(精选)数据结构 第6章作业
- 格式:doc
- 大小:105.50 KB
- 文档页数:4
删除40 删除70 删除60struct node { int data;struct node *lchild, *rchild;};typedef struct node NODE;NODE *create_tree(a,i,j)int a[ ],i,j;{NODE *p;int k;if(i>j) return(NULL);k=(i+j)/2;p=(NODE *)malloc(sizeof(NODE));p->data=a[k];p->lchild=create_tree(a,i,k-1);p->rchild=create_tree(a,k+1,j);return(p);}6. 3int check(root)NODE *root;{int x;if(root==NULL)return(0);if(root->data<root->rchild->data&&root->data>root->lchild->data) {x=check(root->rchild);if(!x) return(check(root->lchild));}return(1);}6. 4int height(root)NODE *root;{int h,k;if(root==NULL)return(-1);else if(root->lchild==NULL&&root->rchild==NULL)return(0);elseh=height(root->lchild);k=height(root->rchild);if(h>k)return(h+1);elsereturn(k+1);}}6. 5#include “math.h”int check_beltree(root)NODE *root;{int a;if(root==NULL)return(1);if(check_beltree(root->lchild)==0||check_beltree(root->rchild)==0) return(0);a=abs(height(root->rchild)-height(root->lchild)); //上题函数if(a<=1)return(1);}6.76.8结点k1 k2 k3 k4 k5结点值10 30 50 70 90相对使用频率(pi)p1 p2 p3 p4 p55 6 3 7 4外部结点使用频率(qi) q0 q1 q2 q3 q4 q54 2 1 2 3 4 本题的分析与计算,请参考“习题6.8”(Excel表),最后结果为:。
第六章树和二叉树(下载后用阅读版式视图或web版式可以看清)习题一、选择题1.有一“遗传”关系:设x是y的父亲,则x可以把它的属性遗传给y。
表示该遗传关系最适合的数据结构为( )。
A.向量B.树C图 D.二叉树2.树最合适用来表示( )。
A.有序数据元素 B元素之间具有分支层次关系的数据C无序数据元素 D.元素之间无联系的数据3.树B的层号表示为la,2b,3d,3e,2c,对应于下面选择的( )。
A. la (2b (3d,3e),2c)B. a(b(D,e),c)C. a(b(d,e),c)D. a(b,d(e),c)4.高度为h的完全二叉树至少有( )个结点,至多有( )个结点。
A. 2h_lB.h C.2h-1 D. 2h5.在一棵完全二叉树中,若编号为f的结点存在右孩子,则右子结点的编号为( )。
A. 2iB. 2i-lC. 2i+lD. 2i+26.一棵二叉树的广义表表示为a(b(c),d(e(,g(h)),f)),则该二叉树的高度为( )。
A.3B.4C.5D.67.深度为5的二叉树至多有( )个结点。
A. 31B. 32C. 16D. 108.假定在一棵二叉树中,双分支结点数为15,单分支结点数为30个,则叶子结点数为( )个。
A. 15B. 16C. 17D. 479.题图6-1中,( )是完全二叉树,( )是满二叉树。
1 / 1710.在题图6-2所示的二叉树中:(1)A结点是A.叶结点 B根结点但不是分支结点C根结点也是分支结点 D.分支结点但不是根结点(2)J结点是A.叶结点 B.根结点但不是分支结点C根结点也是分支结点 D.分支结点但不是根结点(3)F结点的兄弟结点是A.EB.D C.空 D.I(4)F结点的双亲结点是A.AB.BC.CD.D(5)树的深度为A.1B.2C.3D.4(6)B结点的深度为A.1B.2C.3D.4(7)A结点所在的层是A.1B.2C.3D.411.在一棵具有35个结点的完全二叉树中,该树的深度为( )。
