高等数学课程小论文
- 格式:doc
- 大小:20.00 KB
- 文档页数:4
浅析高等职业院校《高等数学》课程的教与学【摘要】高等职业院校中学生对于《高等数学》的学习是一个枯燥乏味的过程,在教学过程中如何协调好教师的教与学生的学之间的关系就显得尤为重要。
【关键词】兴趣;思维;教学方法文章编号:issn1006—656x(2013)06-0112-01《高等数学》是高职院校理工科专业必修的公共文化课,学好《高等数学》对夯实专业基础、深入学习专业知识有重要辅助作用,而高等职业院校中学生对于数学基础知识掌握普遍不够牢固,对《高等数学》学习的兴趣和热情不高。
因此,如何在教学过程中引起学生兴趣和关注,在教师和学生之间架起一道教与学的桥梁是一个值得探究的话题。
本文将从目标、内容、实施、评价、特色五个方面来谈谈我对这门课程教与学的简单认识。
一、课程目标高职院校中参与高数这门课程学习的学生涉及面非常广,包括会计、土木、模具、机电、汽修等专业,所以在课程目标设置上把握住以下几个方面:(一)一项服务为专业服务,强调其对专业的服务和辅助功能,将专业课的教法、学法与公共课的教法和学法区分开来。
(二)两个原则以人为本,以学生为中心,强调学生的主体地位,教学的方方面面都必须适应学生的现实情况;以应用为目的,以必需、够用为度,高等职业教育的目的是培养高技能应用性人才,而不是研究数学的专门人才,必须明确一个教和学的把握。
(三)三条标准在具体的教学过程中要千方百计的采取多方面的手段和方法使得学生在课堂学习的过程中学有兴趣、学有基础、学有成效。
二、课程内容(一)内容安排为了达到理想的教学效果,完成课程目标在教材和教学内容的选择上,也要精挑细选,在大方向上力求使其受益于各个专业。
第一部分:预备知识,对初等数学进行一个简单的复习与回顾,让学生顺利过渡到高等数学的学习中。
第二部分:极限与连续,为导数学习作铺垫。
极限是导数的前提,而导数是积分的进一步发展与连续。
第三部分:导数及其应用。
导数是微积分的前提,同时在经济领域中有较多的应用。
大学数学论文(5篇)高校数学论文(5篇)高校数学论文范文第1篇参与全国高校生数学竞赛除了上述的必要条件之外,还需具备四个充分条件:如何稳固参与预赛的人数、制定合理有效的培训内容、师资队伍的建设以及经费来源等。
首先,如何有效地组织高校生参与竞赛,可谓是四个条件中最重要的一项,也是下一节笔者所讨论的重点;另外,作为数学竞赛的主要内容:《高等数学》是工科类同学必修的基础理论课,《数学分析》、《高等代数》、《解析几何》等课程是数学专业的专业基础课。
这些是数学竞赛得以顺当开展的基础。
第三,调动部分高校专任的数学老师组成竞赛培训团队也是一项重要的环节,笔者将会在第三节做具体的讨论。
最终是竞赛活动经费,笔者认为可以从以下三个方面获得:第一方面,每所高校都会有专项的创新活经费,可以从今项经费中申请一部分;其次方面,各赛区的主办方会拔给每个学校一些经费;第三方面,适当地向参与培训的同学收取(或变相地收取)一部分。
这些经费主要用于:参与竞赛的同学报名费、培训老师的课时费和同学竞赛时的考试相关费用等。
基于上述分析,在一般高校开展数学竞赛培训以及组织同学参与全国高校生数学竞赛是完全可行的并具有实际意义的。
2一般高校同学现状分析为了吸引、鼓舞更多的同学参加数学竞赛活动,必需先了解现在一般高校本科生的生源现状及其学习状态。
不得不承认,全国高校自扩招以来,一般高校高校生的质量普遍下降。
主要缘由有两个:一是高校的教育已由精英式转为大众式;二是随着扩招的进行,大多数优质生源进入了985或211这样的重点高校,这样就导致一般高校中的优质生源比例相对削减。
限于优质生源比例小的问题,再加上数学理论繁杂与浅显,学习起来困难重重,多数同学在学习数学时会产生犯难心情从而心生畏惧。
还有小部分的同学在进校时数学基础就比较差,(或由此产生的)学习数学的乐观性很低。
还有一部分同学认为数学无实际用途,从主观上学习数学的爱好消极。
基于以上几点缘由加上一些来自一般高校教学条件的限制,许多高校生的实际数学水平较低,所引发的直接结果就是学习成果下降、考试分数偏低、补考人数增多,更有甚者一些同学由于数学不及格而无法毕业。
