求极值的方法与技巧
- 格式:docx
- 大小:37.33 KB
- 文档页数:3
函数极值求法及应用本文将介绍函数极值求法及其应用。
一、函数极值的定义函数极值是指函数在某一区间内的最大值和最小值。
在函数的导数为0或不存在的点处,函数可能取得极值。
二、求函数极值的方法1. 导数法首先,将函数y=f(x)对x求导得到其导函数y'=f'(x)。
然后,解以下方程组:y'=0或y'不存在求得的解即为函数的极值点。
例如,对于函数y=x^2-2x+1,其导函数y'=2x-2。
令y'=0,得到x=1。
此时,函数取得极小值y=0。
注意:在求解时需要注意导数不存在的情况,例如绝对值函数。
2. 二次函数法对于二次函数y=ax^2+bx+c,当a>0时,该函数的最小值为c-b^2/(4a),当a<0时,该函数的最大值也为c-b^2/(4a)。
例如,对于函数y=x^2-2x+1,其a=1,b=-2,c=1。
因为a>0,所以y的最小值为1-(-2)^2/(4×1)=0。
3. 边界法当函数在一定区间内连续时,其取得极值的点只可能在该区间的边界处或导数不存在的点处。
因此,我们只需要求出函数在该区间的两个端点处的函数值,再比较这两个值和导数不存在的值的大小即可确定极值点。
例如,对于函数y=x^3-3x,当x∈[-1,2]时,极值点只可能在x=-1、x=2或导数不存在的点处。
函数在端点处的值为y(-1)=-2和y(2)=2,导数不存在的点为x=0。
因此,函数在x=0处取得极大值y=0,而在x=-1处取得极小值y=-4。
三、应用函数极值可以在优化问题中起到重要作用。
例如,在最小化成本的问题中,需要确定产量x的大小使得成本最小化。
假设某企业的生产成本函数为y=3x^2-4x+8,其中x为产量,y为成本。
该问题可以转化为求函数y的最小值。
通过求出函数的导数为0的点,我们发现函数在x=2/3处取得最小值y=6.67。
因此,该企业应该保持产量在2/3时,成本会最小。
函数极值求解题技巧在数学中,求解函数的极值是一个经常遇到的问题。
极值是指在一定区间内,函数取得最大值或最小值的点。
解决函数极值问题的方法有很多,下面介绍一些常用的技巧。
1.求导法求导法是求解函数极值的基本方法之一。
主要步骤如下:(1)对给定的函数,将其关于变量求导,得到导数函数。
(2)将导数函数置为0,求解方程。
(3)解得方程的解即为函数的极值点。
(4)通过二阶导数来判断极值的类型:若二阶导数大于0,则该点是极小值点;若二阶导数小于0,则该点是极大值点;若二阶导数等于0,则需要进一步分析。
2.边界值法边界值法适用于区间上包含有限个点的情况。
主要步骤如下:(1)在区间的边界处计算函数值。
(2)比较边界处的函数值,找出最大值或最小值。
(3)这些最大值或最小值都可能是函数的极值。
3.对称性法对称性法适用于具有一定的对称性质的函数。
主要步骤如下:(1)根据函数的对称性特点,找出函数取极值的位置。
(2)通过计算函数在取极值位置的导数,判断极值的类型。
4.二分法二分法适用于函数在一个区间上单调递增或单调递减的情况。
主要步骤如下:(1)找出一个区间,使得函数在该区间上单调递增或单调递减。
(2)取区间的中点,计算中点的函数值。
(3)根据函数值的大小关系,确定下一次迭代的区间。
(4)重复以上步骤,直到找到函数的极值。
5.最大值和最小值的性质对于连续函数,最大值和最小值都会在闭区间内取得。
所以可以先计算出闭区间的边界值,再计算函数在闭区间内的驻点,最终比较这些值找出极值。
6.二次函数的极值对于二次函数,其形式为y=ax^2+bx+c。
当a>0时,函数开口向上,最小值在顶点处取得;当a<0时,函数开口向下,最大值在顶点处取得。
顶点的横坐标为-b/2a,代入函数求得最大值或最小值。
除了以上提到的方法,求解函数极值还可以利用拉格朗日乘数法、柯西不等式等高级方法。
不同的函数具有不同的特点,需要根据具体情况选择合适的方法进行求解。
求极值的方法与技巧
一、求函数极值的最基本方法
1、用微积分中的导数(Derivatives)法。
即要求函数极值问题,可
以将其转化为求解极值点,也就是求求函数的导函数为0时,函数的值最
大最小的解,即求函数的极值点。
2、用泰勒展开(Taylor Series)法。
这是一种利用因式分解法求函
数极值。
如果一个函数f(x)可以被表示为f(x),则它就可以按一定形式
分解成:f(x)=a₁+a₂x+a₃x2+a₄x3....,在这种分解的基础上,再算出
f'(x)=a₂+2a₃x+3a₄x2....,将f'(x)的值设置为0,即可求出此时函数f(x)的极值点。
3、用函数增减(Functional Increasing and Decreasing)法:研
究函数的单调增减性,通过对函数的单调增减性来判断函数的极大值和极
小值。
根据单调性原理,函数在单调递增的区间或单调递减的区间内,极值
只有一个,该函数极值即为极大值或极小值。
当函数在同一区间内的一些
点发生折点时,这个折点对应的函数值,即为函数在整个区间的极值,此
时的折点为函数的极值点。
二、极值点的确定方法
1、求解函数的单调性。
单调性主要是指函数在其中一区间上的曲线
轨迹是单调递增或者是单调递减的。
当函数在区间内的特定点发生折点时,这个折点就是函数的极值点。
2、求解导函数的。
求极值的三种方法一、直接法。
先判断函数的单调性,若函数在定义域内为单调函数,则最大值为极大值,最小值为极小值二、导数法(1)、求导数f'(x);(2)、求方程f'(x)=0的根;(3)、检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。
举例如下图:该函数在f'(x)大于0,f'(x)小于0,在f'(x)=0时,取极大值。
同理f'(x)小于0,f'(x)大于0时,在f'(x)=0时取极小值。
扩展资料:寻求函数整个定义域上的最大值和最小值是数学优化的目标。
如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。
