陕西中考23题汇总(圆)
- 格式:doc
- 大小:198.50 KB
- 文档页数:4
专题23 圆考点总结【思维导图】【知识要点】知识点一与圆有关的概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.⏜,读作弧AB.在同圆或等弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧, 小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距. 弦心距、半径、弦长的关系:(考点)圆心角概念:顶点在圆心的角叫做圆心角.圆周角概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角. 三角形的外接圆1)经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. 2)三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等; ②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.3)锐角三角形外接圆的圆心在它的内部(如图1);直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半,如图2);钝角三角形外接圆的圆心在它的外部(如图3).圆内接四边形概念:如果一个四边形的所有顶点都在一个圆上,那么这个四边形叫做圆内接四边形。
重难点05 圆的综合压轴题中考数学中《圆的综合压轴题》部分主要考向分为六类:一、圆中弧长和面积的综合题二、圆与全等三角形的综合题三、圆的综合证明问题四、圆与等腰三角形的综合题五、圆的阅读理解与新定义问题六、圆与特殊四边形的综合题圆的综合问题是中考数学中的压轴题中的一类,也是难度较大的一类,所以,对应的训练很有必要。
考向一:圆中弧长与面积的综合题1.(2023•河北)装有水的水槽放置在水平台面上,其横截面是以AB为直径的半圆O,AB=50cm,如图1和图2所示,MN为水面截线,GH为台面截线,MN∥GH.计算:在图1中,已知MN=48cm,作OC⊥MN于点C.(1)求OC的长.操作:将图1中的水槽沿GH向右作无滑动的滚动,使水流出一部分,当∠ANM=30°时停止滚动.如图2.其中,半圆的中点为Q,GH与半圆的切点为E,连接OE交MN于点D.探究:在图2中.(2)操作后水面高度下降了多少?(3)连接OQ并延长交GH于点F,求线段EF与的长度,并比较大小.2.(2023•乐山)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动.【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图1,将一个三角形纸板△ABC绕点A逆时针旋转θ到达的位置△AB′C′的位置,那么可以得到:AB=AB′,AC=AC′,BC=B′C′;∠BAC=∠B′AC′,∠ABC=∠AB′C′,∠ACB=∠AC′B′.(_____)刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键.故数学就是一门哲学.【问题解决】(1)上述问题情境中“(_____)”处应填理由:;(2)如图2,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A′B′C′的位置.①请在图中作出点O;②如果BB′=6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置.另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止.此时,两个纸板重叠部分的面积是多少呢?如图3所示,请你帮助小李解决这个问题.考向二:圆与全等三角形综合题1.(2023•济宁)如图,已知AB是⊙O的直径,CD=CB,BE切⊙O于点B,过点C作CF⊥OE交BE于点F,EF=2BF.(1)如图1,连接BD,求证:△ADB≌△OBE;(2)如图2,N是AD上一点,在AB上取一点M,使∠MCN=60°,连接MN.请问:三条线段MN,BM,DN有怎样的数量关系?并证明你的结论.2.(2023•哈尔滨)已知△ABC内接于⊙O,AB为⊙O的直径,N为的中点,连接ON交AC于点H.(1)如图①,求证:BC=2OH;(2)如图②,点D在⊙O上,连接DB,DO,DC,DC交OH于点E,若DB=DC,求证OD∥AC;(3)如图③,在(2)的条件下,点F在BD上,过点F作FG⊥DO,交DO于点G,DG=CH,过点F 作FR⊥DE,垂足为R,连接EF,EA,EF:DF=3:2,点T在BC的延长线上,连接AT,过点T作TM ⊥DC,交DC的延长线于点M,若FR=CM,AT=4,求AB的长.3.(2023•长春)【感知】如图①,点A、B、P均在⊙O上,∠AOB=90°,则锐角∠APB的大小为45度.【探究】小明遇到这样一个问题:如图②,⊙O是等边三角形ABC的外接圆,点P在弧AC上(点P不与点A、C重合),连接PA、PB、PC.求证:PB=PA+PC.小明发现,延长PA至点E,使AE=PC,连接BE,通过证明△PBC≌△EBA.可推得△PBE是等边三角形,进而得证.下面是小明的部分证明过程:证明:延长PA至点E,使AE=PC,连接BE.∵四边形ABCP是⊙O的内接四边形,∴∠BAP+∠BCP=180°,∵∠BAP+∠BAE=180°,∴∠BCP=∠BAE,∵△ABC是等边三角形,∴BA=BC,∴△PBC≌△EBA(SAS).