Hefei University大一高等数学论文院系:电子信息与电气自动化学生姓名:**学号: **********专业:自动化班级:一班年级:一年级****: ***完成时期: 十二月十三号摘要:高等数学是大学工科里的一门基础学科。
在我学的自动化专业中更显得格外重要。
经历了快一个学期的高等数学学习对这门课程有一定认识的同时,在学习的过程中遇到了各式各样的难题与困惑,因此,特对在学习中的遇到困难与将来如何更好的努力,不断提高学习这门课的能力进行了总结,希望在以后的时间里可以有所进步。
Abstract:Higher mathematics is an important basic engineering inside the university. The more I learn in automation specialty in very important. Experienced higher mathematics almost a semester has certain understanding at the same time on the course, in the learning process encountered problems and confusion, so to every kind of, in the study of the difficulties and strive in the future how to better, continuously improve the ability of learning this course are summarized, in the hope that time can make progress.关键词:高等数学、总结方法、极限一:对高中数学的回顾高中学习数学我经历过两个数学老师。
先说说第一个数学老师吧,这是一个年轻的小伙老师,他以前是教初中的后来通过考试,升就教了高中,我们是他教的第一届的高中学生。
高等数学线性代数与解析几何期末结课论文在现代科学技术中,数学是一门重要的科学学科。
高等数学线性代数与解析几何是数学学科的必修课程,它是数学的重要分支。
本文将介绍线性代数与解析几何的基本概念、定义和定理,并探讨它们在实际应用中的重要性。
一、线性代数基本概念线性代数是数学中的一个分支学科,它主要研究向量、矩阵与线性方程组等相关问题。
在学习线性代数的过程中,我们需要学习一些基本概念和知识,例如向量、向量空间、线性变换等。
向量是指有大小和方向的量,用向量可以表示很多物理量,例如速度、力、加速度等。
向量的标志通常用小写字母,例如a、b、c等表示。
在线性代数中,向量可以定义为一个有限维度的实数或复数的数组。
向量空间是由一组向量组成的集合,这些向量必须满足一些基本的性质,例如零向量、加法、标量乘法、线性组合等。
向量空间的性质在数学和应用领域中都有广泛的应用。
线性变换是指一个向量空间到另一个向量空间的映射,它需要遵循线性变换的基本性质,例如保持加法和标量乘法不变,保持零向量不变等。
线性变换在数学、物理、经济等领域中都有广泛的应用。
二、解析几何基本概念解析几何是一门研究平面、直线、圆、曲线等几何图形的数学学科。
在学习解析几何的过程中,我们需要学习一些基本概念和知识,例如二维平面直角坐标系、三维直角坐标系、二次曲线等。
二维平面直角坐标系是由两条互相垂直的直线组成的坐标系,用于描述平面上的点和图形。
通常,x轴代表水平方向,y轴代表垂直方向。
三维直角坐标系是由三条互相垂直的直线组成的坐标系,用于描述空间中的点和图形。
通常,x轴、y轴、z轴分别代表三个不同的方向。
二次曲线是解析几何中的一种常见图形,包括椭圆、双曲线、抛物线等。
其方程通常为二次函数形式,可以通过解析方法求出其基本性质和特征,例如焦点、离心率等。
三、线性代数与解析几何的应用线性代数与解析几何在实际应用中有广泛的应用。
例如,在计算机图形学中,我们可以使用线性代数和解析几何的知识来描述和渲染三维图形、创建动画和特效等。
