【2019-2020年整理】ZVS移相全桥变换器的设计毕业设计开题报告
- 格式:doc
- 大小:72.00 KB
- 文档页数:7
ZVS 移相全桥电路设计一、主电路结构图1 主电路结构图二、参数要求(350-400)in V VD C=、48/20out V V A =三、变压器设计 (1)输出功率o Po =U =960()o o P I W(2)AP 值设定开关频率60s f kH Z =。
取电流密度2624=410J A mm A m =⨯;选定magnetics 公司R 材质的Ferrite Cores ,max B =0.14T ,则在效率=90%η、窗口系数=0.25w k 的情况下有46322960=12.698(c )20.1441060100.900.25os wP AP m B J f k η⨯==∆⋅⋅⋅⋅⨯⨯⨯⨯⨯⨯⨯查magnetics 公司磁芯参数表,取接近此值的磁芯,选定为:EC70,其主要参数为:413.4()e b W aAc A A cm == 2=279()e A m m 2m in 211()b A m m =144()e l m m = 44131000l A m H T =(3)确定匝比n 与初级总匝数p N采用前级推挽+后级全波整流结构,输入电压与输出电压的关系如下dc 22)1son o p N t V V N T⎡⎤=--⎢⎥⎢⎥⎣⎦(输入电压范围在350V-400V ,当(m i n )-1=348p d cV V V=,有最大占空比max D 时,输出电压达到最大48o V V =。
取最大占空比m ax 0.45D =,则n=6.4。
根据法拉第定律可以确定初级匝数p Np (m in)-63(2)0.453480.45===33.4320.14279106010on dc p ee sV t V N BA A Bf -⨯=∆∆⨯⨯⨯⨯⨯ 取(匝)(4)确定次级总匝数s Ns1234====5.3 66.4p s N N N n 取(匝)故在350V-400V 输入时,匝数比n=6、max 0.42D =、m in 0.37D =。
移相控制全桥ZVS—PWM变换器的分析与设计摘要:阐述了零电压开关技术(ZVS)在移相全桥变换器电路中的应用。
分析了电路原理和各工作模态,给出了实验结果。
着重分析了主开关管和辅助开关管的零电压开通和关断的过程厦实现条件。
并且提出了相关的应用领域和今后的发展方向。
关键词:零电压开关技术;移相控制;谐振变换器0 引言上世纪60年代开始起步的DC/DC PWM功率变换技术出现了很大的发展。
但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。
因此,在上世纪80年代初,文献提出了移相控制和谐振变换器相结合的思想,开关频率固定,仅调节开关之间的相角,就可以实现稳压,这样很好地解决了单纯谐振变换器调频控制的缺点。
本文选择了全桥移相控制ZVS-PWM谐振电路拓扑,在分析了电路原理和各工作模态的基础上,设计了输出功率为200W的DC/DC变换器。
1 电路原理和各工作模态分析1.1 电路原理图1所示为移相控制全桥ZVS—PWM谐振变换器电路拓扑。
Vin为输入直流电压。
Si(i=1.2.3,4)为第i个参数相同的功率MOS开关管。
Di和Gi(i=l,2,3,4)为相应的体二极管和输出结电容,功率开关管的输出结电容和输出变压器的漏电感Lr作为谐振元件,使4个开关管依次在零电压下导通,实现恒频软开关。
S1和S3构成超前臂,S2和S4构成滞后臂。
为了防止桥臂直通短路,S1和S3,S2和S4之间人为地加入了死区时间△t,它是根据开通延时和关断不延时原则来设置同一桥臂死区时间。
S1和S4,S2和S3之间的驱动信号存在移相角α,通过调节α角的大小,可调节输出电压的大小,实现稳压控制。
Lf和Cf构成倒L型低通滤波电路。
图2为全桥零电压开关PWM变换器在一个开关周期内4个主开关管的驱动信号、两桥臂中点电压VAB、变压器副边电压V0以及变压器原边下面对电路各工作模态进行分析,分析时时假设:(1)所有功率开关管均为理想,忽视正向压降电压和开关时时间;(2)4个开关管的输出结电容相等,即Ci=Cs,i=1,2,3,4,Cs为常数;(3)忽略变压器绕组及线路中的寄生电阻;(4)滤波电感足够大。