此外,整个定义域上最大值(或最小值)必须是域内部的局部最大值(或最小值),或必须位于域的边界上。
因此,寻找整个定义域上最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小的)一个。
1、求极大极小值步骤:求导数f'(x);求方程f'(x)=0的根;检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。
f'(x)无意义的点也要讨论。
即可先求出f'(x)=0的根和f'(x)无意义的点,再按定义去判别。
2、求极值点步骤:求出f'(x)=0,f"(x)≠0的x值;用极值的定义(半径无限小的邻域f(x)值比该点都小或都大的点为极值点),讨论f(x)的间断点。
上述所有点的集合即为极值点集合。
扩展资料:定义:若函数f(x)在x₀的一个邻域D有定义,且对D中除x₀的所有点,都有f(x)<f(x₀),则称f(x₀)是函数f(x)的一个极大值。
求极值的方法和步骤求极值是高等数学中的一个重要概念。
它是指在一个函数或者一组数据中,寻找出最大值或最小值的过程。
求极值的方法有很多种,下面将为大家介绍一下求极值的常见方法和步骤。
1. 寻找导数为0的点对于一个单变量函数,函数最大值和最小值一定在导数为0的点处出现。
因此,我们可以通过求导数来找到函数的最大值和最小值。
具体的做法是,先对函数进行求导,然后令导数等于0,解出方程的根,即可找到函数的极值点。
不过需要注意的是,只有在导数的定义域中导数为0的点才是函数的极值点。
2. 利用函数的性质对于一些特殊的函数,我们可以利用它们的性质来求其极值。
比如,对于一个凸函数,其极小值出现在函数的两个端点处;对于一个连续函数,其极值只可能出现在其定义域的端点处或者导数为0的点处。
此外,对于一些函数,我们还可以通过对函数图像的观察来判断其极值点的位置,这需要我们具备一定的直觉和分析能力。
3. 利用拉格朗日乘数法拉格朗日乘数法是一种常用的优化方法,可以用来求解带有约束条件的优化问题。
在求极值问题中,我们可以用拉格朗日乘数法来解决导数为0但不满足约束条件的问题。
具体的做法是,将约束条件转化为一个方程,然后构造拉格朗日函数,利用导数为0的条件来确定极值点的位置,最后再将这些极值点和约束条件代入原函数中,求出最终的极值点。
需要注意的是,拉格朗日乘数法只适用于带有等式约束的优化问题。
通过以上三种方法,我们可以较为全面、准确地找到函数的极值点。
在具体应用中,我们需要根据具体问题的特点来选择合适的方法,同时还需要注意对计算过程中可能出现的误差进行调整和处理,保证结果的可靠性。
高考复习专题四—求极值的六种方法求极值是高考数学中常考的一个重要知识点。
掌握求极值的方法能够帮助我们解决一些实际问题,也能够在高考中拿到高分。
下面我们来分析一下求极值的六种方法。
一、函数图象法通过观察函数的图象,我们可以找到函数的极大值和极小值。
要找到函数的极值,首先我们需要画出函数的图象。
然后观察图象,找到曲线上最高点和最低点,这些点就是函数的极大值和极小值。
二、导数法借助导数的性质,我们可以求出函数的极值点。
求极值点的过程分为两步:一是求出函数的导数;二是令导数等于零,解方程求出极值点。
极大值和极小值点都是函数导数等于零的点,但是需要注意导数为零的点不一定都是极值点,还需通过二阶导数判断。
三、拉格朗日乘数法拉格朗日乘数法是一种求极值的常用方法,它可以用来求解具有约束条件的极值问题。
当我们需要在一定条件下最大化或最小化一个函数时,可以利用拉格朗日乘数法。
在解题过程中,我们需要设置一个拉格朗日函数,通过求偏导数找到极值点。
需要注意的是,拉格朗日乘数法的求解过程较为繁琐,需要较强的数学功底。
四、几何法有些极值问题通过几何方法可以得到比较简单的解法。
例如,其中一函数的值随着其中一个变量的增大而增大,那么这个函数的最大值一定在这个变量的取值范围的边界上取到。
同理,这个函数的最小值也在这个变量的取值范围的边界上取到。
五、代数方法有时候,我们可以通过巧妙地构造一个代数式来求解极值问题。
可以使用变量代换、平方等技巧,将原问题转化为一个更容易求解的问题。
例如,利用平方差公式可以将一个含有平方项的多项式转化为一个差的平方的形式,从而更容易求得极值点。
六、综合运用方法有些问题的求极值过程比较复杂,需要综合运用上述多种方法来求解。
在解题过程中,我们可以根据题目的要求和条件,灵活地选择合适的方法来求解。
以上是求极值的六种方法的解析。
在高考复习中,我们需要理解这些方法的原理和应用场景,并通过大量的练习来提高解题的能力。
微讲座(四)——求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法.一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.某高速公路同一直线车道上有同向匀速行驶的轿车和货车,其速度大小分别为v 1=30 m/s ,v 2=10 m/s ,轿车在与货车距离x 0=25 m 时才发现前方有货车,此时轿车只是立即刹车,两车可视为质点.试通过计算分析回答下列问题:(1)若轿车刹车时货车以v 2匀速行驶,要使两车不相撞,轿车刹车的加速度大小至少为多少?(2)若该轿车刹车的最大加速度为a 1=6 m/s 2,轿车在刹车的同时给货车发信号,货车司机经t 0=2 s 收到信号并立即以加速度大小a 2=2 m/s 2加速前进,两车会不会相撞?[解析] (1)两车恰好不相撞的条件是轿车追上货车时两车速度相等,即 v 1-at 1=v 2①v 1t 1-12at 21=v 2t 1+x 0②联立①②代入数据解得:a =8 m/s 2. (2)假设经过时间t 后,两车的速度相等 即v 1-a 1t =v 2+a 2(t -t 0)此时轿车前进的距离x 1=v 1t -12a 1t 2货车前进的距离x 2=v 2t 0+v 2(t -t 0)+12a 2(t -t 0)2代入数据解得:x 1=63 m ,x 2=31 m 因为:x 1-x 2=32 m>x 0,两车会相撞. [答案] (1)8 m/s 2 (2)会相撞 二、二次函数极值法 对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a,当a <0时,y 有最大值y max =4ac -b 24a.