大一高数知识点总结小论文高等数学作为大一学习的一门重要课程,是理工科学生必修的基础课。
它涵盖了许多重要的数学概念和方法,对我们后续学习其他学科也起到了重要的铺垫作用。
在这篇小论文中,我将对大一学习的高等数学知识点进行总结和归纳,以帮助大家更好地掌握这门课程。
一、函数与极限函数与极限是高等数学的基础。
在大一的高等数学课程中,我们首先学习了函数的定义与性质,包括函数的定义域、值域、图像等。
接下来,我们学习了函数的极限,包括极限的定义、性质以及计算方法。
通过学习函数与极限,我们能够理解函数的发展趋势和变化规律,为后续学习导数和积分打下了坚实的基础。
二、导数与微分导数与微分是高等数学中的重要概念和方法。
导数描述了函数在某一点处的变化率,它不仅可以帮助我们研究函数的极值和拐点,还可以在实际问题中应用于速度、加速度等相关计算中。
在大一的高等数学课程中,我们学习了导数的定义、性质以及计算方法,掌握了常见函数的导数公式和求导规则。
同时,我们还学习了微分的概念和微分中值定理等重要知识。
三、不定积分与定积分不定积分与定积分是高等数学中的重要内容。
不定积分是求解函数的原函数,它与导数是相互逆过程。
通过学习不定积分,我们可以应用于求解面积、体积、弧长等实际问题中。
定积分是计算曲线下面积的一种方法,在大一的高等数学课程中,我们学习了定积分的定义、性质以及计算方法,掌握了常见函数的积分公式和求积分规则。
四、级数与收敛级数是高等数学中的另一个重要概念。
在大一的高等数学课程中,我们学习了级数的定义、性质以及收敛定理等内容。
通过学习级数,我们可以应用于计算无穷级数的和以及判断级数的收敛性。
级数在实际问题中有着广泛的应用,如金融领域的复利计算、物理领域的波动计算等。
五、多元函数与偏导数多元函数与偏导数是高等数学中的拓展内容。
在大一的高等数学课程中,我们开始接触了多元函数的概念和性质,学习了多元函数的极限和连续性。
同时,我们还学习了多元函数的偏导数以及高阶导数的计算方法。
大一高等数学论文范文高等数学是大学重要的基础课程,是理、工、农、医等高等教育中涉及学生最多、对学生的影响最远的课程之一.作为一门基础科学,高等数学具有高度的抽象性、严密的逻辑性和广泛的应用性等特点。
下面是小编为大家整理的大一高等数学论文,供大家参考。
大一高等数学论文范文一:高等数学学习心得通过对高等数学一年的学习,在这里很荣幸和大家分享一下高数的学习心得。
首先,我想说一下高数在大学的重要性,看过教学计划的同学就会知道,高数的学分是你大学四年里最高的,可以毫不夸张的说如果你高数的学分拿不到,你的学位证书也就不用想了。
一般来说,如果你大一高数挂了,要想重修过还是很痛苦的。
所以希望大家无论如何,一定要把高数考好。
记得开学时有位老师告诉我,专业课可以挂,但高数一定不能。
说这句话,并不是说专业课不重要,只是为了说明考好高数的重要性。
其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦(注意)。
可能之前会听到家长或者老师会说,到了大学就可以好好玩了。
不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。
而且,大学其实并不比高中轻松(这句话大家一定注意)。
下面我来介绍一下,大学高数的一些学习方法:第一,还是老生常谈,那就是课前预习,而且,我觉得在大学课前预习显得比以前任何时候都重要。
因为,大学课程的进程可不是一般的快。
希望大家能保持课时比老师快两节,练习比老师快一节。
最低限度,是不能落下(其实,这个要求也不低,但希望大家一定不能落下)。
第二,要好好利用课堂时间,对于预习中不明白的地方,注意听讲,而对于自己觉得简单的地方,大家就可以做些相关练习了。
有一点大家需要注意,不明白的问题一定不要积压,要及时的问同学或者老师(建议是老师,但前提是你对这道题目要有一定的思考),经常问老师题目对你的好处是很大的,因为考试的题目一般都是你们的老师出的,所以老师在给你讲题的时候会不知不觉的给你透漏考试的一些信息,同时,万一考试时你出了状况,结果考了个五十几分,如果老师对你有不错的印象,她是可以把你送过的。