请你补全余下的证明过程.【应用】如图③,⊙O是△ABC的外接圆,∠ABC=90°,AB=BC,点P在⊙O上,且点P与点B在AC的两侧,连接PA、PB、PC,若,则的值为.考向三:圆的综合证明问题1.(2023•黄石)如图,AB为⊙O的直径,DA和⊙O相交于点F,AC平分∠DAB,点C在⊙O上,且CD ⊥DA,AC交BF于点P.(1)求证:CD是⊙O的切线;(2)求证:AC•PC=BC2;(3)已知BC2=3FP•DC,求的值.2.如图,在⊙O中,直径AB垂直弦CD于点E,连接AC,AD,BC,作CF⊥AD于点F,交线段OB于点G(不与点O,B重合),连接OF.(1)若BE=1,求GE的长.(2)求证:BC2=BG•BO.(3)若FO=FG,猜想∠CAD的度数,并证明你的结论.3.(2023•永州)如图,以AB为直径的⊙O是△ABC的外接圆,延长BC到点D.使得∠BAC=∠BDA,点E在DA的延长线上,点M在线段AC上,CE交BM于N,CE交AB于G.(1)求证:ED是⊙O的切线;(2)若,BD=5,AC>CD,求BC的长;(3)若DE•AM=AC•AD,求证:BM⊥CE.4.(2023•广东)综合探究如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A′.连接AA′交BD于点E,连接CA′.(1)求证:AA'⊥CA';(2)以点O为圆心,OE为半径作圆.①如图2,⊙O与CD相切,求证:;②如图3,⊙O与CA′相切,AD=1,求⊙O的面积.考向四:圆与等腰三角形的综合1.(2023•宁波)如图,在Rt△ABC中,∠C=90°,E为AB边上一点,以AE为直径的半圆O与BC相切于点D,连结AD,BE=3,BD=3.P是AB边上的动点,当△ADP为等腰三角形时,AP的长为.2.(2023•上海)如图(1)所示,已知在△ABC中,AB=AC,O在边AB上,点F是边OB中点,以O 为圆心,BO为半径的圆分别交CB,AC于点D,E,连接EF交OD于点G.(1)如果OG=DG,求证:四边形CEGD为平行四边形;(2)如图(2)所示,连接OE,如果∠BAC=90°,∠OFE=∠DOE,AO=4,求边OB的长;(3)连接BG,如果△OBG是以OB为腰的等腰三角形,且AO=OF,求的值.3.(2023•泰州)已知:A、B为圆上两定点,点C在该圆上,∠C为所对的圆周角.知识回顾(1)如图①,⊙O中,B、C位于直线AO异侧,∠AOB+∠C=135°.①求∠C的度数;②若⊙O的半径为5,AC=8,求BC的长;逆向思考(2)如图②,若P为圆内一点,且∠APB<120°,PA=PB,∠APB=2∠C.求证:P为该圆的圆心;拓展应用(3)如图③,在(2)的条件下,若∠APB=90°,点C在⊙P位于直线AP上方部分的圆弧上运动.点D在⊙P上,满足CD=CB﹣CA的所有点D中,必有一个点的位置始终不变.请证明.考向五:圆的阅读理解与新定义问题1.(2023•青海)综合与实践车轮设计成圆形的数学道理小青发现路上行驶的各种车辆,车轮都是圆形的.为什么车轮要做成圆形的呢?这里面有什么数学道理吗?带着这样的疑问,小青做了如下的探究活动:将车轮设计成不同的正多边形,在水平地面上模拟行驶.(1)探究一:将车轮设计成等边三角形,转动过程如图1,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,BA=CA=DA=2,圆心角∠BAD=120°.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是BD(水平线),请在图2中计算C 到BD的距离d1.(2)探究二:将车轮设计成正方形,转动过程如图3,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,BA=CA=DA=2,圆心角∠BAD=90°.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是BD(水平线),请在图4中计算C到BD的距离d2(结果保留根号).(3)探究三:将车轮设计成正六边形,转动过程如图5,设其中心到顶点的距离是2,以车轮转动一次(以一个顶点为支点旋转)为例,中心的轨迹是,圆心角∠BAD=.此时中心轨迹最高点是C(即的中点),转动一次前后中心的连线是BD(水平线),在图6中计算C 到BD的距离d3=(结果保留根号).(4)归纳推理:比较d1,d2,d3大小:,按此规律推理,车轮设计成的正多边形边数越多,其中心轨迹最高点与转动一次前后中心连线(水平线)的距离(填“越大”或“越小”).(5)得出结论:将车轮设计成圆形,转动过程如图7,其中心(即圆心)的轨迹与水平地面平行,此时中心轨迹最高点与转动前后中心连线(水平线)的距离d=.这样车辆行驶平稳、没有颠簸感.所以,将车轮设计成圆形.2.(2023•陕西)(1)如图①,∠AOB=120°,点P在∠AOB的平分线上,OP=4.点E,F分别在边OA,OB上,且∠EPF=60°,连接EF.求线段EF的最小值;(2)如图②,是一个圆弧型拱桥的截面示意图.点P是拱桥的中点,桥下水面的宽度AB=24m,点P到水面AB的距离PH=8m.点P1,P2均在上,=,且P1P2=10m,在点P1,P2处各装有一个照明灯,图中△P1CD和△P2EF分别是这两个灯的光照范围.两灯可以分别绕点P1,P2左右转动,且光束始终照在水面AB上.