移相全桥倍流同步整流变换器的设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!移相全桥倍流同步整流变换器的设计移相全桥倍流同步整流变换器(PhaseShifted FullBridge Dual Active Bridge Converter, PSFBDAB)是一种高效能电力转换器,广泛应用于电力电子领域。
15kW移相全桥ZVS充电机的研制的开题报告一、选题背景随着电动车的普及和发展,充电设备越来越受到关注。
为了满足市场对快速、高效、安全的充电需求,需要开发新型的充电设备。
移相全桥ZVS充电机具有功率大、效率高、控制精度高等优点,具有广阔的应用前景。
二、研究内容1.建立移相全桥ZVS充电机的数学模型,分析其工作原理。
2.设计移相全桥ZVS充电机的控制电路,选择适合的器件参数和电路拓扑结构。
3.搭建移相全桥ZVS充电机的硬件实验平台,进行实验验证。
4.对移相全桥ZVS充电机进行性能测试,并分析其优缺点。
5.对移相全桥ZVS充电机进行优化改进,提高其性能和稳定性。
三、研究意义1.移相全桥ZVS充电机具有高效、高精度的特点,可以为电动汽车提供快速、安全的充电服务,有较大市场需求。
2.研究移相全桥ZVS充电机的优化改进,可以提高其效率和稳定性,降低充电成本,满足市场高品质充电的需求。
四、研究方法1.理论分析:通过建立移相全桥ZVS充电机的数学模型,分析其工作原理。
2.电路设计:根据理论分析结果,设计移相全桥ZVS充电机的控制电路,选择适合的器件参数和电路拓扑结构。
3.硬件实验:搭建移相全桥ZVS充电机的硬件实验平台,进行实验验证。
4.性能测试:对移相全桥ZVS充电机进行性能测试,并分析其优缺点。
5.优化改进:对移相全桥ZVS充电机进行优化改进,提高其性能和稳定性。
五、预期成果研究完成后,将建立移相全桥ZVS充电机的数学模型,并完成控制电路的设计和硬件实验的搭建,实现性能测试并分析其优缺点,提出优化改进方案。
预计能够设计出效率高、稳定性好、控制精度高的移相全桥ZVS充电机,具有市场开发和推广的应用前景。
基于ZVZCS变换的电动汽车充电电源研制的开题报告一、选题背景随着全球气候变化和环境污染问题加剧,对环保和节能的需求越来越高。
电动汽车作为一种理想的替代能源汽车,在市场上逐渐得到了认可和推广。
然而,电动汽车充电电源的设计与制作仍存在很多问题,如可靠性、效率、功率密度等。
因此,探索一种能够满足电动汽车充电电源要求的高效、可靠、紧凑的设计方案非常必要。
二、选题意义电动汽车充电电源是电动汽车使用过程中的重要组成部分,也是电动汽车发展的瓶颈之一。
目前市场上的充电电源大多存在效率低、充电速度慢、功率密度低、容量小等问题。
因此,开发一种高效、可靠、紧凑的电动汽车充电电源对于刺激电动汽车的发展和市场需求的满足具有重要的现实意义。
三、研究内容和技术路线1.研究内容:(1)通过对市场上充电电源技术现状进行研究,找出存在的问题和不足之处。
(2)探究ZVZCS变换在电动汽车充电电源中的应用,设计一种基于ZVZCS变换的电动汽车充电电源方案。
(3)对充电电源中电路参数的设计进行研究,提高充电电源的效率和功率密度。
2.技术路线:(1)对市场上充电电源技术及发展现状进行调研和分析。
(2)基于ZVZCS变换,设计电动汽车充电电源方案。
(3)根据设计方案,进行电路参数的设计和优化,实现高效和紧凑的电动汽车充电电源。
四、预期结果(1)设计出一种基于ZVZCS变换的高效、可靠、紧凑的电动汽车充电电源方案。
(2)在电路参数设计和优化方面,提高充电电源的效率和功率密度。
(3)验证设计方案的可行性和可靠性,为电动汽车充电电源的进一步开发提供启示。
五、研究难点及解决方案1.研究难点:(1)ZVZCS变换在电动汽车充电电源中的应用研究,需要对ZVZCS 变换特点有深入的认识和理解。
(2)电动汽车充电电源设计中需要考虑到效率、功率密度、可靠性等多方面因素,需要在设计时进行综合考虑。
2.解决方案:(1)通过深入理解ZVZCS变换,并进行仿真分析和实验研究,有效地解决应用难点。
ZVS移相全桥变换器的原理与设计摘要:介绍移相全桥ZVS变换器的原理,并用UC3875控制器研制成功3kW移相全桥零电压高频通信开关电源。
