三、单纯形法的解题步骤
- 格式:doc
- 大小:125.00 KB
- 文档页数:6
线性规划问题的单纯形法求解步骤线性规划是一种优化问题,它的解决方法有很多种,在这里我们来介绍其中一种常用的方法——单纯形法。
我们将介绍单纯形法的求解步骤,以帮助读者更好地理解和掌握这种求解方法。
1. 建立数学模型任何一个线性规划问题的解决都需要先进行建模。
我们将问题转换成数学模型,然后使用数学方法进行求解。
线性规划问题的一般形式为:max cxs.t.Ax ≤ bx ≥ 0其中,c、x、b、A都是向量或矩阵,x≥0表示各变量都是非负数。
其中c表示目标函数,A和b表示约束条件。
2. 计算初始基可行解我们需要从初始点开始,逐步优化目标函数。
但是,在开始优化前我们需要先找到一个基可行解。
基可行解的定义是:如果所有非基变量的取值都是0,并且所有基变量的取值都是非负的,则该解被称为基可行解。
当基可行解找到后,我们就可以开始进行优化。
3. 确定进入变量在单纯形法中,每次迭代中我们都需要找到进入变量。
进入变量是指,通过操作非基变量可以使得目标函数增加的变量。
我们需要找到一个使得目标函数增加最多的非基变量,将其称为进入变量。
4. 确定离开变量在确定进入变量后,我们需要确定一个离开变量。
离开变量是指,通过操作基变量可以使得目标函数增加的变量。
我们需要找到一个离开变量,使得当进入变量增加到某个值时,该离开变量的值为0。
这样,我们就找到了一个最小的正根比率,使得通过基本变量出基到进入变量变为零而得到的新解是可行的。
5. 交换变量接下来,我们需要将已选定的进入变量和离开变量进行交换。
此时,我们将进入变量转变为基变量,离开变量转变为非基变量。
通过这种交换,我们还需要调整我们的基向量。
由于这个交换,我们将得到一个新的基可行解,并且它可以比之前的解更好。
6. 重复迭代我们需要重复上述步骤,直到我们找到最优解。
重复迭代意味着我们将不断查找新的进入变量和离开变量,并进行变量交换。
这种找到最优解的过程可能非常复杂,但是单纯形法的效率很高,通常可以在很短的时间内找到最优解。
单纯形法计算步骤引言单纯形法是一种常用的数学优化方法,主要用于求解线性规划问题。
它的基本思想是通过不断地在可行解集合内移动,逐步靠近最优解,直到找到最优解。
本文将介绍单纯形法的基本步骤,以帮助读者了解如何使用该方法解决线性规划问题。
步骤一:建立线性规划模型在使用单纯形法之前,首先需要建立线性规划模型。
线性规划模型由决策变量、目标函数和约束条件组成。
决策变量是需要在问题中决策的变量,目标函数是需要最大化或最小化的目标,约束条件是限制决策变量取值范围的条件。
步骤二:将线性规划模型转化为标准形式单纯形法只适用于标准形式的线性规划模型。
标准形式要求目标函数为最大化,并且所有的约束条件都是等式形式。
如果初始线性规划模型不符合标准形式,我们可以通过适当的代数操作将其转化为标准形式。
步骤三:构造初始单纯形表初始单纯形表是单纯形法求解线性规划问题的起点。
它由决策变量、松弛变量、人工变量、目标函数系数和约束条件组成。
初始单纯形表的构造方法如下: 1. 将决策变量的系数及其对应的松弛变量、人工变量放在单纯形表的第一行。
2. 将目标函数的系数放在单纯形表的第一列。
3. 将约束条件的系数及其对应的松弛变量、人工变量放在单纯形表的其他行。
步骤四:确定基变量和非基变量基变量是单纯形表中拥有非零系数的变量,非基变量是单纯形表中拥有零系数的变量。
基变量和非基变量的确定方法如下: 1. 将目标函数的系数列中不为零的变量作为基变量。