数据结构第六章图练习题及答案详细解析(精华版)第一篇:数据结构第六章图练习题及答案详细解析(精华版) 图1.填空题⑴ 设无向图G中顶点数为n,则图G至少有()条边,至多有()条边;若G为有向图,则至少有()条边,至多有()条边。
【解答】0,n(n-1)/2,0,n(n-1)【分析】图的顶点集合是有穷非空的,而边集可以是空集;边数达到最多的图称为完全图,在完全图中,任意两个顶点之间都存在边。
⑵ 任何连通图的连通分量只有一个,即是()。
【解答】其自身⑶ 图的存储结构主要有两种,分别是()和()。
【解答】邻接矩阵,邻接表【分析】这是最常用的两种存储结构,此外,还有十字链表、邻接多重表、边集数组等。
⑷ 已知无向图G的顶点数为n,边数为e,其邻接表表示的空间复杂度为()。
【解答】O(n+e)【分析】在无向图的邻接表中,顶点表有n个结点,边表有2e个结点,共有n+2e个结点,其空间复杂度为O(n+2e)=O(n+e)。
⑸ 已知一个有向图的邻接矩阵表示,计算第j个顶点的入度的方法是()。
【解答】求第j列的所有元素之和⑹ 有向图G用邻接矩阵A[n][n]存储,其第i行的所有元素之和等于顶点i的()。
【解答】出度⑺ 图的深度优先遍历类似于树的()遍历,它所用到的数据结构是();图的广度优先遍历类似于树的()遍历,它所用到的数据结构是()。
【解答】前序,栈,层序,队列⑻ 对于含有n个顶点e条边的连通图,利用Prim算法求最小生成树的时间复杂度为(),利用Kruskal算法求最小生成树的时间复杂度为()。
【解答】O(n2),O(elog2e)【分析】Prim算法采用邻接矩阵做存储结构,适合于求稠密图的最小生成树;Kruskal算法采用边集数组做存储结构,适合于求稀疏图的最小生成树。
⑼ 如果一个有向图不存在(),则该图的全部顶点可以排列成一个拓扑序列。
【解答】回路⑽ 在一个有向图中,若存在弧、、,则在其拓扑序列中,顶点vi, vj, vk的相对次序为()。
数据结构答案第6章第6章数据结构答案1. 栈的应用栈是一种常见的数据结构,其特点是先进后出。
下面是一些关于栈的应用场景。
1.1 函数调用栈在程序中,每当一个函数被调用时,相关的变量和状态信息会被存储在一个称为函数调用栈的栈中。
1.2 表达式求值栈也常用于表达式求值,特别是中缀表达式转后缀表达式的过程中。
通过使用栈,我们可以很方便地进行算术运算。
1.3 逆序输出如果我们需要逆序输出一段文本、字符串或者其他数据,可以使用栈来实现。
将数据依次压入栈中,然后再逐个弹出即可。
2. 队列的实现与应用队列是另一种常见的数据结构,其特点是先进先出。
下面是一些关于队列的实现和应用。
2.1 数组实现队列队列可以使用数组来实现。
我们可以使用两个指针分别指向队列的前端和后端,通过移动指针来实现入队和出队的操作。
2.2 链表实现队列队列还可以使用链表来实现。
我们可以使用一个指针指向队列的头部,并在尾部添加新元素。
通过移动指针来实现出队操作。
2.3 广度优先搜索(BFS)队列常用于广度优先搜索算法。
在BFS中,我们需要按照层级来访问节点。
使用队列可以帮助我们按照顺序存储和访问节点。
3. 树的遍历和应用树是一种非常重要的数据结构,在计算机科学中应用广泛。
下面是一些关于树的遍历和应用的介绍。
3.1 深度优先搜索(DFS)深度优先搜索是树的一种遍历方式。
通过递归或者使用栈的方式,可以按照深度优先的顺序遍历树的所有节点。
3.2 广度优先搜索(BFS)广度优先搜索也可以用于树的遍历。
通过使用队列来保存要访问的节点,可以按照层级的顺序遍历树。
3.3 二叉搜索树二叉搜索树是一种特殊的二叉树,它的每个节点的值都大于左子树中的值,小于右子树中的值。
这种结构可以用于高效地进行数据查找。
4. 图的表示与遍历图是由节点和边组成的一种数据结构。
下面是一些关于图的表示和遍历的说明。
4.1 邻接矩阵表示法邻接矩阵是一种常见的图的表示方法。
使用一个二维数组来表示节点之间的连接关系。
第六章树和二叉树作业一、选择题(每题2分,共24分)。
1. 一棵二叉树的顺序存储情况如下:树中,度为2的结点数为( C )。