关于民族预科生《高等数学》课程的教学及优化策略【摘要】本文结合南昌工学院预科生的实际情况,针对该校民族预科班《高等数学》教学中存在的一些突出问题给出了一系列的建议,以帮助广大教育工作者更好地改进一些教学方法和教学手段,提高民族预科班高等数学的教学质量和效果。
【关键词】少数民族预科生;高等数学;数形结合;教学效率一、民族预科教育中《高等数学》课程的教学现状数学是一门比较抽象的学科,相对其它学科来说,学起来既困难又枯燥。
然而,随着科教兴国战略的实施,数学在各个领域发挥着越来越重要的作用。
为了给民族预科生在今后的大学学习做好铺垫,我们在民族预科教育中普及了高等数学。
在预科教育中,民族预科生有其特殊性,他们来自不同地域不同民族,文化差异性大,大部分学生来自偏远的边疆,教育的发展滞后,而在学习数学方面,少数民族预科生文化基础薄弱,学习数学的兴趣不浓,有的学生甚至讨厌数学,以至于彻底放弃了数学。
其原因既有外部因素的影响,如学校环境恶劣,设施不完善、家庭不够重视和关心等,也有自身内在因素的影响,如缺乏学习动力、学习的意志薄弱等。
伴随着这些不良因素的影响,高等数学教学中也产生了许多问题和矛盾。
主要表现在以下两个方面:一是民族预科生数学基础较差与课时不断被压缩的矛盾;二是高等数学教学的实际情况与高等教育对数学要求越来越高的发展趋势之间的矛盾。
然而,外面的世界越来越纷繁复杂,iphone、微博、网游……各种新鲜事物不断冲击着校园。
面对种种诱惑,当今学生的思想状况也发生了深刻的变化,主要表现在以下几个方面:一是现在的民族预科生大多是个性张扬的90后,他们我行我素,不能吃苦,自我约束能力差;二是典型的实用主义,由于高等数学不如英语、计算机等学科的应用来得直接,学生们普遍认为高等数学太抽象,离社会生活实际太远,没有多大用处,从而学习数学的自觉性和热情不高。
二、民族预科教育中《高等数学》课程教学的解决方法(1)建立新的教学观。
微分在生活中的应用1.计算利率和复利:在金融领域,微分可以用来计算利率和复利。
在实际应用中,微分被用于计算连续复利。
假设本金为P,年利率为r,投资时间为t年,那么根据微分的思想,t年后本金和利息之和可以表示为P(1+rt)。
这个公式可以方便快捷地计算出投资在一段时间后的增长倍数,为我们进行投资决策提供了依据。
2.预测未来走势:在经济学中,微分被用来描述变量之间的关系,如价格和需求量之间的关系、成本和产量之间的关系等。
这种关系通常被表达为微分方程或差分方程。
通过求解这些方程,我们可以得到变量随时间变化的规律,从而预测未来的走势。
例如,在商品市场中,价格和需求量之间的关系可以通过微分方程来表示。
通过对这个方程的求解,我们可以预测在未来一段时间内,价格会如何变化,需求量会如何变化,从而制定出更加合理的经济政策。
3.优化生产过程:在工业生产中,微分可以帮助我们优化生产过程。
具体来说,通过对生产过程中的各种变量进行微分分析,可以找出哪些变量对生产效率有影响。
然后,我们可以通过调整这些变量的参数来优化生产过程,提高生产效率。
例如,在生产汽车零部件时,通过对生产过程的微分分析,可以找出对生产效率影响较大的环节,如刀具磨损、模具寿命等,并采取措施来优化这些环节,从而提高生产效率。
4.医学成像:在医学领域,微分也被广泛应用于医学成像。
例如,在CT扫描中,微分被用来重建图像。
具体来说,CT扫描是通过测量人体不同部位在不同时间点的辐射量来重建图像的。
而微分则可以用来分析和处理这些测量数据,以重建出更准确的图像。
在这个过程中,微分可以帮助我们更好地理解图像的形成过程和人体内部的结构特征,为医生的诊断和治疗提供依据。
5.计算机科学:在计算机科学中,微分被广泛应用于机器学习和人工智能领域。
例如,深度学习模型中的反向传播算法就使用了微分。
通过微分,我们可以计算出模型参数的更新量,从而优化模型的性能。
6.自然科学研究:在自然科学领域,微分被广泛应用于物理、化学、生物学等学科的研究。
高数学习方法总结论文【精选4篇】高数学习方法总结论文【精选4篇】在日常学习、工作或生活中,需要学习的内容越来越多,想要高效的学习,就一定要掌握正确的学习方法!那么,大家知道要怎样正确高效的学习吗?以下是小编为大家整理的高数学习方法总结论文,供大家参考借鉴,希望可以帮助到有需要的朋友。