关键词:移相全桥零电流开关零电压开关准谐振The Principle and Design of Phase shifted Full bridge Zero voltage ConvertorAbstract: The paper introduces the principle of phase shifted full bridge zerovoltage switching convertor.A 3kw full bridge ZVS convertor was developed us ing UC3875 controller.Keywords: Phase shifted full bridge, ZCS, ZVS, Quasi resonance中图法分类号:TN86文献标识码:A文章编号:02192713(2000)11572031引言传统的全桥PWM变换器适用于输出低电压(例如5V)、大功率(例如1kW)的情况,以及电源电压和负载电流变化大的场合。
其特点是开关频率固定,便于控制。
为了提高变换器的功率密度,减少单位输出功率的体积和重量,需要将开关频率提高到1MHz级水平。
为避免开关过程中的损耗随频率增加而急剧上升,在移相控制技术的基础上,利用功率MOS管的输出电容和输出变压器的漏电感作为谐振元件,使全桥PWM变换器四个开关管依次在零电压下导通,实现恒频软开关,这种技术称为ZVS零电压准谐振技术。
由于减少了开关过程损耗,可保证整个变换器总体效率达90%以上,我们以Unitrode公司UC3875为控制芯片研制了零电压准谐振高频开关电源样机。
本文就研制过程,研制中出现的问题及其改进进行论述。
2准谐振开关电源的组成ZVS准谐振高频开关电源是一个完整的闭环系统,它包括主电路、控制电路及CPU通讯和保护电路,如图1所示。
ZVS移相全桥变换器设计ZVS(Zero Voltage Switching)移相全桥变换器是一种高效的电力转换装置,它能够实现能量的高效传输和转换。
在本文中,我们将详细介绍ZVS移相全桥变换器的设计原理、工作原理和关键技术。
1.设计原理(1)ZVS技术:ZVS技术能够将开关管的开关转换时刻与输入电流或输出电压为零的时刻相匹配,从而避免了开关管的开关损耗和开关管产生的电磁干扰。
(2)全桥变换器:全桥变换器采用四个开关管和两个二极管,能够实现输入电压的极性逆变和输出电流的正向流动。
2.工作原理(1)开关管S1和S2导通,开关管S3和S4关闭,输入电源向电感L1充电;(2)当开关管S1和S2关闭,开关管S3和S4导通时,电感L1释放能量供应给负载;(3)根据负载的需求,通过控制开关管S1、S2、S3和S4的导通和关闭,实现输入电压的极性逆变和输出电流的正向流动;(4)根据输入电压的大小、负载的需求和输出电流的波形来控制开关管的开关时刻,实现ZVS操作。
3.关键技术(1)开关管的选择和驱动:选择低导通电阻、低开关损耗的开关管,并使用高效的驱动电路,确保开关管能够在ZVS模式下正常工作。
(2)电感和电容的选择:选择合适的电感和电容数值,以及合适的磁芯材料,提高转换器的功率密度和效率。
(3)控制策略:根据负载的需求和输入电压的变化,采用合适的控制策略,如频率控制、幅度控制、相位控制等,实现最佳的动态响应和效率。
4.实际应用总结:ZVS移相全桥变换器是一种高效的电力转换装置,其设计原理基于ZVS技术和全桥变换器。
通过合适的开关管选择、驱动设计、电感和电容选择以及控制策略的优化,可以实现高效的能量传输和转换。
在实际应用中,ZVS移相全桥变换器能够带来高效、稳定和低干扰的性能优势。
基于DSP的移相全桥ZVZCS变换器的开题报告1. 研究背景随着电力电子技术的不断发展,ZVZCS变换器应用越来越广泛。
其具有高效、高稳定性、高频响应等特点,在太阳能电池电源、电子变压器、新能源发电等领域得到了广泛的应用。
传统的ZVZCS变换器采用了基于传统的控制方法,由于该方法存在着响应速度较慢、稳定性差等缺陷,因此不能满足一些高性能、高效率的应用场合。
基于DSP的移相全桥ZVZCS变换器是一种新型的电力电子变换器,其可以有效的提高系统的响应速度,同时能够保证系统的稳定性和安全性。
因此,该技术在目前的应用中呈现出了良好的前景和发展空间。
2. 研究内容与目的本次研究的主要内容是基于DSP的移相全桥ZVZCS变换器的设计与实现。
该项目旨在实现高效、高稳定性、高群PID(比例、积分、微分)变换器,并采用DSP控制器对其进行控制,以实现高速、高精度和鲁棒性等性能指标。