即∠CP1D,∠EP2F可分别绕点P1,P2按顺(逆)时针方向旋转(照明灯的大小忽略不计),线段CD,EF在AB上,此时,线段ED是这两灯照在水面AB上的重叠部分的水面宽度.已知∠CP1D=∠EP2F=90°,在这两个灯的照射下,当整个水面AB都被灯光照到时,求这两个灯照在水面AB上的重叠部分的水面宽度.(可利用备用图解答)3.(2023•北京)在平面直角坐标系xOy中,⊙O的半径为1.对于⊙O的弦AB和⊙O外一点C给出如下定义:若直线CA,CB中一条经过点O,另一条是⊙O的切线,则称点C是弦AB的“关联点”.(1)如图,点A(﹣1,0),B1(,),B2(,).①在点C1(﹣1,1),C2(,0),C3(0,)中,弦AB1的“关联点”是;②若点C是弦AB2的“关联点”,直接写出OC的长;(2)已知点M(0,3),N(,0),对于线段MN上一点S,存在⊙O的弦PQ,使得点S是弦PQ的“关联点”.记PQ的长为t,当点S在线段MN上运动时,直接写出t的取值范围.4.在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论,解决以下问题:如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.(1)求证:A,E,B,D四点共圆;(2)如图2,当AD=CD时,⊙O是四边形AEBD的外接圆,求证:AC是⊙O的切线;(3)已知α=120°,BC=6,点M是边BC的中点,此时⊙P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.考向六:圆与特殊四边形综合1.(2023•威海)已知:射线OP平分∠MON,A为OP上一点,⊙A交射线OM于点B,C,交射线ON 于点D,E,连接AB,AC,AD.(1)如图1,若AD∥OM,试判断四边形OBAD的形状,并说明理由;(2)如图2,过点C作CF⊥OM,交OP于点F;过点D作DG⊥ON,交OP于点G.求证:AG=AF.2.(2023•益阳)如图,线段AB与⊙O相切于点B,AO交⊙O于点M,其延长线交⊙O于点C,连接BC,∠ABC=120°,D为⊙O上一点且的中点为M,连接AD,CD.(1)求∠ACB的度数;(2)四边形ABCD是否是菱形?如果是,请证明;如果不是,请说明理由;(3)若AC=6,求的长.(建议用时:80分钟)1.(2023•宜昌)如图1,已知AB是⊙O的直径,PB是⊙O的切线,PA交⊙O于点C,AB=4,PB=3.(1)填空:∠PBA的度数是,PA的长为;(2)求△ABC的面积;(3)如图2,CD⊥AB,垂足为D.E是上一点,AE=5EC.延长AE,与DC,BP的延长线分别交于点F,G,求的值.2.(2023•台州)我们可以通过中心投影的方法建立圆上的点与直线上点的对应关系,用直线上点的位置刻画圆上点的位置.如图,AB是⊙O的直径,直线l是⊙O的切线,B为切点.P,Q是圆上两点(不与点A重合,且在直径AB的同侧),分别作射线AP,AQ交直线l于点C,点D.(1)如图1,当AB=6,弧BP长为π时,求BC的长;(2)如图2,当,时,求的值;(3)如图3,当,BC=CD时,连接BP,PQ,直接写出的值.3.(2023•遂宁)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,AD=CD,过点D的直线l交BA的延长线于点M.交BC的延长线于点N且∠ADM=∠DAC.(1)求证:MN是⊙O的切线;(2)求证:AD2=AB•CN;(3)当AB=6,sin∠DCA=时,求AM的长.4.(2023•丽水)如图,在⊙O中,AB是一条不过圆心O的弦,点C,D是的三等分点,直径CE交AB于点F,连结AD交CF于点G,连结AC,过点C的切线交BA的延长线于点H.(1)求证:AD∥HC;(2)若=2,求tan∠FAG的值;(3)连结BC交AD于点N,若⊙O的半径为5.下面三个问题,依次按照易、中、难排列.请根据自己的认知水平,选择其中一道问题进行解答.①若OF=,求BC的长;②若AH=,求△ANB的周长;③若HF•AB=88,求△BHC的面积.5.(2023•长沙)如图,点A,B,C在⊙O上运动,满足AB2=BC2+AC2,延长AC至点D,使得∠DBC =∠CAB,点E是弦AC上一动点(不与点A,C重合),过点E作弦AB的垂线,交AB于点F,交BC 的延长线于点N,交⊙O于点M(点M在劣弧上).(1)BD是⊙O的切线吗?请作出你的判断并给出证明;(2)记△BDC,△ABC,△ADB的面积分别为S1,S2,S,若S1•S=(S2)2,求(tan D)2的值;(3)若⊙O的半径为1,设FM=x,FE•FN•=y,试求y关于x的函数解析式,并写出自变量x的取值范围.6.(2023•宁波)如图1,锐角△ABC内接于⊙O,D为BC的中点,连结AD并延长交⊙O于点E,连结BE,CE,过C作AC的垂线交AE于点F,点G在AD上,连结BG,CG,若BC平分∠EBG且∠BCG =∠AFC.(1)求∠BGC的度数.(2)①求证:AF=BC.②若AG=DF,求tan∠GBC的值.(3)如图2,当点O恰好在BG上且OG=1时,求AC的长.(建议用时:80分钟)1.(2023•东营区校级一模)如图,PA、PB是⊙O的切线,切点分别为A、B,BC是⊙O的直径,PO交⊙O于E点,连接AB交PO于F,连接CE交AB于D点.下列结论:①PA=PB;②OP⊥AB;③CE 平分∠ACB;④;⑤E是△PAB的内心;⑥△CDA≌△EDF.其中一定成立的有()个.A.5B.4C.3D.22.