高数学习方法总结论文1大学生学习高等数学要掌握合适的学习方法,因人而异,这里我只是结合我自己的一些学习方法和经验供大家参考。
高等数学作为高等教育的一门基础学科,几乎对所有的专业的学习都有帮助,对于我们飞行器动力工程专业,高等数学是联系物理,力学,以及贯穿于专业基础课的一把刃剑和纽带,对于大一这一年的学习尤为重要,只有打下坚实的基础,对于之后学习其他的学科,包括选修课中的工程数学的分支(复变函数,数理方程等),都有很大的帮助。
首先了解高等数学的组织结构,大一上学期主要学习极限,函数,以及微分和积分,(空间几何在下学期学),在期末考试中大多数都集中在积分和微分这部分。
极限是积分和微分的基础,重要的概念和思想在学习极限这部分就会体现出来,有些问题运用基本定义就会迎刃而解,在掌握了基本概念和常用的解题方法后,学习起来就会很轻松;下学期比较重要,相对于上学期的内容也较丰富和复杂;对于偏导数和曲线积分、曲面积分,需要扎实的微积分思想,此外就是级数和微分方程;总之,高等数学可以说是积分,微分占据主要地位。
(一)做题的方法和技巧学习高等数学的过程中必不可少的就是学习方法的及时总结,理想的情况下就是保证每个人手中都有一本课外的教辅书(个人推荐吉米多维奇),在平时做作业和做课外题目的过程中,自己会做的题目也要做到自己的思想和答案的思想进行比较,互相补充,遇到好的解题方法要记下来,要记的内容是题目,方法和自己的感受;遇到不明白的题目时不要浮躁,也不要着急先看答案,首先进行冷静的思考,要知道考的内容是什么,要用到什么知识点,然后一步一步看答案,这里我的意思是先看答案的第一步求解的问题是什么,然后停止看答案,想一想答案的这一步对你是否有启示作用,接下来自己试一试能不能继续独立往下做,如果不行的话继续往下看答案,直到做出来为止,做完后一定做好笔记。
高等数学教学论文(5篇)高等数学教学论文(5篇)高等数学教学论文范文第1篇爱好是最好的老师,数学又是美的,但是数学学习往往是枯燥的,同学很难体会到这种奇妙。
如何提高同学对高等数学的爱好是授课老师需要思索的问题。
我在教学中为了让教学更加生动加入了一些生活中的数学应用。
比如,为什么人们能精确猜测几十年后的日食,却没法精确猜测明天的天气;为什么人们可以通过https平安地扫瞄网页而不会被监听;为什么全球变暖的速度超过一个界限就变得不行逆了;为什么把文本文件压缩成zip体积会削减许多,而mp3文件压缩成zip大小却几乎不变;民生统计指标究竟应当采纳平均数还是中位数;当人们说两种乐器声音的音高相同而音色不同的时候究竟是什么意思在这些例子中数学是好玩的,体现了基础、重要、深刻、美的数学。
二、培育同学自我学习力量授人以鱼不如授人以渔,单纯教会同学某一道题目的计算不如使同学把握解题的方法。
因此讲解题目时可以结合方法论:开头解一道题的时候我会告知同学这就和解决任何一个实际问题一样,首先从要观看事物开头,把数学题目观看清晰;接下来就需要分析事物,搞清晰题目的特点、有什么样的函数性质、证明的条件和结论会有什么样的联系,依据计算状况预备相应的定理和公式;最终就是解决问题,结合把握的计算和推理技巧完成题目的求解。
通过这样的讲解,和必要的练习,同学完成的不再是一道道独立的数学题目,实现的是方法论的应用,也是更清楚的规律思维的训练,有助于提高同学的自我学习力量。
“教是为了不教”,把握解题方法,有自学力量,以后工作遇到实际问题也能迎刃而解。
三、重视规律思维的训练不管是工作还是生活中人们都会遇到数学问题,假如没有规律思维只是表面理解就有可能陷入“数学陷阱”。
在教学中我经常举这样一个例子:有个婴儿吃了某款奶粉后突发急病死亡,而奶粉厂却高调坚称奶粉没有问题,是否有股对这个黑心奶粉厂口诛笔伐并将之搞垮的冲动呢?且慢,不妨先做道算术题:假设该奶粉对婴儿有万分之一的致死率,同时有100万婴儿使用这款奶粉,那就应当有约100名孩子中招,但事实上称使用该奶粉后死亡的说法却远远没有100个。
数学史与高等数学