3. 研究方法本研究采用计算机仿真、实验验证等方法。
在仿真研究中,采用MATLAB 环境下的Simulink模块进行模拟分析,进一步分析系统的控制策略和误差情况。
在实验验证中,采用实际硬件电路进行测试,得到实验数据,分析系统的性能,并对实验数据进行分析,掌握实际电路的特性和优缺点。
4. 研究计划本研究计划分为以下几个阶段:1)文献调研和分析阶段。
了解ZVZCS变换器的基本概念、原理和发展历程,并对基于DSP的移相全桥ZVZCS变换器进行深入研究和分析。
2)系统设计和仿真阶段。
根据文献调研的结果,设计出符合要求的DSP 控制引脚结构,并利用Simulink模块对系统进行仿真,进一步优化系统的性能和控制策略。
3)电路搭建和实验验证阶段。
根据设计结果,搭建实际硬件电路,并进行实验验证,得到实验数据。
4)实验数据分析和系统性能评估阶段。
对实验数据进行分析,进一步了解系统的特性和优缺点,并对系统的各项性能指标进行评估。
5. 预期成果本次研究预计可以通过实验,验证基于DSP的移相全桥ZVZCS变换器的性能指标和稳定性。
75kW移相全桥ZVS DC-DC变换器的设计共3篇75kW移相全桥ZVS DC/DC变换器的设计175kW移相全桥ZVS DC/DC变换器的设计随着电能的需求不断增加,直流(DC)与交流(AC)能量的转换变得越来越重要。
近年来,随着电力电子技术的发展和高性能的半导体器件的不断进步,DC/DC变换器在工业和消费电子领域的应用越来越广泛。
75kW移相全桥ZVS DC/DC变换器是一种高性能变换器,能够实现高效率、高功率转换。
移相全桥ZVS DC/DC变换器的结构包括移相控制器、输人电感、输出电容、全桥开关和ZVS电路等。
其中,移相控制器的作用是控制全桥开关的相位移动,从而实现零电压开关(ZVS)控制,减少开关过程中的损耗和电磁干扰。
输人电感和输出电容则是负责滤波,保证输出电压的稳定性。
全桥开关通过不同配合的通断实现正负输出电流控制。
ZVS电路通过滤波和电容,实现电路的诸多物理参数计算协调,并通过工艺合理设计,降低待机功耗和回路波动影响。
在设计75kW移相全桥ZVS DC/DC变换器时,需要考虑诸多因素。
首先,应该确定输入电压和输出电压的范围,设计输人电感和输出电容的尺寸。
其次,需要确定最大输出功率、输出电源电流和开关频率,保证全桥开关的可靠性和ZVS电路的稳定性。
还需考虑系统的可扩展性和环境因素,以充分考虑变换器在工业应用和肆意使用中的优越性。
在开发过程中,需要充分利用仿真和实验测试,调整参数和设计方案,为最优的变换器性能和稳定性进行优化和调整。
因此,设计和发布75kW移相全桥ZVS DC/DC变换器需要对额定值、特殊应用等项指标有充分的认识、调试和经验,并充分考虑到指示等级、节约能源等重要性,超出标准数值要求的评定指数,以实现最优化控制。
总之,75kW移相全桥ZVS DC/DC变换器是一种高效、高功率、高稳定性的电能转换装置,能够在工业和消费电子领域得到广泛应用。
设计和发布此类设备需要充分考虑应用环境、指标要求和设计方案,充分利用仿真和实验测试,以实现最优化控制、最低化能量损耗和实时可调参数,为应用和发展带来更多的便利和效益综上所述,75kW移相全桥ZVS DC/DC变换器是一种具有巨大潜力和广泛应用前景的电能转换装置。
ZVS移相全桥变换器的优化设计与仿真于仲安;葛庭宇;何俊杰【摘要】针对传统的零电压(ZVS)、零电压零电流(ZVZCS)移相全桥变换器的各种缺陷以及实际参数选取困难的问题,采用一种改进型零电压移相全桥软开关变换器,即在原边钳位两个超快恢复二极管与一隔直电容来降低副边电路的寄生震荡以防止变压器进入磁饱和,为进一步提高变换器的效率,副边采用全波整流.对所设计的电路进行细致的原理分析,给出若干关键值的优化计算过程,并以UC3875作为控制芯片,通过saber仿真验证理论分析的合理性,结果表明电路在实现软开关的同时也抑制了副边整流器件的电压应力,证明了所提优化方案的可靠性.【期刊名称】《现代电子技术》【年(卷),期】2019(042)013【总页数】4页(P161-164)【关键词】软开关变换器;移相全桥变换器;零电压开关;电压应力;全波整流;优化计算【作者】于仲安;葛庭宇;何俊杰【作者单位】江西理工大学电气工程与自动化学院,江西赣州 341000;江西理工大学电气工程与自动化学院,江西赣州 341000;江西理工大学电气工程与自动化学院,江西赣州 341000【正文语种】中文【中图分类】TN710-34;TM7430 引言移相全桥软开关变换器因其效率高、发展比较成熟、控制相对简单以及高频化和轻量化,常应用于中大功率场合[1-3]。