也可以采取配方法求解.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以a =3 m/s 2的加速度开始行驶,恰在这一时刻一辆自行车以v 自=6 m/s 的速度匀速驶来,从旁边超过汽车.试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?[解析] 设汽车在追上自行车之前经过时间t 两车相距最远,则 自行车的位移:x 自=v 自t汽车的位移:x 汽=12at 2则t 时刻两车的距离Δx =v 自t -12at 2代入数据得:Δx =-32t 2+6t当t =-62×⎝⎛⎭⎫-32 s =2 s 时,Δx 有最大值Δx max =0-624×⎝⎛⎭⎫-32 m =6 m对Δx =-32t 2+6t 也可以用配方法求解:Δx =6-32(t -2)2显然,当t =2 s 时,Δx 最大为6 m. (说明:此题也可用临界法求解) [答案] 见解析 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得:L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为:F min =1335N. [答案] (1)3 m/s 2 8 m/s(2)夹角为30°时,拉力最小,为1335N四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值.质量为m 的物体与水平地面间的动摩擦因数为μ,用图解法求维持物体做匀速运动的最小拉力.[解析] 由F fF N =μ知,不论F f 、F N 为何值,其比值恒定由图知F fF N=μ=tan α,即F ′的方向是确定的.由平衡条件推论可知:mg 、F ′、F 构成闭合三角形.显然,当F ⊥F ′时,F 最小.F min =mg sin α=mg tan α1+tan 2 α=μmg1+μ2.(说明:此题也可用三角函数法求解.) 物体受力分析如图. 由平衡条件得:F ·cos θ=F f ①F ·sin θ+F N =mg ② 又F f =μF N ③联立①②③得:F =μmgcos θ+μsin θ令sin α=11+μ2,cos α=μ1+μ2 则F =μmg1+μ2 sin (α+θ)当sin(α+θ)=1时,F min =μmg1+μ2.[答案] μmg1+μ2五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小.在一次国际城市运动会中,要求运动员从高为H 的平台上A 点由静止出发,沿着动摩擦因数为μ的滑道向下运动到B 点后水平滑出,最后落在水池中.设滑道的水平距离为L ,B 点的高度h 可由运动员自由调节(取g =10 m/s 2).(1)求运动员到达B 点的速度与高度h 的关系.(2)运动员要达到最大水平运动距离,B 点的高度h 应调为多大?对应的最大水平距离x max 为多少?(3)若图中H =4 m ,L =5 m ,动摩擦因数μ=0.2,则水平运动距离要达到7 m ,h 值应为多少?[解析] (1)设斜面长度为L 1,斜面倾角为α,根据动能定理得mg (H -h )-μmgL 1cos α=12m v 20①即mg (H -h )=μmgL +12m v 20②v 0=2g (H -h -μL ).③ (2)根据平抛运动公式 x =v 0t ④ h =12gt 2⑤ 由③④⑤式得x =2(H -μL -h )h ⑥由⑥式可得,当h =12(H -μL )时水平距离最大x max =L +H -μL .(3)在⑥式中令x =2 m ,H =4 m ,L =5 m ,μ=0.2 则可得到-h 2+3 h -1=0 求得h 1=3+52m =2.62 m ;h 2=3-52m =0.38 m.[答案] 见解析 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.(原创题)如图所示,顶角为2θ的光滑绝缘圆锥,置于竖直向上的匀强磁场中,磁感应强度为B ,现有质量为m ,带电量为-q 的小球,沿圆锥面在水平面内做圆周运动,求小球做圆周运动的最小半径.[解析] 小球受力如图,设小球做圆周运动的速率为v ,轨道半径为R . 由牛顿第二定律得:水平方向:q v B -F N cos θ=m v 2R竖直方向:F N sin θ-mg =0 两式联立得:m v 2R-q v B +mg cot θ=0 因为速率v 为实数,故Δ≥0 即(qB )2-4⎝⎛⎭⎫m R mg cot θ≥0 解得:R ≥4m 2g cot θq 2B 2故最小半径为:R min =4m 2g cot θq 2B 2.[答案] 4m 2g cot θq 2B 21.(单选)(2016·广州模拟)如图所示,船在A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4 m/s ,则船从A 点开出的最小速度为( )A .2 m/sB .2.4 m/sC .3 m/sD .3.5 m/s 解析:选B.AB 方向为合速度方向,由图可知,当v 船⊥AB 时最小,即v 船=v 水·sin 37°=2.4 m/s ,B 正确.2.(单选)如图所示,在倾角为θ的斜面上方的A 点处放置一光滑的木板AB ,B 端刚好在斜面上.木板与竖直方向AC 所成角度为α,一小物块自A 端沿木板由静止滑下,要使物块滑到斜面的时间最短,则α与θ角的大小关系应为( )A .α=θB .α=θ2C .α=θ3D .α=2θ解析:选B.