2. 将约束条件中非零系数列中对应的变量作为基变量。
3. 剩余的变量作为非基变量。
步骤五:计算单纯形表中的系数根据基变量和非基变量的定义,我们可以计算单纯形表中的系数。
计算方法如下: 1. 将基变量的系数列除以对应的基变量系数。
2. 将非基变量的系数列减去对应的基变量系数列乘以非基变量所在行和基变量所在行之间的系数。
步骤六:检查是否达到最优解在每次迭代过程中,都需要检查是否达到最优解。
如果单纯形表中目标函数系数列的所有值都是非负的,表示已经达到最优解;否则,需要进行下一次迭代。
运筹学单纯形法各个步骤详解1. 引言大家好,今天咱们来聊聊一个听起来有点高深莫测,但其实特别有意思的东西——运筹学的单纯形法。
别看它名字复杂,其实它就是解决线性规划问题的绝招,像一把钥匙,打开了优化的宝藏。
想象一下,如果你有一大堆资源,要把它们分配到不同的地方,听起来就像玩拼图一样。
好了,废话不多说,咱们直接进入正题!2. 单纯形法的基本概念2.1 线性规划的起源首先,线性规划是啥?简单来说,它就是在一系列限制条件下,想要最大化或最小化某个目标函数。
这听起来像是在做一场抉择,你得在各种选择中找到最优解。
有点像在超市里,看到一堆零食,犹豫不决,最后只能选那包最爱吃的,既美味又划算。
2.2 单纯形法的基本思路而单纯形法就是解决这个问题的武器。
它的核心思想很简单,跟追求完美一样,咱们要一步步地朝着最优解迈进。
想象你在爬山,每一步都在找那个最容易走的路,直到你站在山顶,俯瞰整个美景,啊,真是太棒了!3. 单纯形法的步骤3.1 初始化那么,怎么开始呢?首先,咱们得把问题转化为标准形式。
这就像把一个繁杂的图案简化成几何图形,让它看起来更清晰。
要把不等式转换为等式,添加松弛变量,这样就可以把问题整理得干干净净。
3.2 构建初始单纯形表接下来,咱们构建初始单纯形表。
这个表就像一本菜单,上面列出了所有可能的选择和它们的成本。
每个变量都有自己的“价格”,而咱们的目标就是尽量少花钱,最大化收益。
想想你逛街时,总是想着要花最少的钱买到最好的东西,嘿,这就是单纯形法的精神!3.3 寻找基变量和入基变量然后,咱们得找出“基变量”和“入基变量”。
基变量就像在舞台上表演的演员,而入基变量就是准备加入的“新人”。
在这个过程中,咱们得判断哪个新人能让整个表演更精彩。
如果找对了,舞台瞬间就能变得熠熠生辉,若是找错了,哎呀,那可就尴尬了。
3.4 更新单纯形表一旦找到了合适的入基变量,咱们就得更新单纯形表。
这一步就像在调味,添加新的元素,让整体味道更加丰富。
单纯形法求解过程单纯形法是一种用于求解线性规划问题的迭代算法。
它是由美国数学家George Dantzig在1947年提出的。
单纯形法的目标是通过不断地沿着一些方向逼近最优解,最终找到使目标函数取得最大(或最小)值的最优解。
单纯形法的求解过程可以分为以下几个步骤:1.标准化问题:将线性规划问题转化为标准化形式。
标准化的目的是将原问题转化为一个等价问题,使得约束条件全部为等式,且目标函数的系数都为非负数。
2.设置初始解:选择一个初始可行解作为起始点。
起始点可以通过代入法求解出来,或者通过其他启发式算法得到。
初始可行解需要满足所有约束条件,即满足等式以及非负性约束。
3.检验最优性:计算当前解的目标函数值,并检验这个值是否是最优解。
如果当前解是最优解,算法终止;否则,进入下一步。
4.选择进入变量:从目标函数的系数中选择一个可以增大(最大化问题)或减小(最小化问题)目标函数值的变量作为进入变量。
选择进入变量的策略可以有多种,例如最大增益法或者随机选择法。