目前软开关技术的实现主要有两种方法:一是ZVZCS,即超前臂实现零电压开通与滞后臂实现零电流关断;二是ZVS,即四个开关管均实现零电压开通。
实现ZVZCS 的关键在于变压器原边电流的复位,最初采用在原边串联一隔直电容与饱和电感,利用隔直电容提供复位电压,这使得滞后臂电压应力变大,而饱和电感则将原边电流钳位在零,但由于其损耗较大而仅限于中小功率场合[4]。
通过给滞后臂开关管串联二极管来阻止原边电流反向,但却无法避免导通损耗[5]。
当前应用的ZVS 技术普遍存在磁通不平衡、效率低下、占空比丢失严重等缺点[6-8]。
17.1uH10470uFQ3FQA10N80CQ4 Q1Q2FQA10N80CDSEl2x61-06C330-400V53.7m HDSEl2x61-06CFQA10N80CFQA10N80C控制及驱动电路原理图:PC817VIN RAMP CLK SOFTS FREQSET DSET A-B DSET C-DUC3875VREF CS+VCOUTCOUTBOUTA OUTDCOMPEA- EA+SLOPEPGNDGNDC205C206RT U outCS+R206R202R203R205RsR204R201C201C203C204RTD1RTD2C202CR Css CTD1CTD2CT VINT1T2RgRg Rg RgD202D207D204D208D201D205D206D203VCVCG G S G GS电路各参数计算:一:高频变压器设计:(1).选择铁氧体材料的磁芯,设η=90%,其工作磁场强度取B m =0.12T ,电流密度取J =350 cm A 2/,k=0.4。
视在功率P T (全波结构时): )21(0+=ηP P T 。
kJ B f P APST 0m 4410⨯=代人参数得:AP =5.4 cm 4考虑到磁芯的温升及工作频率,取EE 型磁芯65x32x27(mm),则AP=30.7625(cm 4),Ae=535(mm 2),Aw=575(mm 2)。
具体参数如下表:(2).为了防止共同导通,取占空比D max =O.4,初级绕组匝数: N 1== A B f DU e S ∆mmax 1=AB f D U eS mmax 12其中:B ∆m 为磁通密度增量,B m 为工作磁通密度,B ∆m 应取一、三象限磁通密度的总增量,故BB 2m m=∆ ;A e 为磁芯有效面积(m2);fS为功率开关的工作频率(Hz)。
带入参数得:N 1=12.8 故取N 1=13匝。
那么初级绕组最大电流:ηUPI minin 0pmax ==4.85(A )初级绕组裸线面积:JI A xp pmax==1.39 (cm )(3).次级绕组匝数:AB f U N eSS m24==2.3 故取N S =3匝。
移相全桥软开关升压变换器的研究的开题报告一、项目背景及意义随着现代电子技术的不断发展,低电压直流电源已经逐渐成为重要的电力供应方式。
而升压变换技术是其中关键技术之一,可以把低电压转变为高电压。
在升压变换技术中,移相全桥软开关升压变换器是一种重要的变换器类型。
它有着大功率、高效率、良好的性能和可靠性等优点,适用于多种领域,如电力电子、航空航天、通信、工业控制等。
因此,研究移相全桥软开关升压变换器的工作原理、控制策略、电路设计以及应用等具有重要意义。
二、研究现状分析目前,对于移相全桥软开关升压变换器的研究主要集中在以下方面:(1)工作原理和电路拓扑结构的研究。
(2)控制策略和控制方法的研究。
(3)效率、可靠性和功率特性的优化研究。
(4)应用研究,如在电力电子、航空航天、通信、工业控制等领域的应用研究。
然而,目前对于移相全桥软开关升压变换器的研究还存在以下问题:(1)功率密度低:随着电源功率的不断提高,其体积和重量也会增加。
因此,如何提高功率密度成为了一个重点问题。
(2)控制策略复杂:移相全桥软开关升压变换器控制策略复杂,需要设计出一种高效简单的控制方法。
(3)电磁干扰问题:在应用中,移相全桥软开关升压变换器会产生较大的电磁干扰,如何减小电磁干扰是一个重要问题。