A.1 B.2 C.3 D.42. 一棵“完全二叉树”结点数为25,高度为(B )。
A.4 B.5 C.6 D.不确定3.下列说法中,(B )是正确的。
A. 二叉树就是度为2的树B. 二叉树中不存在度大于2的结点C. 二叉树是有序树D. 二叉树中每个结点的度均为24.一棵二叉树的前序遍历序列为ABCDEFG,它的中序遍历序列可能是(B )。
A. CABDEFGB. BCDAEFGC. DACEFBGD. ADBCFEG5.线索二叉树中的线索指的是(C )。
A.左孩子 B.遍历 C.指针 D.标志6. 建立线索二叉树的目的是(A )。
A. 方便查找某结点的前驱或后继B. 方便二叉树的插入与删除C. 方便查找某结点的双亲D. 使二叉树的遍历结果唯一7. 有 D )示意。
A.B.C.D.8. 一颗有2046个结点的完全二叉树的第10层上共有(B )个结点。
A. 511B. 512C. 1023D. 10249. 一棵完全二叉树一定是一棵(A )。
A. 平衡二叉树B. 二叉排序树C. 堆D. 哈夫曼树10.某二叉树的中序遍历序列和后序遍历序列正好相反,则该二叉树一定是( C )的二叉树。
A .空或只有一个结点B .高度等于其结点数C .任一结点无左孩子D .任一结点无右孩子11.一棵二叉树的顺序存储情况如下:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15A B C D E 0 F 0 0 G H 0 0 0 X结点D 的左孩子结点为( D )。
A .EB .C C .FD .没有12.一棵“完全二叉树”结点数为25,高度为( B )。
A .4B .5C .6D .不确定二、填空题(每空3分,共18分)。
1. 树的路径长度:是从树根到每个结点的路径长度之和。
对结点数相同的树来说,路径长度最短的是 完全 二叉树。
第6章 树和二叉树(参考答案)6.1(1)根结点a6.2三个结点的树的形态: 三个结点的二叉树的形态:(1) (1) (2) (4) (5)6.3 设树的结点数是n ,则n=n0+n1+n2+……+nm+ (1)设树的分支数为B ,有n=B+1n=1n1+2n2+……+mnm+1 (2)由(1)和(2)有:n0=n2+2n3+……+(m-1)nm+16.4(1) k i-1 (i 为层数)(2) (n-2)/k+1(3) (n-1)*k+i+1(4) (n-1)%k !=0; 其右兄弟的编号 n+16.5(1)顺序存储结构注:#为空结点6.6(1) 前序 ABDGCEFH(2) 中序 DGBAECHF(3) 后序 GDBEHFCA6.7(1) 空二叉树或任何结点均无左子树的非空二叉树(2) 空二叉树或任何结点均无右子树的非空二叉树(3) 空二叉树或只有根结点的二叉树6.8int height(bitree bt)// bt是以二叉链表为存储结构的二叉树,本算法求二叉树bt的高度{ int bl,br; // 局部变量,分别表示二叉树左、右子树的高度if (bt==null) return(0);else { bl=height(bt->lchild);br=height(bt->rchild);return(bl>br? bl+1: br+1); // 左右子树高度的大者加1(根) }}// 算法结束6.9void preorder(cbt[],int n,int i);// cbt是以完全二叉树形式存储的n个结点的二叉树,i是数// 组下标,初始调用时为1。
本算法以非递归形式前序遍历该二叉树{ int i=1,s[],top=0; // s是栈,栈中元素是二叉树结点在cbt中的序号 // top是栈顶指针,栈空时top=0if (n<=0) { printf(“输入错误”);exit(0);}while (i<=n ||top>0){ while(i<=n){visit(cbt[i]); // 访问根结点if (2*i+1<=n) s[++top]=2*i+1; //若右子树非空,其编号进栈i=2*i;// 先序访问左子树}if (top>0) i=s[top--]; // 退栈,先序访问右子树} // END OF while (i<=n ||top>0)}// 算法结束//以下是非完全二叉树顺序存储时的递归遍历算法,“虚结点”用‘*’表示void preorder(bt[],int n,int i);// bt是以完全二叉树形式存储的一维数组,n是数组元素个数。