(2023•鹿城区校级三模)如图1,在△ABC中,∠ACB=90°,BC=2AC=2,过BC上一点D作DE ⊥BC,交AB于点E,以点D为圆心,DE的长为半径作半圆,交AC,AB于点F,G,交直线BC于点H,I(点I在H左侧).当点D与点C重合时(如图2),GH=;当EF=GH时,CD=.3.(2023•湖北模拟)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为D,直线DC与AB的延长线交于点P,弦CE平分∠ACB,交AB于点F,连接BE,BE=7,下列四个结论:①AC平分∠DAB;②PF2=PB•PA;③若BC=OP,则阴影部分的面积为;④若PC=24,则tan∠PCB=;其中,所有正确结论的序号是.4.(2024•鄞州区校级一模)如图1,AB,CD是⊙O的两条互相垂直的弦,垂足为E,连结BC,BD,OC.(1)求证:∠BCO=∠ABD.(2)如图2,过点A作AF⊥BD,交CD于G,求证:CE=EG.(3)如图3,在(2)的条件上,连结BG,若BG恰好经过圆心O,若⊙O的半径为5,,求AB的长.5.(2024•常州模拟)对于⊙C和⊙C上的一点A,若平面内的点P满足:射线AP与⊙C交于点Q(点Q 可以与点P重合,且,则点P称为点A关于⊙C的“阳光点”.已知点O为坐标原点,⊙O 的半径为1,点A(﹣1,0).(1)若点P是点A关于⊙O的“阳光点”,且点P在x轴上,请写出一个符合条件的点P的坐标;(2)若点B是点A关于⊙O的“阳光点”,且,求点B的横坐标t的取值范围;(3)直线与x轴交于点M,且与y轴交于点N,若线段MN上存在点A关于⊙O的“阳光点”,请直接写出b的取值范围是或.6.(2024•广东一模)如图1,在⊙O中,AB为⊙O的直径,点C为⊙O上一点,点D在劣弧BC上,CE ⊥CD交AD于E,连接BD.(1)求证:△ACE~△BCD;(2)若cos∠ABC=m,求;(用含m的代数式表示)(3)如图2,DE的中点为G,连接GO,若BD=a,cos∠ABC=,求OG的长.7.(2024•镇海区校级模拟)在矩形ABCD中,M、N分别在边BC、CD上,且AM⊥MN,以MN为直径作⊙O,连结AN交⊙O于点H,连结CH交MN于点P,AB=8,AD=12.(1)求证:∠MAD=∠MHC;(2)若AM平分∠BAN,求MP的长;(3)若△CMH为等腰三角形,直接写出BM的长.8.(2024•浙江一模)如图,在⊙O中,AB是一条不过圆心O的弦,C,D是的三等分点,直径CE交AB于点F,连结BD交CF于点G,连结AC,DC,过点C的切线交AB的延长线于点H.(1)求证:FG=CG.(2)求证:四边形BDCH是平行四边形.(3)若⊙O的半径为5,OF=3,求△ACH的周长.9.(2024•五华区校级模拟)如图,AB,CD是⊙O的两条直径,且AB⊥CD,点E是上一动点(不与点B,D重合),连接DE并延长交AB的延长线于点F,点P在AF上,且∠PEF=∠DCE,连接AE,CE分别交OD,OB于点M,N,连接AC,设⊙O的半径为r.(1)求证:PE是⊙O的切线;(2)当∠DCE=15°时,求证:AM=2ME;(3)在点E的移动过程中,判断AN•CM是否为定值,若是,求出该定值;若不是,请说明理由.10.(2024•福建模拟)已知:如图,⊙O内两条弦AB、CD,且AB⊥CD于E,OA为⊙O半径,连接AC、BD.(1)求证:∠OAC=∠BCD;(2)作EN⊥BD于N,延长NE交AC于点H.求证:AH=CH;(3)在(2)的条件下,作∠EHF=60°交AB于点F,点P在FE上,连接PC交HN于点L,当EL=HF=,CL=8,BE=2PF时,求⊙O的半径.11.(2024•鹿城区校级一模)如图1,锐角△ABC内接于⊙O,点E是AB的中点,连结EO并延长交BC 于D,点F在AC上,连结AD,DF,∠BAD=∠CDF.(1)求证:DF∥AB.(2)当AB=9,AF=FD=4时,①求tan∠CDF的值;②求BC的长.(3)如图2,延长AD交⊙O于点G,若,求的值.12.(2024•正阳县一模)【材料】自从《义务教育数学课程标准(2022年版)》实施以来,九年级的晏老师通过查阅新课标获悉:切线长定理由“选学”改为“必学”,并新增“会过圆外的一个点作圆的切线”,在学习完《切线的性质与判定》后,她布置一题:“已知:如图所示,⊙O及⊙O外一点P.求作:直线PQ,使PQ与⊙O相切于点Q.李蕾同学经过探索,给出了如下的一种作图方法:(1)连接OP,分别以O、P为圆心,以大于的长为半径作弧,两弧分别交于A、B两点(A、B 分别位于直线OP的上下两侧);(2)作直线AB,AB交OP于点C;(3)以点C为圆心,CO为半径作⊙C,⊙C交⊙O于点Q(点Q位于直线OP的上侧);(4)连接PQ,PQ交AB于点D,则直线PQ即为所求.【问题】(1)请按照步骤完成作图,并准确标注字母(尺规作图,保留作图痕迹);(2)结合图形,说明PQ是⊙O切线的理由;(3)若⊙O半径为2,OP=6.依据作图痕迹求QD的长.13.(2024•泌阳县一模)小贺同学在数学探究课上,用几何画板进行了如下操作:首先画一个正方形ABCD,一条线段OP(OP<AB),再以点A为圆心,OP的长为半径,画⊙A分别交AB于点E.交AD于点G.过点E,G分别作AB,AD的垂线交于点F,易得四边形AEFG也是正方形,连接CF.(1)【探究发现】如图1,BE与DG的大小和位置关系:.(2)【尝试证明】如图2,将正方形AEFG绕圆心A转动,在旋转过程中,上述(1)的关系还存在吗?请说明理由.(3)【思维拓展】如图3,若AB=2OP=4,则:①在旋转过程中,点B,A,G三点共线时,CF的值为;②在旋转过程中,CF的最大值是.14.