三、研究内容和方法本项目旨在研究移相全桥软开关升压变换器的工作原理、控制策略、电路设计以及应用。
具体研究内容包括:(1)移相全桥软开关升压变换器的工作原理及电路拓扑结构。
(2)控制策略的研究及控制方法的设计。
(3)电路设计,包括元器件选型、参数计算等。
(4)效率、可靠性和功率特性的优化研究,如功率密度的提高和电磁干扰的减小等。
(5)应用研究,包括在电力电子、航空航天、通信、工业控制等领域的应用研究。
研究方法包括:(1)文献调研,全面了解移相全桥软开关升压变换器的研究现状。
(2)数学建模,利用数学方法建立移相全桥软开关升压变换器的数学模型,分析其工作原理及控制策略。
ZVS移相全桥变换器设计ZVS(Zero Voltage Switching,零电压开关)全桥变换器是一个常见的DC-DC转换器拓扑结构,可以实现高效率和高电源密度。
在设计ZVS全桥变换器时,需要考虑一系列的参数和约束条件。
在本文中,将详细介绍如何设计ZVS全桥变换器,并讨论其性能和优缺点。
首先,我们需要确定输入和输出电压的范围。
这些值将决定变换器的设定参数,如变压器的变比和磁性元件的尺寸。
同时,我们还需要确定输出功率的要求,以便选取合适的开关器件和电感电容元件。
接下来,我们需要选择合适的开关器件。
对于ZVS全桥变换器,常用的开关器件有MOSFET和IGBT。
MOSFET具有低导通压降和高开关速度的特点,适合在高频率下工作。
而IGBT则具有低导通压降和高断开速度的特点,适合在高压应用下工作。
根据具体的应用需求,可以选择适合的开关器件。
在变换器的设计过程中,需要考虑开关频率和谐振电容电感网络的设计。
开关频率决定了变压器的尺寸和磁性元件的损耗。
一般来说,较高的开关频率可以实现更小的尺寸和更高的效率,但也会增加开关器件的损耗。
谐振电容电感网络的设计是为了实现ZVS开关操作,减少开关过程中的损耗和开关噪声。
可以通过选择合适的电感和电容元件来实现ZVS操作,减少开关器件的压降和功率损耗。
一般来说,ZVS全桥变换器需要设计控制电路来实现准确的输出电压调节和保护功能。
常用的控制技术包括PWM(脉宽调制)控制和反馈控制。
通过PWM控制器,可以实现对开关器件的控制,调节输出电压。
反馈控制则通过比较输出电压与参考电压的差异,并根据差异值来调节开关器件的控制信号。
通过合理的控制策略,可以实现稳定的输出电压和良好的动态响应。
除了上述设计考虑因素,还需要关注保护机制和EMI(电磁干扰)滤波设计。
保护机制是为了确保变换器的安全运行,防止过电流、过温度和过压等故障事件。
常见的保护技术包括电流限制、温度监测和电压保护等。
EMI滤波设计则是为了减少变换器对周围环境的电磁干扰。
燕山大学里仁学院毕业设计(论文)开题报告课题名称:移相全桥DC-DC变换器设计学院(系):年级专业:学生姓名:指导教师:完成日期:一、说明选题的依据和意义通信网络技术的快速发展和通信业务的全面展开,各种数据业务、多媒体业务应用日益普及,产品的集成度将会越来越高。
在通信网络的建设和升级过程中,各种室内外设备及各种不同的应用场景,如城市中心区域、各大高校宿舍、铁路沿线,尤其是在偏远地区这种情况下,设备对其运行环境也提出了更加严格的要求,对电源质量的要求也更加苛刻。
直流远供电源系统是通信领域中的重要设备,广泛应用于远程及数据通讯、计算机、军事、航天等领域,涉及到国民经济的各行各业。
DC-DC变换器在通信设备用直流远供电源系统当中发挥着重要的作用。
目前基站存在大量的低效率电源,在网电源即便是比较新的,普遍效率一般也低于90%,在低负载输出时效率则更低。
在网运行超过一定年限又不具备模块休眠功能的老旧电源,其真正的效率只有80%左右。
有些基站建设在城乡或山区,电网环境恶劣,轻则造成系统失效,重则造成系统崩溃、设备损坏。
无论是失效还是崩溃都直接影响了通信信号的稳定和服务质量。
因此,基站供电效率和可靠性问题,成为目前运营商亟待解决的问题。
直流远供电源的优势在于:远程供电方案适于为通信网络中各种低功耗设备、室外型设备和特殊应用场景的设备提供电力,如网络末梢位置分散的小型通信设备等。
远供电源在通讯设备中的应用,不仅能够进一步保障通信设备得正常运行,而且还能更好地解决各种不同的特殊应用场景的供电问题(如小型的UPS供电,电池寿命很难得到保证,并且损坏率较高,蓄电池被盗以及当地接电不便或供电不稳定等),优化电源设备,提高运行效率,降低建设与维护成本,保障各类通信设备安全、可靠、稳定、经济、绿色的电源供应。