数据结构练习第六章树一、选择题1.树最适合用来表示( )。
A.有序数据元素B.无序数据元素C.元素之间具有分支层次关系的数据D.元素之间无联系的数据2.二叉树的第k层的结点数最多为( ).A.2k-1 B.2K+1 C.2K-1 D. 2k-13.设哈夫曼树中的叶子结点总数为m,若用二叉链表作为存储结构,则该哈夫曼树中总共有()个空指针域。
A. 2m-1B. 2mC. 2m+1D. 4m4.设某棵二叉树的中序遍历序列为ABCD,前序遍历序列为CABD,则后序遍历该二叉树得到序列为()。
A. BADCB. BCDAC. CDABD. CBDA5.设某棵二叉树中有2000个结点,则该二叉树的最小高度为()。
A. 9B. 10C. 11D. 126.设一棵二叉树的深度为k,则该二叉树中最多有()个结点。
A. 2k-1 B .2k C. 2k-1 D. 2k-17.设某二叉树中度数为0的结点数为N0,度数为1的结点数为Nl,度数为2的结点数为N2,则下列等式成立的是()。
A. N0=N1+1 B. N=Nl+N2C. N=N2+1 D. N=2N1+l8.设一棵m叉树中度数为0的结点数为N0,度数为1的结点数为Nl,……,度数为m的结点数为Nm,则N=()。
A. Nl +N2+……+Nm B. l+N2+2N3+3N4+……+(m-1)NmC. N2+2N3+3N4+……+(m-1)Nm D. 2Nl+3N2+……+(m+1)Nm9.设一组权值集合W={2,3,4,5,6},则由该权值集合构造的哈夫曼树中带权路径长度之和为()。
A. 20B. 30C. 40D. 4510.设二叉树的先序遍历序列和后序遍历序列正好相反,则该二叉树满足的条件是()。
A. 空或只有一个结点B. 高度等于其结点数C. 任一结点无左孩子D. 任一结点无右孩子11.设某棵三叉树中有40个结点,则该三叉树的最小高度为()。
A. 3B. 4C. 5D. 612.深度为k的完全二叉树中最少有()个结点。
第六章树和二叉树(下载后用阅读版式视图或web版式可以看清)习题一、选择题1.有一“遗传”关系:设x是y的父亲,则x可以把它的属性遗传给y。
表示该遗传关系最适合的数据结构为( )。
A.向量B.树C图 D.二叉树2.树最合适用来表示( )。
A.有序数据元素 B元素之间具有分支层次关系的数据C无序数据元素 D.元素之间无联系的数据3.树B的层号表示为la,2b,3d,3e,2c,对应于下面选择的( )。
A. la (2b (3d,3e),2c)B. a(b(D,e),c)C. a(b(d,e),c)D. a(b,d(e),c)4.高度为h的完全二叉树至少有( )个结点,至多有( )个结点。
A. 2h_lB.h C.2h-1 D. 2h5.在一棵完全二叉树中,若编号为f的结点存在右孩子,则右子结点的编号为( )。
A. 2iB. 2i-lC. 2i+lD. 2i+26.一棵二叉树的广义表表示为a(b(c),d(e(,g(h)),f)),则该二叉树的高度为( )。
A.3B.4C.5D.67.深度为5的二叉树至多有( )个结点。
A. 31B. 32C. 16D. 108.假定在一棵二叉树中,双分支结点数为15,单分支结点数为30个,则叶子结点数为( )个。
A. 15B. 16C. 17D. 479.题图6-1中,( )是完全二叉树,( )是满二叉树。
10.在题图6-2所示的二叉树中:(1)A结点是A.叶结点 B根结点但不是分支结点C根结点也是分支结点 D.分支结点但不是根结点(2)J结点是A.叶结点 B.根结点但不是分支结点C根结点也是分支结点 D.分支结点但不是根结点(3)F结点的兄弟结点是A.EB.D C.空 D.I(4)F结点的双亲结点是A.AB.BC.CD.D(5)树的深度为A.1B.2C.3D.4(6)B结点的深度为A.1B.2C.3D.4(7)A结点所在的层是A.1B.2C.3D.411.在一棵具有35个结点的完全二叉树中,该树的深度为( )。
第六章树及二叉树一、下面是有关二叉树的叙述,请判断正误(√)1. 若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n—1个非空指针域。
(×)2.二叉树中每个结点的两棵子树的高度差等于1。