(2024•秦都区校级一模)问题提出:(1)如图①,⊙O的半径为4,弦AB=4,则点O到AB的距离是.问题探究:(2)如图②,⊙O的半径为5,点A、B、C都在⊙O上,AB=6,求△ABC面积的最大值.问题解决:(3)如图③,是一圆形景观区示意图,⊙O的直径为60m,等边△ABP的边AB是⊙O的弦,顶点P在⊙O内,延长AP交⊙O于点C,延长BP交⊙O于点D,连接CD.现准备在△PAB和△PCD 区域内种植花卉,圆内其余区域为草坪.按照预算,草坪的面积尽可能大,求草坪的最大面积.(提示:花卉种植面积尽可能小,即花卉种植面积S△PAB +S△PCD的最小值)15.(2024•碑林区校级一模)问题探究(1)寒假期间,乐乐同学参观爸爸的工厂,看到半径分别为2和3的两个圆形零件⊙A、⊙B按如图1所示的方式放置,点A到直线m的距离AC=4,点B到直线m的距离BD=6,CD=5,M是⊙A上一点,N是⊙B上一点,在直线m上找一点P,使得PM+PN最小.请你在直线m上画出点P的位置,并直接写出PM+PN的最小值.问题解决(2)如图2,乐乐爸爸的工厂欲规划一块花园,如图所示的矩形ABCD,其中米,BC=30米,点E、F为花园的两个入口,米,DF=10米.若在△BCD区域内设计一个亭子G(亭子大小忽略不计),满足∠BDG=∠GBC,从入口到亭子铺设两条景观路.已知铺设小路EG所用的景观石材每米的造价是400元,铺设小路FG所用的景观石材每米的造价是200元,你能否帮乐乐同学分析一下,是否存在点G,使铺设小路EG和FG的总造价最低?若存在,求出最低总造价,并求出此时亭子G到边AB的距离;若不存在,请说明理由.16.(2024•雁塔区校级一模)问题发现(1)在△ABC中,AB=2,∠C=60°,则△ABC面积的最大值为;(2)如图1,在四边形ABCD中,AB=AD=6,∠BCD=∠BAD=90°,AC=8,求BC+CD的值.问题解决(3)有一个直径为60cm的圆形配件⊙O,如图2所示.现需在该配件上切割出一个四边形孔洞OABC,要求∠O=∠B=60°,OA=OC,并使切割出的四边形孔洞OABC的面积尽可能小.试问,是否存在符合要求的面积最小的四边形OABC?若存在,请求出四边形OABC面积的最小值及此时OA的长;若不存在,请说明理由.17.(2024•东莞市校级一模)如图①,点C,D在线段AB上,点C在点D的左侧,若线段AC,CD,DB 满足AC2+BD2=CD2,称C,D是线段AB的勾股点.(1)如图②,C,D是线段AB的勾股点,分别以线段AC,CD,DB为边向AB的同侧作正△ACE,正△CDF,正△DBG,已知正△ACE、正△CDF的面积分别是3,5,则正△DBG的面积是;(2)如图①,AB=12,C,D是线段AB的勾股点,当AC=AB时,求CD的长;(3)如图③,C,D是线段AB的勾股点,以CD为直径画⊙O,P在⊙O上,AC=CP,连接PA,PB,若∠A=2∠B,求∠B的度数.18.(2023•西湖区模拟)如图,已知CE是圆O的直径,点B在圆O上,且BD=BC,过点B作弦CD的平行线与CE的延长线交于点A.(1)若圆O的半径为2,且点D为弧EC的中点时,求线段CD的长度;(2)在(1)的条件下,当DF=a时,求线段BD的长度;(答案用含a的代数式表示)(3)若AB=3AE,且CD=12,求△BCD的面积.19.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.小明决定研究一下圆,如图,AB是⊙O的直径,点C是⊙O上的一点,延长AB至点D,连接AC、BC、CD,且∠CAB=∠BCD,过点C 作CE⊥AD于点E.(1)求证:CD是⊙O的切线;(2)若OB=BD,求证:点E是OB的中点;(3)在(2)的条件下,若点F是⊙O上一点(不与A、B、C重合),求的值.。
陕西中考数学针对23题专练1.在直角三角形ABC中,角ACB为90度,点D位于边AB上,以BD为直径的圆O与边AC相切于点E,连接DE并延长交BC。
证明:DE是圆O的切线;若CF=1,且OA/BA=3/5,求圆O的半径。
2.在图中,AB为圆O的直径,点B在圆上,OA交圆O于点C,过点A和B的直线交于点D。
证明:OD平分角BOC;若角A为30度,AD=8,求圆O的半径。
3.在直角三角形ABC中,角C为90度,点O在AB上,以点O为圆心,OA为半径的圆分别与AC和AB相交于点D和E,且角CBD等于角A。
证明:直线BD与圆O相切;若4.在图中,AB是圆O的直径,AC是圆O的切线,且AC=AB=4,CO交圆O于点P,CO的延长线交圆O于点F,BP的延长线交AC于点E,连接AP和AF。
证明:AF平行于BE;求CE的长度。
5.在图中,AB是圆O的直径,点C在圆上,连接BC和AC,作OD平行于BC,与过点A的切线交于点D,连接DC并延长交AB的延长线于点E。
证明:△DAC是等腰三角形;若圆O的半径为5,BC=6,求DC的长度。
6.在直角三角形ABC中,角C为90度,点O在AB上,以点O为圆心,OA为半径的圆分别与AC和AB相交于点D和E,且角CBD等于角A。
判断直线BD与圆O的位置关系,并证明结论;若7.在图中,D为圆O上一点,点C在直径BA的延长线上,且角CDA等于角CBD。
证明:CD是圆O的切线;过点B作圆O的切线交CD的延长线于点E,若BC=6,tan角CDA=2/3,求BE的长度。
8.在图中,AB是圆O的直径,BC与圆O相切于点B,AC与圆O相交于点D,点E是AD上任一点。
证明:角BED 等于角DBC;已知AD=CD=3,求图中阴影部分的面积(结果保留π)。