二、本课题国内外研究动态综述在目前现有的DC-DC变换技术当中,可供选择的电路拓扑结构形式有很多种,如:Buck、Boost、Buck-Boost、Fly-back、Forward和Full-Bridge、Half-Bridge等电路。
移相全桥软件开关变换器的设计电气工程与其自动化跃 089064117 指导教师:胡雪峰副教授摘要软开关技术和数字控制是电力电子领域的重要课题。
本文就是对两者进行有机结合所做的简单尝试。
软开关的形式诸多,其中移相全桥零电压软开关变换器(Phase-Shift Full-Bridge Zero-Voltage Switching Converter,简称PSFB-ZVS 变换器)由于结构简单,控制方便在功率电源中获得了广泛的应用。
本文针对经典的PSFB-ZVS变换器拓扑进行了细致的分析,推导出电路工作的相关状态方程。
并用MATLAB软件对主电路进行了仿真,仿真结果证明了理论分析的正确性。
在此基础上,根据既有实验条件,设计了一台小功率的样机,对主电路和测控电路的参数进行了计算和选取,并以ARM STM32F407VG控制器为核心,结合数字PID控制理论实现了对变换器的电压电流双闭环控制。
利用ARM强大的事务管理机制,设计了友好的的人机界面,提高了装置的易操作性和灵活性。
关键字:移相全桥,软开关,ARM,数字控制ABSTRACTSoft-switching technique along with digital control scheme plays very important role in the subject of power electronics.This paper gives a simple try to combine the two techniques.Among so many constructions of soft switch,Phase-Shift Full Bridge ZVS converter has been widely used for medium-high power DC powersupply due to it's good performance with simple topology and simple control.Based on detailed analysis of the classical PSFB-ZVS converter,parameter calculation equations are derived in this paper.The main circuit is simulated by MATLAB to prove the validity of the theoretical analysis.Restricted by the resources in the laboratory,a low power prototype is made to observe operating mode of the circuit.Both parameter and structure of the main circuit and auxiliary circuit are designed.Based on the lasted ARM STM32F407VG mcu,combined with digital PID control scheme,the converter is operated under the control of voltage-current dual loop. Thanks to the powerful task-managing ability of ARM,a friendly HMI is built which makes the apparatus easy to manipulate and much more flexible.Keywords: Phase-ShiftFullBridge, Soft-Switching, ARM, Digital Control第一章 绪论1.1 课题背景电源是一切电气设备的心脏,其重要性不言而喻。