5.计算离基变量:选择一个出基变量并将其移出基变量集合。
离基变量的选择通常采用最小比率法,即选择使得约束条件最紧张的变量。
6.更新解:通过求解一个新的线性方程组来计算新的解,更新基变量集合和非基变量集合。
由于每次只有一个变量进基,一个变量出基,将保持可行解的性质。
7.转到步骤3:重复步骤3-6,直到找到最优解。
单纯形法的关键在于选择进入变量和离基变量,以及求解线性方程组。
进入变量的选择决定了算法在解空间中的方向,而离基变量的选择决定了算法沿着哪个方向逼近最优解。
在实际应用中,单纯形法往往需要进行大量的迭代计算,因此效率可能不是很高。
为了提高效率,可以采用一些改进的单纯形法,例如双线性法、内点法等。
总结起来,单纯形法是一种基于迭代的算法,通过每次选择一个进入变量和一个离基变量来逐步逼近最优解。
虽然它的计算复杂度较高,但是在实践中仍然是一种很受欢迎的求解线性规划问题的方法。
单纯形法的一般描述和求解步骤:一般的线性规划问题的求解有以下几个步骤。
(1)确定初始基本可行解。
为了确定初始可行解,首先要找出初始可行基。
设一线性规划问题为⎪⎩⎪⎨⎧=≥==∑∑==nj xj b x P x c Z n j j j nj jj ,,2,1,0max 11(1-14)可分两种情况讨论。
1.若),,2,1(n j P j =中存在一个单位基,则将其作为初始可行基:⎪⎪⎪⎪⎪⎭⎫⎝⎛==100010001),,,(21m P P P B 2.若),,2,1(n j P j =中不存在一个单位基,则人为的构造一个单位初始基。
关于这个方法将在下面提到。
(2)检验最优解。
得到初始基本可行解后,要检验该解是否最优解。
如果是最优解,则停止运算;否则转入(3)基变换。
下面给出最优性判定定理。
一般情况下,经过迭代后可以得到以非基变量表示基变量的表达式∑+=='-'=nm j j iji i m i x ab x 1),,2,1(,(1-15)将式(1-15)代入式(1-14)的目标函数,整理后得j nm i ni ij i jmi i i x a c cb c Z ∑∑∑+==='-'+'=111)(max令∑='=m i i i b c Z 10,∑=+==mi ji i j n m j a c Z 1),,1(,于是j nm j j j x Z c Z Z ∑+=-+=10)(max再令),,1(,n m j Z c j j j +=-=σ则得到以非基变量表示的目标函数的表达式jnm j jx Z Z ∑+=+=10max σ由以上推导可得出下列最优解的判定定理。
(1)最优解的判定定理:若T m b b b X )0,,0,,,,(21)0( '''=为对应于基B 的一个基本可行解,且对于一切n m j ,,1 +=有0≤j σ,则)0(X 是最优解,称j σ为检验数。
三、单纯形法的解题步骤
第一步:作单纯形表.
)(1)把原线性规划问题化为标准形式;
)(2)找出初始可行基,通常取约束方程组系数矩阵中的单位矩阵;
)(3)目标函数非基化;
)(4)作初始单纯形表.
第二步:最优解的判定.
(1) 若所有检验数都是非正数,即,则此时线性规划问题已取
得最优解.
(2) 若存在某个检验数是正数,即,而所对应的列向量无正分量,则线性规划
问题无最优解.
如果以上两条都不满足,则进行下一步.
第三步:换基迭代.
(1)找到最大正检验数,设为,并确定所在列的非基变量为进基变量.
(2)对最大正检验数所在列实施最小比值法,确定出主元,并把主元加上小括号.