如图所示,在竖直线AC 上选取一点O ,以适当的长度为半径画圆,使该圆过A 点,且与斜面相切于D 点.由等时圆知识可知,由A 沿木板滑到D 所用时间比由A 到达斜面上其他各点所用时间都短.将木板下端与D 点重合即可,而∠COD =θ,则α=θ2.3.(2016·宝鸡检测)如图所示,质量为m 的物体,放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 的水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.解析:(1)斜面倾角为30°时,物体恰能匀速下滑,满足 mg sin 30°=μmg cos 30° 解得μ=33.(2)设斜面倾角为α,受力情况如图,由匀速直线运动的条件: F cos α=mg sin α+F f F N =mg cos α+F sin α F f =μF N解得:F =mg sin α+μmg cos αcos α-μsin α当cos α-μsin α=0,即cot α=μ时,F →∞ 即“不论水平恒力F 多大”,都不能使物体沿斜面向上滑行,此时,临界角θ0=α=60°. 答案:(1)33(2)60°4.如图所示,质量为m =0.1 kg 的小球C 和两根细绳相连,两绳分别固定在细杆的A 、B 两点,其中AC 绳长l A =2 m ,当两绳都拉直时,AC 、BC 两绳和细杆的夹角分别为θ1=30°、θ2=45°,g =10 m/s 2.问:细杆转动的角速度大小在什么范围内,AC 、BC 两绳始终张紧?解析:设两细绳都拉直时,AC 、BC 绳的拉力分别为F TA 、F TB ,由牛顿第二定律可知: 当BC 绳中恰无拉力时,F T A sin θ1=mω21l A sin θ1① F TA cos θ1=mg ②由①②解得ω1=1033rad/s. 当AC 绳中恰无拉力时,F TB sin θ2=mω22l A sin θ1③ F TB cos θ2=mg ④ 由③④解得ω2=10 rad/s.所以,两绳始终有张力时细杆转动的角速度的范围是 1033rad/s <ω<10 rad/s. 答案: 1033rad/s <ω<10 rad/s 5.(原创题)一人在距公路垂直距离为h 的B 点(垂足为A ),公路上有一辆以速度v 1匀速行驶的汽车向A 点行驶,当汽车距A 点距离为L 时,人立即匀速跑向公路拦截汽车,求人能拦截住汽车的最小速度.解析:法一:设人以速度v 2沿图示方向恰好在C 点拦住汽车,用时为t .则L +h tan α=v 1t ① hcos α=v 2t ② 联立①②两式得:v 2=h v 1L cos α+h sin α=h v 1L 2+h 2⎝ ⎛⎭⎪⎫L L 2+h 2cos α+h L 2+h 2sin α由数学知识知:v 2min =h v 1L 2+h 2 .法二:选取汽车为参照物.人正对汽车运动即可拦住汽车,即人的合速度方向指向汽车.其中一分速度大小为v 1,另一分速度为v 2,当v 2与合速度v 垂直时,v 2最小,由相似三角形知识可得:v 2v 1=h L 2+h2 v 2=h v 1L 2+h 2 .答案:h v 1L 2+h 26.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?解析:(1)设绳断后球飞行时间为t ,由平抛运动规律,有竖直方向14d =12gt 2,水平方向d =v 1t解得v 1=2gd .由机械能守恒定律有12m v 22=12m v 21+mg ⎝⎛⎭⎫d -34d 得v 2=52gd . (2)设绳能承受的最大拉力大小为F T ,这也是球受到绳的最大拉力大小,即球运动到最低点时球所受到的拉力.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F T -mg =m v 21R得F T =113mg .(3)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F T -mg =m v 23l 得v 3=83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1,竖直方向有d -l =12gt 21,水平方向x =v 3t 1 得x =4l (d -l )3当l =d 2时,x 有最大值,x max =233d .答案:见解析 7.(原创题)如图所示,电动势为E 、内阻为r 的电源给一可变电阻供电,已知可变电阻变化范围为0~R m ,且R m >r .当R 为何值时功率最大,最大功率为多少?解析:设可变电阻为R ,则I =ER +rP =I 2R =E 2(R +r )2·R ①法一:(配方法)P =E 2(R -r )2R +4r显然,当R =r 时,功率最大,P max =E 24r.法二:(判别式法)将①式整理成关于R 的二次方程 PR 2+(2Pr -E 2)R +Pr 2=0 由于R 为实数,故Δ≥0 即(2Pr -E 2)2-4P 2r 2≥0 解得:P ≤E 24r最大值为P max =E 24r ,代入①式得R =r .答案:见解析 8.质量分别为M 、m 的斜面体A 、B 叠放在光滑水平面上,斜面体倾角为α,两者之间的动摩擦因数为μ(μ<tan α),今用水平外力F 推B ,使两者不发生滑动,假设最大静摩擦力等于滑动摩擦力,求F 的取值范围.(已知:m =3 kg ,M =8 kg ,μ=0.5,α=37°.)解析:B 恰好不向下滑动时,所需F 最小,此时B 受到最大静摩擦力沿斜面向上.如图甲所示.设两者共同的加速度为a 1,对整体有: F min =(M +m )a 1 对B 有:F min +F f1cos α-F N1sin α=ma 1 F f1sin α+F N1cos α=mg F f1=μ·F N1联立以上各式解得:F min =m (M +m )(sin α-μcos α)M (cos α+μsin α)g =7.5 N甲乙B恰好不上滑时所需F最大,此时B受最大静摩擦力沿斜面向下.如图乙所示.设共同加速度为a2,对整体有:F max=(M+m)a2对B有:F max-F f2cos α-F N2sin α=ma2F N2cos α=mg+F f2sin αF f2=μF N2联立以上各式解得:F max=m(M+m)(sin α+μcos α)M(cos α-μsin α)g=82.5 N故取值范围为7.5 N≤F≤82.5 N.答案:7.5 N≤F≤82.5 N。