2)若AB=10,BC=6,求DE的长。
8.在三角形ABC中,点D在AC上且CD=CB,以BC为直径作圆O,交BD于点E,连接CE,过D作DF⊥AB于点F,且∠BCD=2∠ABD。
陕西中考23题专题训练1、如图1,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且AB =AD =AO .(1)求证:BD 是⊙O 的切线.(2)若点E 是劣弧BC 上一点,AE 与BC 相交于点F ,且且CF=9,△BEF 的面积为8,cos ∠BFA =32,求△ACF 的面积.2、如图2,AB 是⊙O 的直径,AB=10, DC 切⊙O 于点C ,AD ⊥DC ,垂足为D ,AD 交⊙O 于点E 。
(1)求证:AC 平分∠BAD ; (2)若sin ∠BEC=53,求DC 的长。
3、如图3 ,矩形ABCD 中,53AB AD ==,.点E 是CD上的动点,以AE 为直径的O ⊙与AB 交于点F ,过点F 作FG BE ⊥于点G .(1)当E 是CD 的中点时:①tan EAB ∠的值为______________; ② 证明:FG 是O ⊙的切线; (2)试探究:BE 能否与O ⊙相切?若能,求出此时DE 的长;若不能,请说明理由.4、如图4,AB 是⊙O 的直径,C 是弧BD 的中点,CE⊥AB,垂足为E ,BD 交CE 于点F . (1)求证:;(2)若,⊙O 的半径为3,求BC 的长.CF BF =2AD =图 8CCB5、如图,△ABC 内接于半圆,AB 是直径,过A 作直线MN ,若∠MAC=∠ABC .(1)求证:MN 是半圆的切线;(2)设D 是弧AC 的中点,连结BD 交AC 于G ,过D 作DE⊥AB 于E ,交AC 于F .求证:FD =FG .(3)若△DFG 的面积为4.5,且DG=3,GC=4,试求△BCG 的面积.6、如图所示,AB 是O ⊙直径,OD ⊥弦BC 于点F ,且交O ⊙于点E ,若AEC ODB ∠=∠.(1)判断直线BD 和O ⊙的位置关系,并给出证明; (2)当108AB BC ==,时,求BD 的长.7、如图,点A 、B 、C 是O 上的三点,//AB OC .(1)求证:AC 平分OAB ∠.(2)过点O 作OE AB ⊥于点E ,交AC于点P. 若2AB =,30AOE ∠=︒,求PE 的长.8、如图10,⊙O 的弦AD ∥BC,过点D 的切线交BC 的延长线于点E ,AC ∥DE 交BD 于点H ,DO 及延长线分别交AC 、BC 于点G 、F.(1)求证:DF 垂直平分AC ; (2)求证:FC =CE ;(3)若弦AD =5㎝,AC =8㎝,求⊙O 的半径.。
陕西圆中考专题A BCDOP (第23题图)1.(本题满分8分)如图,AB 是⊙O 的直径,E 是AB 上一点,且AE=3BE=3,过点E 作AB 的垂线交⊙O 于C 、D 两点,连接AC 、BC ,过点A 作AF ⊥AC 交CD 的延长线于点F.(1)求证:∠CAB = ∠BCE ; (2)求DF 的长.2.(本题满分8分)如图,在⊙O 中,M 是弦AB 的中点,过点B 做⊙O 的切线,与OM 延长线交于点C. (1)求证:∠A = ∠B;(2)若OA=5,AB=8,求线段OC 的长.3.(本题满分8分)如图,在Rt △ABC 中,∠ABC=90°,AC=10,BC=6,∠ACB 的平分线CO 交AB 于O 点,以OB 为半径作⊙O.(1)请判断AC 与⊙O 的位置关系,并说明理由; (2)求⊙O 的半径.4.(本题满分8分)已知:如图,AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点C ,BD ⊥PD ,垂足为D ,连接BC 。
求证:(1)BC 平分∠PBD ;(2)2BC AB BD =。
(第23题图)(第23题图)PODCB A5.(本题满分8分)如图,在Rt △ABC 中,∠BAC=90°,∠BAC 的平分线交BC 于O 点,以O 为圆心作圆,⊙O 与AC 相切于点D.(1)试判断AB 与⊙O 的位置关系,并加以证明;(2)在Rt △ABC 中,若AC=6,AB=3,求切线AD 的长.6.(本题满分8分)如图,AB 是⊙O 的直径,延长AB 至点C ,过点C 作⊙O 的切线CD ,切点为D ,连接AD 、BD ,过圆心O 作AD 的垂线交CD 于点P. (1)求证:直线PA 是⊙O 的切线; (2)若AB=4BC ,求BDOP的值。
7.(本题满分8分) 如图,⊙O的直径34,30,4=︒=∠=BC ABC AB ,D 时线段BC 的中点,(1)试判断点D 与⊙O 的位置关系,并说明理由;(2)过点D 作AC DE ⊥,垂足为点E ,求证直线DE 是⊙O 的切线。