(√)3.二叉树中每个结点的两棵子树是有序的。
(×)4.二叉树中每个结点有两棵非空子树或有两棵空子树。
(×)5.二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树(若存在的话)所有结点的关键字值。
(应当是二叉排序树的特点)(×)6.二叉树中所有结点个数是2k-1-1,其中k是树的深度。
(应2i-1)(×)7.二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。
(×)8.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i—1个结点。
(应2i-1)(√)9.用二叉链表法(link-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。
(正确。
用二叉链表存储包含n个结点的二叉树,结点共有2n个链域。
由于二叉树中,除根结点外,每一个结点有且仅有一个双亲,所以只有n-1个结点的链域存放指向非空子女结点的指针,还有n+1个空指针。
)即有后继链接的指针仅n-1个。
(√)10.具有12个结点的完全二叉树有5个度为2的结点。
最快方法:用叶子数=[n/2]=6,再求n2=n-1=5( ) 11、哈夫曼树中没有度为1的结点,所以必为满二叉树。
( )12、在哈夫曼树中,权值最小的结点离根结点最近。
( )13、线索二叉树是一种逻辑结构。
(√)14、深度为K的完全二叉树至少有2K-1个结点。
(√ )15、具有n个结点的满二叉树,其叶结点的个数为(n+1)/2。
(√ )16、前序和中序遍历用线索树方式存储的二叉树,不必使用栈。
(╳ )17、哈夫曼树是带权路径长度最短的树,路径上权值较大的点离根较远。
第六章作业
参见《数据结构题集》第6章部分P38。
1、一棵度为2的树与一棵二叉树有何区别?(题集6.2)
二叉树是颗有序树,但度为2的树则未必有序。
2、假设一棵二叉树的层序序列为ABCDEFGHIJ和中序序列为DBGEHJACIF。
请画
出该树(题集6.29)。
3、假设二叉树如下,请分别写出先序、中序和后序遍历结果,并画出该二叉树
对应的森林。
答:
先序遍历:A B D G C E F H 中序遍历:D G B A E C H F 后序遍历:G D B E H F C A
A
B C
D E F
G H
4、画出与下列已知序列对应的树T。
(题集6.23)
树的先根次序访问的序列为:GFKDAIEBCHJ;
树的后根次序访问的序列为:DIAEKFCJHBG。
5、请编写一个递归算法,将二叉树中所有结点的左、右子树相互交换。
(题集
6.43)
6、6.43 解:
// 按先序交换二叉树的左右子树
Status ExchangeBiTree(BiTree& T)
{
BiTree p;
if(T){
p=T->lchild;
T->lchild=T->rchild;
T->rchild=p;
ExchangeBiTree(T->lchild);
ExchangeBiTree(T->rchild);
}
return OK;
}
7、对于那些所有非叶子结点均有非空左右子树的二叉树,试问:有n个叶子结
点的树中共有多少个结点?
2n-1
8、森林与二叉树的转换。
(题集6.21)
树二叉树
根根
第一个孩子左孩子
右兄弟右孩子
8、选做:请设计按层次顺序(同一层自左向右)遍历二叉树的算法。
(题集6.47)
typedef BiTree QElemType;
#include "c:\Yin\include\Queue.h"
Status LevelOrderTraverse(BiTree& T,Status (*Visit)(TElemType e))
{
QElemType p;
Queue q;
InitQueue(q);
if(T) EnQueue(q,T);
while(!QueueEmpty(q)){
DeQueue(q,p);
Visit(p->data);
if(p->lchild) EnQueue(q,p->lchild);
if(p->rchild) EnQueue(q,p->rchild);
}
return OK;
}
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。