摘要数学史是研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系的一门科学。
数学的发展决不是一帆风顺的,数学史是数学家们克服困难和战胜危机的斗争的记录,是蕴涵了丰富的数学思想的历史。
无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明等等,无一不是经历了曲折艰难最终探索出来的。
这样的例子在数学史上不胜枚举。
在此奋斗的过程中所蕴涵的深刻的哲理。
也不是通过学习通常的教科书中被“包装”过的定理就能轻而易举得到的。
有一位学者曾收集了九百余条关于数学本质的言论,著成《数学家谈数学本质》一书。
书中的各家众说纷纭,观点各不相同,但数学家们都认为对数学史的了解,包括对一些杰出数学家的生平与事迹的了解会有助于吸收各种不同的数学经验,理解各种不同的数学思想观点,探求数学的本质。
关键词教学史高等数学
数学科学作为一种文化,不仅是整个人类文化的重要组成部分,而且始终是推进人类文化的重要力量。
它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。
从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也是密不可分的,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。
对于每一个希望了解整个人类文明史的人来说,数学史是必读的篇章。
如果将整个数学比作一棵大树,那么初等数学是树根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
由此体现出了微积分的重要性以及它和各科之间的关系。
因此,微积分总是作为高等院校理工类的一f j重要的必修课。
一般制订为两学期教学计划。
它包含了微分学,积分学,空问解析几何,无穷级数和常微分方程的基础知识。
我围的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。
并由于受传统教学课时和内容上的安排的影响,高等数学的教学往往存在课时少,内容多的矛盾。
所以,广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注意进行数学知识的传授,忽视了数学的思想性和趣味
性。
当代著名数学家Courant曾指出:“微积分,或者数学分析,是人类思维的伟大成果之一。
它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具。
遗憾的是,微积分的教学方法有时流于机械。
不能体现出这门学科乃是一种撼人心灵的智力奋斗的结晶。
”作为高等数学的教师,我们也有过这样的经验,虽然仔细备课全而讲解下来,却发现教学效果并不理想,对一些抽象的概念难以理解,普遍反映昕不懂。
长此以往,个别同学甚至失去了能学好高等数学的信心,对学习失去了兴趣。
经过几代人对高等数学教学方法的不断研究,数学史在高等数学教学中的所起的作用已被大家所认可。
那些认为在教学中讲述数学史是华而不实的多余之举,是在浪费时间,任为应该多把“宝贵的时问”用在习题训练上的思想已经成为过去。
在教师教学里,引进与主题相关的数学史题材,对学生的学习会有很萨面的意义,不仅能凋动了同学们的学习热情,尤其能协助学生将抽象观念具体化。
因为不论在科技应用层面或思想突破方面,数学重要概念的演进确有其实用面的意义,因此具有启发性的数学史方面的教学实属必要。
纵观历史发展的长河,重要思想的诞生离不开重要的人物。
对数学的发展也是如此。
德围著名数学家H.Weyl说过:“如果不知道各位前辈所建立和发展的概念,方法和成果,我们就不能理解近50年数学的目标,也不能理解它的成就。
”由此叮见,研究数学人物在数学史研究中的最要性。
在高等数学的教材中我们会接触到一些根本重受性的定理和概念。
如“牛顿——莱布尼兹定理”.“拉格朗口中值定理”、“富翟叶三角级数”等等。
这些定理和概念的学习不仅对于学习高等数学知识来说是重要的,并且对于提高数学素质也是及其必要的。
它们是微积分的精华,是高等数学教学的必讲内容。