专题一第23题圆的综合题(2010~2019.23)【专题解读】圆的综合题近10年每年必考,分值均为8分.涉及三角形:①相似三角形(6次);②锐角三角函数(2次);③全等三角形(1次,2012年19题考查相似三角形,故23题考查全等三角形).设问形式:①证明角相等或线段相等;②线段平行;③线段垂直;④切线的判定;⑤计算线段长、线段比例关系;⑥求正切值等.1.如图,在△ABC中,以AC为直径的⊙O与边AB交于点D,BC是⊙O的切线,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)求证:∠B+∠FED=90°;(2)若FC=6,DE=3,FD=2.求⊙O的直径.第1题图2.如图,AB是⊙O的直径,AC切⊙O于点A,连接BC交⊙O于点D,点E是弧BD的中点,连接AE交BC于点F.(1)求证:AC=CF;(2)若AB=4,AC=3,求∠BAE的正切值.第2题图3.如图,P A,PB是⊙O的切线,A、B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O于点D.(1)求证:PO平分∠APC;(2)连接DB,若∠C=30°,求证:DB∥AC.第3题图4.如图,△ABC内接于⊙O,AB是⊙O的直径,CD切⊙O于点C,AD交⊙O于点E,AC平分∠BAD,(2)若sinP=,BH=3,求BD的长.连接BE.(1)求证:AD⊥CD;(2)若CD=4,AE=2,求⊙O的半径.第4题图5.(2019西工大附中模拟)如图,P为⊙O直径AB延长线上的一点,PC切⊙O于点C,过点B作CP的垂线BH交⊙O于点D,交CP于点H,连接AC、CD.(1)求证:∠PBH=2∠HDC;34第5题图6.(2019陕西定心卷)如图,在△Rt ABC中,∠C=90°,点D、E分别在边AC、BC上,DE∥△AB,DCE 的外接圆⊙O与AB相切于点F.(1)求证:CD·C B=CA·C E;(2)若BE=5,⊙O的半径为4,求CD的长.第6题图7.如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O交于点D,点E在⊙O上,且DE=DA,AE 与BC相交于点F.求证:(1)∠CAD=∠B;(2)FD=CD.(2)若BC=8,tanB=,求⊙O的半径.(2)若3AE=4DE,求的值.第7题图8.如图,AB为⊙O的直径,CD切⊙O于点D,AC⊥CD于点C,交⊙O于点E,连接AD、BD、ED.(1)求证:BD=ED;(2)若CE=3,CD=4,求AB的长.第8题图9.如图,在△Rt ABC中,∠ACB=90°,CE为△ABC外接圆的切线,过点A作AE⊥CE于点E.(1)求证:∠ACE=∠B;(2)若AE=2,AB=8,求CE的长.第9题图10.如图,在△Rt ABC中,点O在斜边AB上,以O为圆心,OB为半径作⊙O,分别与BC,AB相交于点D、E,连接AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线;12第10题图11.如图,在△ABC中,CD是AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点,连接ED、EG.(1)求证:GE是⊙O的切线;EGOD(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.第11题图12.(2019西工大附中模拟)如图,已知四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O 的切线与DA的延长线交于点E,连接BD,且∠E=∠DBC.(1)求证:DB平分∠ADC;12第12题图∴DE DF32=,即=,参考答案1.(1)证明:∵∠A+∠DEC=180°,∠FED+∠DEC=180°,∴∠FED=∠A,∵BC是⊙O的切线,AC为⊙O的直径,∴∠BCA=90°,∴∠B+∠A=90°,∴∠B+∠FED=90°;(2)解:∵∠CFA=∠DFE,∠FED=∠A,∴△FED∽△FAC,AC CF AC6解得AC=9,即⊙O的直径为9.2.(1)证明:如解图,连接BE,∵CA是⊙O的切线,AB是⊙O的直径,∴∠CAB=90°,∠AEB=90°,∴∠CAF+∠BAE=90°,∠FBE+∠EFB=90°,∵E是弧BD的中点,︵︵∴DE=BE,∴∠BAE=∠FBE,∴∠CAF=∠EFB=∠AFC,∴AC=CF;第2题解图(2)解:如解图,连接AD,在△Rt ABC中,AB=4,AC=3,∴BC=AB2+AC2=5.∵CF=AC=3,∴BF=BC-CF=2.∵AB是⊙O的直径,∵cos∠ABC===,∴BD=,∴AD=AB2-BD2=,DF=BD-BF=.∴tan∠BAE=tan∠DAE==.∴∠OPC=∠APC=×60°=30°,∴∠ADB=90°,BD AB4AB BC516512565DF1AD23.证明:(1)如解图,连接OB,∵PA,PB是⊙O的切线,OA、OB为⊙O的半径,∴OA⊥AP,OB⊥BP,又∵OA=OB,∴PO平分∠APC;第3题解图(2)∵OA⊥AP,OB⊥BP,∴∠CAP=∠OBP=90°,∵∠C=30°,∴∠APC=90°-∠C=90°-30°=60°,∵PO平分∠APC,1122∴∠POB=90°-∠OPB=90°-30°=60°,又∵OD=OB,∴△ODB是等边三角形,∴∠OBD=60°,∴∠DBP=∠OBP-∠OBD=90°-60°=30°,∴∠DBP=∠C,∴DB∥AC.4.(1)证明:如解图,连接OC,交BE于点F,∴DC是⊙O的切线,∴OC⊥DC,又∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAD,∴∠DAC=∠OAC.∴∠OCA=∠DAC,∴OC∥AD,∴∠D=∠OCD=90°,即AD⊥CD;第4题解图(2)解:∵AB是⊙O的直径,∴∠AEB=90°,∵∠D=90°,∴∠AEB=∠D,∴BE∥CD,∵OC⊥CD,∴OC⊥BE,∵OC∥AD,OA=BO,∴EF=BF,∵OC∥ED,∴四边形EFCD是矩形,∴EF=CD=4,∴BE=8,∴AB=AE2+BE2=22+82=217,∴⊙O的半径为17.5.