例2:已知x>1,比较x3-1与2x2-2x的大小.[变条件]将本例中“x>1”改为“x∈R”,比较x3-1与2x2-2x的大小?【活动预设】感受利用作差法比大小的过程中,变量的范围的重要性.【设计意图】为给学生贯彻分类讨论的数学思想.教师讲授:比较两个实数(代数式)大小的步骤(1)作差:对要比较大小的两个实数(或式子)作差;(2)变形:对差进行变形;(3)判断差的符号:结合变形的结果及题设条件判断差的符号.1.3具体感知,加强练习活动:观察2002年在北京召开的第24届国际数学家大会会标.注:实际上这个图称为“弦图”,三国时期吴国的数学家赵爽,用来证明勾股定理.【活动要求】第一组每一排学生讨论在这个图案中含有怎样的几何图形;第二组相应排学生找出图案中的相等关系;第三组相应排学生找出图案中的不等关系.【活动预设】得出当a>0,b>0时,a2+b2≥2ab,引导学生思考“当a,b为任意实数时,上式仍成立”的合理性.【设计意图】在实践活动中进行认识, 在得出不等关系后,遵循从特殊到一般的思路,从外延的角度加深概念的理解,为基本不等式作铺.2.初步应用,理解概念例1 比较大小:(x−1)(x−2)与(x−2)的大小关系;【预设的答案】(x−1)(x−2)≥(x−2)【设计意图】进行简单的比较大小运算,熟悉作差法.例2 已知a>0,b>0,试比较√b +√a与√a+√b的大小;【预设的答案】√b +√a≥√a+√b【设计意图】(1)利用作差法概念以及变形方法,加深对作差法比大小的理解;(2)从这个例题中归纳概括出变形的方法:有理化.例3 已知a=√7−√6,b=√6−√5,则下列关系正确的是()A. a>bB. a≤bC. a≥bD. a<b 【预设的答案】D【设计意图】在解题中加深对作差法中对差进行变形的灵活运用.例4 已知a>b , 证明:a>a+b2>b【预设的答案】∵a−a+b2=a−b2,a−b>0∴a−a−b2>0 即a>a+b2∵a+b2−b=a−b2,a−b>0∴a−b2−b>0 即a+b2>b综上,a>a+b2>b【设计意图】让学生掌握证明不等式的方法及书写格式3.归纳小结实际问题⇒不等关系⇒不等式⇒不等式性质数学抽象两个实数大小关系的基本事实(作差法)思考:对于Nalog,应该怎样正确读,规范写,它的含义是什么?【设计意图】(1)梳理本节课对于对数的认知;(2)进行数学文化渗透,鼓励学生积极攀登知识高峰,进一步体会学习对数的必要性 .四、课外作业高中教科书数学必修第一册第39页至第40页课后练习。
《2.2 基本不等式(第一课时)》教学设计1.理解基本不等式2b a ab +≤ (a >0,b >0),会利用不等式性质证明,发展逻辑推理素养; 2.了解基本不等式的几何解释,发展直观想象素养;3.结合具体实例,形成用基本不等式解决简单的求最大值或最小值的问题的基本模型,发展数学运算核心素养.教学重点:基本不等式的定义及运用基本不等式解决简单的最值问题.教学难点:基本不等式的证明和运用基本不等式求最值.PPT 课件,及GEOGEBRA 制作的动画课件.一、创设情境★资源名称: 【情景演示】基本不等式引入★使用说明:本资源以欧拉智改羊圈的小故事为出发点,引出基本不等式的知识.注:此图片为视频截图,如需使用资源,请于资源库调用.问题1:请同学们阅读课本第44页,说一说今天我们将要学习的内容是什么?在不等式中起着怎样的作用?师生活动:学生自主阅读课本,思考并回答,教师给予简单总结.预设的答案:基本不等式是一种重要而基本的不等式类型,与乘法公式在代数运算的地位一样,在解决不等式问题中有重要的作用,它之所以被称为“基本不等式”,主要是因为它可以作为不等式论的基本定理,成为支撑其他许多非常重要结果的基石。
◆ 课前准备◆ 教学过程◆ 教学重难点◆ ◆ 教学目标师生活动:学生思考后回答.教师总结:由于分析法是从要证明的结论出发,逐步寻求使它成立的充分条件,所以分析法在书写过程中必须有相应的文字说明:一般每一步的推理都用“要证……只要证……”的格式,当推导到一个明显成立的条件之后,指出“显然×××成立”.设计意图:利用不等式的性质,用分析法证明基本不等式,同时引导学生认识分析法的证明过程和证明格式,提高学生逻辑推理的数学素养.3.基本不等式的几何解释问题4:如图,AB 是圆的直径,点C 是AB 上一点,AC =a ,BC =b ,过点C 作垂直于AB 的弦DE ,连接AD ,BD .你能利用这个图形,得出基本不等式的几何解释吗?师生活动:如图1,连接OD ,教师引导学生先寻找图中的不等关系,利用动画,观察从弦DE 长和圆的直径AB 这两个几何元素在变化中的不等关系,及半弦CD ≤OD ,并将此不等关系用符号表示.学生独立思考,并说出思路:半径OD 为2b a +,利用射影定理可得弦DE 长的一半CD 为ab ,由OD CD ≤ ,得到2b a ab +≤.教师评价并总结,基本不等式可以利用“圆中直径不小于任意一条弦”得到解释.当且仅当弦DE 过圆心时,二者相等.设计意图:让学生观察图形,先将图形中的不等关系找出来,再用代数语言表示,从而获得基本不等式的几何解释,提高学生数学直观的核心素养.★资源名称: 【数学探究】基本不等式a+b ≥2根号(ab )★使用说明:本资源通过交互式动画展示了基本不等式的几何意义,运用本资源,可以吸引学生的学习兴趣,增加教学效果,提高教学效率.注:此图片为“动画”截图,如需使用资源,请于资源库调用.图1b a B A C DE O。