根据函数图像求出极值点与零点在数学中,函数是一种描述数值之间关系的工具。
图像是函数的可视化表示,通过观察函数图像,我们可以推断出函数的一些性质,例如极值点和零点。
本文将探讨如何根据函数图像求出极值点与零点,并介绍一些常见的方法和技巧。
一、极值点的求解极值点是函数图像上的局部极大值或极小值点,也称为极点。
求解极值点的方法有很多种,下面将介绍两种常用的方法:导数法和二次导数法。
1. 导数法导数法是一种基于微积分的方法,通过求函数的导数来确定函数的极值点。
具体步骤如下:首先,我们需要找到函数图像上的所有驻点,即导数为零的点。
这些点可能是极值点,也可能是拐点。
然后,我们计算这些驻点的导数的符号。
如果导数在驻点的左侧为负,右侧为正,则该驻点是一个极小值点;如果导数在驻点的左侧为正,右侧为负,则该驻点是一个极大值点。
最后,我们可以通过进一步的分析和计算,确定极值点的具体数值。
2. 二次导数法二次导数法是导数法的一种扩展,通过计算函数的二次导数来确定函数的极值点。
具体步骤如下:首先,我们计算函数的一阶导数和二阶导数。
然后,我们找到所有使得二阶导数等于零的点。
这些点可能是极值点,也可能是拐点。
接下来,我们计算这些点的一阶导数的符号。
如果一阶导数在该点的左侧为负,右侧为正,则该点是一个极小值点;如果一阶导数在该点的左侧为正,右侧为负,则该点是一个极大值点。
最后,我们通过进一步的分析和计算,确定极值点的具体数值。
二、零点的求解零点是函数图像上的横坐标为零的点,也称为根。
求解零点的方法有很多种,下面将介绍两种常用的方法:图像法和方程法。
1. 图像法图像法是一种直观的方法,通过观察函数图像来估计零点的位置。
具体步骤如下:首先,我们绘制函数的图像。
然后,我们观察函数图像与x轴的交点,即横坐标为零的点。
这些点就是函数的零点。
最后,我们可以通过进一步的计算和逼近,确定零点的具体数值。
2. 方程法方程法是一种基于方程求解的方法,通过将函数转化为方程来求解零点。
高中物理求极值方法与常用结论总结高中物理中,求极值是一个重要的数学应用问题。
很多物理问题都需要通过求极值来进行分析和解决,因此掌握求极值方法和常用结论是十分重要的。
下面将为你总结高中物理求极值的方法和常用结论。
一、求极值的方法1.寻找最值法:通过寻找物理问题的最大值或最小值来求出极值。
2.解析法:通过建立数学模型,对其求导或使用其他数学方法得出极值。
3.几何方法:通过几何图形的性质和分析来求出极值。
二、常用结论1.极大值与极小值:对于一元函数f(x),若在x=a处,f'(a)=0,并且在a点左侧由正变负,在a点右侧由负变正,则a称为f(x)的极大值点;若在x=b处,f'(b)=0,并且在b点左侧由负变正,在b点右侧由正变负,则b称为f(x)的极小值点。
2.拐点与拐点性质:对于函数f(x),若在x=c处f''(c)=0,并且在c点左侧由负变正,在c点右侧由正变负,则c称为f(x)的拐点。
拐点的性质为:由凹变凸的拐点称为极小值点,由凸变凹的拐点称为极大值点。
3.一元二次函数的最值结论:一元二次函数y=ax^2+bx+c(其中a≠0)的最值点可以通过如下结论求得:当a>0时,最小值为:y_min=c-b^2/(4a)当a<0时,最大值为:y_max=c-b^2/(4a)4.相对速度最小值结论:当两个运动着的物体相对于一些静止参考系运动时,它们的相对速度最小值出现在它们的运动方向夹角为0°或者180°时。
5.成千上万法:在解决物理问题中,当数据较多时,可以通过逐个数值代入进行计算。
6.速度为零但加速度不为零时的移动物体:当一个物体在其中一时刻速度为零(静止),但加速度不为零时,可以通过如下结论求出物体在这一时刻的位置:位移s = (1/2)at^2,其中a为加速度,t为时间。
7.物体自由落体的最高点:自由落体的物体在竖直上抛运动中,最高点时速度为零,也就是物体停止上升,准备掉下来。
求函数最值极值的方法
1、配方法:形如的函数,根据一次函数的极值点或边界点的取值确定函数的最值。
2、判别式法:形如的分式函数,将其化成系数含有y的关于x的二次方程。
由于,.≥0,求出y的最值,此种方法易产生增根,因而要对取得最值时对应的x值是否有解检验。
3、利用函数的单调性:首先明确函数的定义域和单调性,再求最值。
4、利用均值不等式,形如的函数,及≥s,注意正,定,等的应用条件,即:a,b均为正数,是定值,a=b的等号是否成立。
5、换元法:形如的函数,令,反解出x,代入上式,得出关于t的函数,注意t的定义域范围,再求关于t的函数的最值。
还有三角换元法,参数换元法。
6、数形结合法形:如将式子左边看成一个函数,右边看成一个函数,在同-坐标系作出它们的图象,观察其位置关系,利用解析几何知识求最值。
求利用直线的斜率公式求形如的最值。
7、利用导数求函数最值:首先要求定义域关于原点对称然后判断f(x)和f(x)的关系:若f(x)=f(-x),偶函数;若f(x)=-f(-x),奇函数。
求极值的方法与技巧极值一般分为无条件极值和条件极值两类。
无条件极值问题即是函数中的自变量只受定义域约束的极值问题;条件极值问题即是函数中的自变量除受定义域约束外,还受其他条件限制的极值问题。
一、求解无条件极值的常用方法1.利用二阶偏导数之间的关系和符号判断取不取极值及极值的类型定理1(充分条件) 设函数z =f (x , y )在点(x 0, y 0)的某邻域内连续且有一阶及二阶连续偏导数, 又f x (x 0, y 0)=0, f y (x 0, y 0)=0, 令f xx (x 0, y 0)=A , f xy (x 0, y 0)=B , f yy (x 0, y 0)=C ,则f (x , y )在(x 0, y 0)处是否取得极值的条件如下:(1) AC -B 2>0时具有极值, 且当A <0时有极大值, 当A >0时有极小值;(2) AC -B 2<0时没有极值;(3) AC -B 2=0时可能有极值, 也可能没有极值。