主元是最大正检验数所在列,用常数项与进基变量所对应的列向
量中正分量的比值最小者;
(3)换基:用进基变量替换出基变量,从而得到新的基变量.也就是主元所在列的非基变量进基,所在行的基变量出基;
(4)利用矩阵的行初等变换,将主元变为1,其所在列其他元素都变为零,从此得到新的单纯形表;
(5)回到第二步,继续判定最优解是否存在,然后进行新一轮换基迭代,直到问题得到解决为止.
例3 求.
解(1)化标准型:令,引进松弛变量,其标准型为求
(2)作单纯形表:在约束方程组系数矩阵中的系数构成单位矩阵,故取为基变量,目标函数已非基化了,作初始单纯形表并“换基迭代”(见表6.8).
表 6.8
x1 x2x3x4x5常数
x 3 x 4 x 51 0 1 0 0
1 2 0 1 0
0 (1)0 0 1
5
10
4
S′ 1 3 0 0 0 0
x 3 x 4 x2
1 0 1 0 0
(1)0 0 1 -2
0 1 0 0 1
5
2
4
S′ 1 0 0 0 -3 -12
x 3 x 1 x 20 0 1 -1 2
1 0 0 1 -2
0 1 0 0 1
3
2
4
S′0 0 0 -1 -1 -14
(3)最终结果:此时检验数均为非正数,线性规划问题取得最优解,最优解为
目标函数取得最优值.
原线性规划问题的最优解为:.目标函数的最优值为14,即.
例4 用单纯形方法解线性规划问题.
求.
解此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵(1、2行,3、4列构成),取为基变量,而目标函数没有非基化.从约束方程找出
,,
代入目标函数
,
经整理后,目标函数非基化了.
作单纯形表,并进行换基迭代(见表6.9).
最大检验数,由最小比值法知:为主元,对主元所在列施以行初等变换,基变量出基,非基变量进基.
表 6.9
目前最大检验数 ,其所在列没有正分量,所以该线性规划问题没有最优
解.
例5用单纯形方法解线性规划问题. 求
解 此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵,取
为基变
量,而目标函数没有非基化.从约束方程找出
,
,
代入目标函数,经整理得
,
目标函数已非基化.
作单纯形表,并进行换基迭代(见表 6.10). ,由最小比值
最大检验数 法知: 为主元,对主元所在列施量
出基,非基变量以行初等变换,基变化为1,然后x 2进基,先将主元 再将主元所在列的其
他元素化为零.
表 6.10
x 1 x 2 x 3 x 4
常数
x 3 x 4
1 -1 1 0 -3 (1) 0 1
2 4 S
2 3 0 0 0 x 3 x 2
-2 0 1 1 -3 1 0 1 6 4 S
11 0 0 -3
12
至此,检验数均为非正数,故得基础可行解
.
原问题的最优解为:
.
最优值为6,即
.
如果我们再迭代一次,将基变量
出基,非基变量
进基(见表6.11).
表 6.11
x 1 x 2 x 3 x 4 常数 x 3 x 4
-2 (2) 1 0 3 1 0 1 4 6 S
-2 2 0 0
10
x 2 x 4 -1 1 0 4 0 -
1 2 4 S ’
0 0 -1 0
6
x 1 x 2 x 3 x 4 常数 x 2 x 4 -1 1
(4) 0
1
2 4 S ’ 0 0 -1 0 6 x 2 x 1 0 1
1 0
3 1 S ’
0 0 -1 0
6
可得到另一个基础可行解
,
原问题的最优解为:,最优值仍为6,说明该线性规划问题有无穷多最优解,其最优解均为6.
如何知道线性规划问题有无穷多最优解呢?
这主要反映在单纯形表中.如果非基变量所对应的检验数为0,我们可对此列继续进行换基迭代,就可以得到另一个基础可行解.以此作下去,可得到许多基础可行解,即相对应的最优解有无穷多个.。