这些定理和概念大都是以重要数学人物的名字命名的。
他们也恰恰是微积分的创立者和先驱们。
这就提醒了广大教师,在课堂教学过程中适当地加入先驱们的生平和业绩的介绍就不仅能在有限的时间里完成我们的教学任务还可以起到提升大家的学习兴趣,传递了数学思想的作用,对我们的课堂教学起到了画龙点睛的作用。
牛顿(1642—1727)是英国数学家、物理学家、天文学家。
他出身于农民家庭。
1661年考入剑桥大学三一学院。
1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。
牛顿回到了家乡,在乡村幽居了两年,终13思考各种问题、探索大自然的奥秘。
他平生的三大发明,微积分,万有引力、光谱分析都萌发于此。
后来牛顿在追忆这段峥蝾的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。
”“没有大胆的猜想就做不出伟大的发现。
”牛顿的微积分理论主要体现在《运用无穷多项方程的分析学》、《流数术和无穷级数》、《求曲边形的面积》三部论著咀。
在《运用无穷多项方程的分析学》这一著作咀,他给出了求瞬时变化率的普遍方法,阐明了求变化牢和求面积是两个互逆问题,从而揭示了微分与积分的联系,即沿用至今的所谓微积分的基本定理。
在《流数术和无穷级数》里,牛顿对他的微积分理论作出了更加广泛而深入的说明。
例如,他改变了过去静止的观点,认为变量是由点、线、面连续运动而产生的。
而在《求曲边形的面积》这一篇研究可积曲线的经典文献里。
牛顿试图排除由“无穷小”造成的混乱局面。
把求极限的思想方法作为微积分的基础在这里已出露端倪。
牛顿还曾说过:“如果我之所见比笛卡儿等人要远一点,那只是因为我是站在巨人肩上的缘故。
”莱布尼兹(1646—1746)是德国数学家、自然主义哲学家、自然科学家。
他的第一篇微分学论文《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》是历史上最早公开发表的关于微分学的文献。
他也是历史上最伟大的符号学家。
他曾说:“要发明,就得挑选恰当的符号,要做到这一点,就要用包义简明的少量符号来表达或比较忠实地描绘事物的内在本质,从而最大限度减少人的思维劳动。
”例如,dx、dy、∫、㏒等等,都是他创立的。
这些优越的符号为以后分析学的发展带来了极大的方便。
以上只是我们在浩瀚的数学人物的海洋中,采摘的两颗最耀眼的明珠,对他们的生平与业绩进行了一些简介。
这些内容的介绍在课堂上占用不了多少“宝贵”的时间,然而通过这些,使我们恬生生地看到了数学的发展是曲折的,一个重要概念的产生是离不开实际问题的。
只有对实际问题进行精力的思索,/r可以找出问题的本质,抽象出数学思想。
还有作者在解决实际问题时频繁运用的“无穷小”、“流数”等概念,使我们体会到正确、熟练掌握基本概念对于理解数学思想的重要性。
对于平时我们视为枯燥的数学符号。
却正是它是最直接、最简练表达数学思维的T具,并且从先驱们的言行里我们能感受到科学家的治学念度和对知识的执着追求,这往往能激发大家刻占钻研,勇往直前的奋斗丰寿神。
最后,我们相信作为高等数学的教师.目的不仅是为大家传授数学知识,更霞要的是使大家在学习数学知识的过程中掌握数学思想,提高大家的数学素养。
将数学史与数学知识的传授有机地结合起来就能很好地达到以上的目的。
经过多年的教学实践,在高等数学的教学c}|适时地加入数学人物的介绍就能对高等数学的教学起到很好的辅助作用。
我们相信,对于高等数学的教师,如果熟悉了数学人物的生平、业绩、治学态度、治学方法、趣闻轶_事等等,对高等数学的教学来说有百利而无一害,一定会把高等数学讲授得更生动、有趣和富有哲理。
而对于很多正在学习高等数学的学生,一旦了解了这些数坛前荦们的学术成就和道德风范,也必将从中受到鼓舞,继而提高学习兴趣,做出更大的成绩。
参考文献
【1】J.N.Kaput.数学家谈数学本质,北京大学出版社,1989.
【2】李心灿,微积分的创立者及其先驱.高等教疗出版社,2002.
【3】浅谈数学史在高等数学教学中的作用.郭思,2002.
【4】高等数学.第六版,上册.高等教育出版社。