极值的求法:第一步 解方程组f x (x , y )=0, f y (x , y )=0, 求得一切实数解, 即可得一切驻点。
第二步 对于每一个驻点(x 0, y 0), 求出二阶偏导数的值A 、B 和C 。
第三步 定出AC -B 2的符号, 按定理1的结论判定f (x 0, y 0)是否是极值、是极大值 还是极小值。
应注意的几个问题:⑴对于二元函数z =f (x , y ),在定义域内求极值这是一个比较适用且常用的方法, 但是这种方法对三元及更多元的函数并不适用;⑵AC -B 2=0时可能有极值, 也可能没有极值,还需另作讨论;⑶如果函数在个别点处的偏导数不存在,这些点当然不是驻点,但也可能是极值点,讨论函数的极值问题时这些点也应当考虑。
例1求函数的极值。
2222()()xy z x y e -+=+解 令222222()22()2(1)02(1)0x y x y z x x y e x z y x y e y-+-+∂⎧=--=⎪∂⎪⎨∂⎪=--=∂⎪⎩得驻点及(0,0)22 1.x y +=又由22222222()2[2(13)4(1)]x y zy x x x y e x-+∂=-----∂ 22222()4(2)x y zxy x y e x y-+∂=---∂∂ 22222222()2[2(13)4(1)]x y z x y y x y ey -+∂=-----∂ 22(0,0)2,z A x∂==∂2(0,0)0,z B x y ∂==∂∂22(0,0)2zC y∂==∂240,B AC A ∆=-=-<>故为极小值。
求极值的方法与技巧求极值是数学中的重要问题,涉及到函数的最大值和最小值。
在解决求极值的问题时,有一些常用的方法和技巧可以帮助我们更好地处理。
一、导数法求极值最常用的方法之一就是导数法。
导数是函数变化率的一种测量方式,通过求函数的导数,可以找到函数的临界点,即函数取得极值的点。
1.寻找导数为零的点极值点在导函数为零的点上,因此可以通过求导数,令导数等于零并解方程,得到函数的极值点。
求导数时,需要注意函数定义域和导数存在的条件。
2.寻找导数不存在的点导数不存在的点也可能是函数的极值点,可以通过求导数,找到函数导数不存在的点。
3.寻找导数符号变化的点如果函数在其中一区间内导数的符号发生变化,那么这个区间内一定存在极值点。
可以通过列出导数符号变化的条件,找到极值点所在的区间。
二、函数图像法函数图像是函数性质的直观表达。
通过观察函数的图像特征,可以找到函数的极值点。
1.求函数的零点函数零点是函数与横轴交点的横坐标,也是函数的极值点。
可以通过求解函数的零点,得到函数的极值点。
2.寻找函数上下凹区域函数在上凹区域和下凹区域会有极值点存在。
可以通过函数的二阶导数(二阶导数大于零的区域为上凹区域,小于零的区域为下凹区域)找到函数的凹凸性,从而确定极值点所在的区域。
3.观察振荡特征如果函数在其中一区间内振荡变化,那么该区间内一定存在极值点。
可以通过观察函数的振荡特征,找到函数的极值点。
三、辅助工具法除了导数法和函数图像法外,还可以借助辅助工具来求极值。
1.使用微积分软件微积分软件可以帮助我们对函数进行求导和求积等计算,大大简化了求极值的过程。
可以通过微积分软件的计算功能,得出函数的极值点。
2.英文和图表分析有时,通过阅读相关文献或分析数据图表,我们可以发现规律,从而找到函数的极值点。
这种方法可以在应用领域中得到广泛应用。
总结起来,求取极值的方法与技巧主要包括导数法、函数图像法和辅助工具法。
其中,导数法是求解极值最常用的方法,通过求函数的导数,找到其临界点即为极值点;函数图像法通过观察函数图像特征、求函数的零点和凹凸区域来找到极值点;辅助工具法则借助于微积分软件、英文和图表分析等辅助工具来求解极值。
数学解决函数极值的三种方法函数的极值指的是函数在某个区间内取得的最大值或最小值。
求解函数的极值是数学中的重要问题之一,有着广泛的应用。
本文将介绍三种常用的数学方法来解决函数的极值问题。
一、导数法导数法是求解函数极值最常用的方法之一。
该方法基于导数的性质,通过求函数的导数来研究函数在不同点的变化情况。
假设函数f(x)在[a, b]区间内连续可导。
下面是求解函数极值的步骤:1. 求出函数f(x)的导数f'(x)。
2. 求出导数f'(x)的零点,即解方程f'(x) = 0。
3. 求出[a, b]区间内导数f'(x)的极值点,即对导数f'(x)求导,得到f''(x),再求出f''(x) = 0的解。
4. 将[a, b]区间内得到的所有解代入原函数f(x)中,得出这些点对应的函数值。
5. 比较得出的函数值,找出最大值和最小值。
导数法求解函数极值的优点是简单易懂,只需要求导和解方程,相对较快。
但该方法的缺点是依赖函数的可导性,对于非连续或不可导的函数不适用。
二、一元二次函数法一元二次函数法是解决函数极值问题的另一种常用方法。
该方法适用于形如f(x) = ax² + bx + c的二次函数。
下面是使用一元二次函数法求解函数极值的步骤:1. 将函数f(x)化为顶点形式,即使用平方完成或配方法将函数转化为f(x) = a(x-h)² + k的形式。
2. 根据一元二次函数的性质,当a>0时,函数在顶点(h, k)处取得最小值;当a<0时,函数在顶点(h, k)处取得最大值。
3. 找出顶点的横坐标h,即x = -b/2a。
代入f(x),求得函数的极值。
一元二次函数法的优点是适用范围广,并且可以直观地得到函数的极值点。
但对于不是二次函数的情况,该方法并不适用。
三、二阶导数法二阶导数法是一种更加精确的求解函数极值的方法。
高中物理-求极值的六种方法求极值是数学中的重要问题,解决这个问题不仅有助于我们理解函数的性质,还有助于应用于很多实际问题的求解。
下面介绍六种常用的方法求极值:导数法、辅助线法、割线法、牛顿法、拉格朗日乘数法和试探法。
一、导数法:导数法是最常见,也是最基本的求极值方法。
极值点处的导数为零或不存在。
1.求导数:设函数y=f(x),首先求出导数f'(x)。
2.导数为零:令f'(x)=0,得出x的值。
3.导数不存在:检查导数在f'(x)为零的点附近是否存在极值点。
二、辅助线法:辅助线法是通过构造一条辅助线,将函数转化为一个变量的方程,然后通过解方程来求解极值点。
1.构造辅助线:根据函数的特点,选取一个合适的辅助线方程(比如斜率为1或-1),将函数转化为一个变量的方程。
2.解方程:将辅助线方程和原函数方程联立,解得x的值。
3.求解极值点:将x的值代入原函数方程,求出对应的y值。
三、割线法:割线法是通过构造一条割线,通过不断迭代来逼近极值点。
1.选择初始值:选择一个合适的初始值x0。
2.构造割线:构造一条过(x0,f(x0))和(x1,f(x1))两点的割线,其中x1=x0-λf(x0),λ是一个合适的步长。
3.迭代求值:迭代求解极值点,即不断重复步骤2,直到割线趋近于极值点。
四、牛顿法:牛顿法利用函数的导数和二阶导数的信息来逼近极值点,是一种高效的求解极值的方法。
1.选择初始值:选择一个合适的初始值x0。
2.迭代求值:根据牛顿迭代公式x1=x0-f(x0)/f'(x0),不断迭代求解极值点,直到满足结束条件。
五、拉格朗日乘数法:拉格朗日乘数法是一种求解约束条件下极值问题的方法,适用于那些涉及多个变量和多个约束条件的问题。
1. 列出函数和约束条件:设函数为f(x1, x2, ..., xn),约束条件为g(x1, x2, ..., xn)=c。
2. 构造拉格朗日函数:构造拉格朗日函数L(x1, x2, ..., xn, λ) = f(x1, x2, ..., xn) + λ(g(x1, x2, ..., xn)-c),其中λ是拉格朗日乘数。
求极值的若干方法一、导数法导数法是求函数极值最常用的方法之一、通过计算函数的导数并将其置为0,可以找到函数的驻点。
驻点即为函数可能的极值点。
对驻点进行二阶导数测试,如果二阶导数为正则为极小值点,如果二阶导数为负则为极大值点。
二、边界点法对于定义在一定范围内的函数,其极值点可能出现在这个范围的边界上。
因此,通过计算函数在边界点处的值,并与内部驻点的值进行比较,可以得到函数的极值。
三、拉格朗日乘数法拉格朗日乘数法适用于带有约束条件的优化问题。
对于求解函数在约束条件下的极值问题,通过引入拉格朗日乘数,将约束条件加入到目标函数中,然后对引入的约束条件和目标函数进行求导,可以得到关于约束条件和目标函数的一组方程,通过求解这组方程可以得到极值点。
四、牛顿法牛顿法是一种迭代法,通过不断地进行线性逼近来逐步逼近极值点。
该方法通过迭代逼近函数的根,利用函数的一阶导数和二阶导数进行求解。
通过不断迭代,可以逐步逼近极值点。
五、切线法切线法是一种简单但有效的求解极值的方法。
切线法基于函数在极值点处的切线垂直于函数曲线的性质。
首先选择一个初始点,然后沿着函数曲线进行迭代,在每一步迭代中,找到当前点处的切线,然后将切线与坐标轴相交的点作为下一步的迭代点,直至找到极值点。
六、割线法割线法是一种介于切线法和牛顿法之间的方法。
该方法适用于函数的导数不能很容易地求解的情况。
割线法通过选择两个初始点,然后计算这两个点处的斜率,使用割线的性质来逼近极值点。
通过不断迭代计算新的割线与x轴相交的点,可以逐步逼近极值点。
七、二分法二分法适用于具有单调性的函数的极值求解。
该方法通过选择一个区间,然后将其一分为二,比较中点和两个区间端点处函数的值,缩小区间范围,直至找到极值点。
八、遗传算法遗传算法是一种模拟进化过程的优化算法,常用于求解复杂问题中的极值。
该方法模拟生物进化的过程,通过随机生成一组初始解,然后通过交叉、变异等操作对解进行改进和演化,最终得到一个相对较优的解。
极值的求解及应用极值是数学分析中的重要概念,指的是函数在某个定义域内取得的最大值和最小值。
极值的求解及应用是数学分析中的基础内容之一,涉及到函数的最优化问题以及其在各个科学领域中的实际应用。
一、极值的求解方法常见的求解函数极值的方法有以下几种:一阶导数法、二阶导数法、拉格朗日乘数法。
1. 一阶导数法:使用一阶导数可以求得函数的极值点。
如果函数在极值点处导数为零,那么这个点就是函数的极值点,同时要按照函数的性质确定是极大值还是极小值。
然而,导数为零并不一定保证这个点是极值点,还需要使用二阶导数进行进一步的判定。
2. 二阶导数法:使用二阶导数可以判定函数在极值点处的极值类型。
如果函数在某个点的一阶导数为零,并且二阶导数大于零,那么这个点就是函数的极小值点;反之,如果二阶导数小于零,那么这个点是函数的极大值点。
3.拉格朗日乘数法:拉格朗日乘数法适用于求解带有约束条件的最优化问题。
对于有n个变量和m个约束条件的最优化问题,可以构建一个泛函函数,通过使用拉格朗日乘数法,将约束条件与目标函数结合起来,并通过求解泛函函数的偏导数为零来求得极值点。
二、极值应用的例子极值的求解与应用在日常生活和各个学科中都有广泛的应用。
以下是几个极值应用的例子:1. 经济学中的利润最大化问题:在市场经济中,企业通过确定合适的产量与售价来达到最大化利润的目标。
利用一阶导数法,可以求得利润函数的极值点,从而确定适当的产量和价格。
2.物理学中的运动最优化问题:在物理学中,例如弹道学中,要求在给定条件下,使得物体的飞行轨迹距离最远或时间最短。
通过构建合适的数学模型和方程,利用导数法可以求得极值点,从而得到最优解。
3. 机器学习中的模型优化问题:在机器学习中,通过构建合适的数学模型,可以将其视为一个优化问题。
利用梯度下降算法,通过求解模型参数的极值点,可以找到最优的模型参数,从而实现模型的优化。
4. 人口学中的人口增长问题:人口学研究中经常需要解决人口增长的模型和问题。
求函数极值的若干方法函数极值是数学中一个重要的概念,用于描述函数在一些点上取得的最大值或最小值。
求函数极值的方法有很多种,下面将介绍一些常见的方法,包括微积分法和图像法。
一、微积分法1.导数法:函数在极值点上的导数为0,因此可以通过求导数的方法来寻找函数的极值点。
具体步骤如下:a.首先求出函数的导数;b.解方程f'(x)=0,求出所有导数为0的点,这些点就是函数的可能极值点;c.求出这些可能极值点对应的函数值,找出最大值或者最小值。
2.二阶导数法:函数在极值点上的二阶导数有特殊的性质。
具体步骤如下:a.首先求出函数的导数和二阶导数;b.解方程f'(x)=0,求出所有导数为0的点,这些点就是函数的可能极值点;c.计算这些可能极值点对应的二阶导数的值。
如果f''(x)>0,则函数在该点上有极小值;如果f''(x)<0,则函数在该点上有极大值。
3.极值判别法:对于一些特殊的函数,可以利用极值判别法来判断函数的极值。
常见的极值判别法有如下几种:a.变号法:判断函数在极值点左右两侧的变化趋势,如果左侧是增量,右侧是减量,则函数在该点上有极大值;如果左侧是减量,右侧是增量,则函数在该点上有极小值。
b.拐点法:寻找函数的拐点,拐点是函数的导数的极值点。
如果函数在拐点上的二阶导数大于0,则函数在该点上有极小值;如果函数在拐点上的二阶导数小于0,则函数在该点上有极大值。
c.边界法:求解函数在区间的边界点上的函数值,将这些函数值与函数的内部极值点的函数值比较,找出最大值或最小值。
二、图像法1.函数图像法:通过观察函数的图像来估计函数的极值点。
函数的极值点对应函数图像上的最高点或最低点。
2.导数图像法:通过观察函数的导数图像来判断函数的极值点。
导数的图像上的极值点对应原函数的极值点。
需要注意的是,以上的方法仅仅是一些基本的求函数极值的方法,对于特殊的函数,可能需要应用更复杂的方法来求解。
三步求极值法利用导数讨论函数的极值,是高中数学中极其常见的题型,下面总结出其一般的解题步骤及注意点,供同学们学习时参考。
一:三步骤利用导数方法求函数的极值通常按以下的三个步骤进行:第一步:求导数()f x ';第二步:求方程()f x '=0的所有实数根0x ;第三步:列表,考察在每个根0x 附近,从左到右,导数()0x f 的符号如何变化,如果()f x '的符号有正变负,则()0x f 是极大值;如果()f x '的符号有负变正,则()0x f 是极小值;如果()f x '的符号不变,则()0x f 不是函数的极值。
二:注意点⑴可导函数的极值点是倒数为零的点,但是导数为零的点不一定是极值点,即0x 是可导函数()x f 的极值点是()0f x '=的充分但不必要条件,如函数()3x x f =,有()00f '=,但0=x 不是极值点。
⑵可导函数()x f 在点0x 处取得极值的充要条件是()00f '=,且在0x 左侧与右侧()f x '的符号不同。
三:典例分析例1 求函数()3186223+-+=x x x x f 的极值。
分析:先求()f x ',再求方程()0f x '=所有的根,再列表,看()f x '符号变化,得到极值。
解:由题意,得()f x '181262-+=x x ,令()0f x '=,解得1,321=-=x x , 当x 变化时,,y 与y 的变化情况,如下表:当3-=x 时,y 有极大值57当1=x 时,y 有极大值-7。
评注:判断函数有无极值有两种情况:其一是找出导数等于零的点,再确定该点左右导数的符号和函数的单调性,最后确定出极大值或极小值;其二是找出导数不存在的点即函数不可导点,再判断该点左右导数的符号或函数的单调性,最后确定其极值。
例2:求函数xx y 1+=的极值。
求极值的方法与技巧
求极值(即最大值或最小值)是数学中的一个重要问题,对于实际问
题的解决非常有帮助。
在解决求极值问题时,有几种方法和技巧可以帮助
我们找到最优解。
一、导数法
导数法是求取函数极值的一种重要方法。
它的基本思想是通过求取函
数的导数来研究函数的增减性,从而得到函数的最值。
1.确定函数的定义域:首先需要确定函数的自变量范围,即函数是定
义在哪个区间上的。
2.求导数:对于给定的函数,求取其导函数。
3.找到导数为零的点:求解导函数等于零的方程,在这些点处函数的
导数为零,也就是函数的极值点。
4.检查极值:计算极值点的函数值,比较得出最大值或最小值。
例如,对于函数f(x)=x^2-4x+3,我们可以通过求导数的方法来求取
极值。
首先求导函数f'(x)=2x-4,然后将导函数等于零,得到方程2x-4=0,解出x=2
接下来,将x=2代入原函数中,得到f(2)=(2)^2-4(2)+3=-1
所以,函数f(x)的极小值为-1,当且仅当x=2时。
二、二次型矩阵法
对于二次型矩阵,我们可以通过计算其特征值和特征向量来求取极值。
1.构造二次型矩阵:将函数转化为一个二次型矩阵,即通过展开函数,并将其写成矩阵的形式。
2.求取特征值和特征向量:计算二次型矩阵的特征值和特征向量。
3.判断极值:根据特征值的正负情况来判断函数的极值。
如果特征值都大于零,那么函数有一个极小值。
如果特征值都小于零,那么函数有一个极大值。
如果特征值既有正数又有负数,那么函数没有极值。
三、拉格朗日乘数法
拉格朗日乘数法是一种求解约束问题的极值方法,可用于求解带有约
束条件的极值问题。
1.确定函数和约束条件:首先需要将函数和约束条件写出来。
2.构造拉格朗日函数:将约束条件乘以一个拉格朗日乘子,并与原函
数相加,形成一个新的函数。
3.求取梯度:对构造的拉格朗日函数求取梯度,得到等于零的方程组。
4.解方程组:求解方程组,得到自变量的值。
5.检查极值:将求得的自变量代入原函数中,求取函数的极值。
这种方法常常应用于有约束条件的最优化问题,例如求解最大面积、
最小周长等问题。
在实际问题中,还可以利用图像的性质和变化趋势来判断函数的极值。
此外,还有一些其他的数学工具和技巧,如泰勒展开、微分方程方法等,
也可以用于求取极值。
重要的是要有较好的数学基础和问题解决能力,在具体问题中选择合适的方法和技巧求解。