(1)证明:如解图,连接OC,∵PC切⊙O于点C,∴OC⊥PC,又∵DH⊥PC,∴DH∥OC,∴∠PBH=∠BOC,∵∠BOC=2∠HDC,∴∠PBH=2∠HDC;OC PO∵sinP = = ,BH =3, ∴BH r 4+r∴CD CE =,第 5 题解图(2)解:如解图,过点 O 作 OM ⊥DH 于点 M ,则 DM =BM ,设⊙O 的半径为 r,∵∠OCH =∠OMH =∠CHM =90°,∴四边形 OMHC 为矩形, BH 3 BP 4∴BP =4,∵OC ∥DH ,∴△PHB ∽△PCO ,PB = , 3 4 ∴ = ,解得 r =12,∴MH =OC =12,∴MB =MH -BH =12-3=9,∴BD =2MB =18. 6.(1)证明:∵DE ∥AB ,∴∠CED =∠B.又∵∠C =∠C ,∴△CDE ∽△CAB ,CA CB∴CD · C B =CA · C E ;(2)解:如解图,连接 OF ,过点 E 作 EG ⊥AB 于点 G ,∵AB 为⊙O 的切线,切点为点 F ,∴OF ⊥AB ,∴∠OFG =∠EGF =90°,∵DE ∥AB ,∴∠FOE =180°-∠OFG =90°,又∵OE =OF ,∴四边形 OEGF 为正方形,∴EG =OF =4,DE =2OE =8, ∵∠CED =∠B ,∠C =∠EGB ,∴CD DE CD8=,即=,∴CD=.∴△CDE∽△GEB,GE BE45325第6题解图7.证明:(1)∵AC是⊙O的切线,AB是⊙O的直径,∴BA⊥AC,∠ADB=90°,∴∠CAD+∠BAD=90°,∠B+∠BAD=90°,∴∠CAD=∠B;(2)∵DA=DE,∴∠EAD=∠E,而∠B=∠E,∴∠B=∠EAD,由(1)知,∠CAD=∠B,∴∠EAD=∠CAD,在△ADF和△ADC中,⎧⎪∠ADF=∠ADC=90°⎨AD=AD,⎪⎩∠F AD=∠CAD∴△ADF≌△ADC,∴FD=CD.8.(1)证明:如解图,连接OD、OE.∵CD切⊙O于点D,∴OD⊥CD.∵AC⊥CD,∴OD∥AC.∴∠EAO=∠DOB,∠AEO=∠EOD.∵∠EAO=∠AEO,∴∠EOD=∠DOB.∵OE=OD=OB,∴△OED≌△ODB,∴BD=ED;∴CE DE35=,即=,∴AB=.第8题解图(2)解:∵CE=3,CD=4,AC⊥CD,∴ED=5.∵BD=ED,∴BD=5.∵AB为⊙O的直径,∴∠ADB=90°,∴∠ACD=∠ADB.∵四边形ABDE内接于⊙O,∴∠CED=∠B,∴△CDE∽△DAB.DB AB5AB2539.(1)证明:如解图,取AB的中点O,连接OC,∵∠ACB=90°,∴AB为直径,点O为△ABC外接圆的圆心,∴OC=OB,∴∠OCB=∠B,∵CE为△ABC外接圆的切线,∴∠OCE=90°,∵∠ACB=90°,∴∠OCE-∠ACO=∠ACB-∠ACO,即∠ACE=∠OCB,∴∠ACE=∠B;第9题解图(2)解:∵AE⊥CE,∴∠AEC=∠ACB=90°,∴AE AC=,在△Rt ACD中,tan∠1=tanB=,解得r=.∵∠ACE=∠B,∴△ACE∽△ABC,AC AB∴AC=AE·A B=4,在△Rt ACE中,CE=AC2-AE2=23.10.(1)证明:如解图,连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在△Rt ACD中,∠1+∠2=90°,∴∠4=180°-(∠2+∠3)=90°,∴OD⊥AD,∵OD是⊙O的半径,∴AD是⊙O的切线;第10题解图(2)解:设⊙O的半径为r,在△Rt ABC中,AC=BC·tan B=4,根据勾股定理得AB=42+82=45,∴OA=45-r,12∴CD=AC·tan∠1=2,根据勾股定理得AD2=AC2+CD2=16+4=20,在△Rt ADO中,OA2=OD2+AD2,即(45-r)2=r2+20,35211.(1)证明:如解图,连接OE,∵CD是⊙O的直径,∴∠AED=∠CED=90°,∵G是AD的中点,∴EG=AD=DG,∴GE AGOE OD DE∴AE4=,∴GE GE4==.12∴∠GED=∠GDE,∵OE=OD,∴∠OED=∠ODE,∵CD是AB边上的高,∴∠ODE+∠GDE=90°,∴∠GED+∠OED=90°,即OE⊥EG,又∵OE是⊙O的半径,∴GE是⊙O的切线;第11题解图(2)解:由(1)得∠ODE+∠GDE=90°,∵∠A+∠GDE=90°,∴∠A=∠ODE,∵AG=GE,OD=OE,∴∠A=∠ODE=∠AEG=∠OED,∴△AGE∽△DOE,AE==,∵3AE=4DE,DE3又∵OD=OE,OD OE312.(1)证明:如解图,连接OB,延长EB至点F.∵AD是⊙O的直径,∴∠ABD=90°.∵EB是⊙O的切线,∴OB⊥EF,∴∠4+∠5=∠5+∠DBF=90°,∴∠DBF=∠4=∠3.又∵四边形ABCD是⊙O的内接四边形,∴∠1=∠ABE ,即 tan ∠1=tan ∠ABE = = . ∴ CD BC 9 x = ,即=,∴⊙O 的半径为 .∴∠BCD =180°-∠3.∵∠EBD =180°-∠DBF ,∴∠BCD =∠EBD.又∵∠E =∠DBC ,∴△DBE ∽△DCB ,∴∠1=∠2,即 DB 平分∠ADC ;第 12 题解图(2)解:∵BE 为⊙O 的切线,AD 为⊙O 的直径,OB =OD ,∴∠ABE +∠4=∠4+∠5=∠1+∠4=90°, AB 1 AD 2设 AB =x ,则 BD =2x.∵∠1=∠2,∴BC =AB =x.∵△DBE ∽△DCB ,BD EB 2x 10解得 x =3 5(负值已舍),即 AB =3 5,∴BD =6 5,在 △Rt ABD 中,由勾股定理得AD = AB 2+BD 2=15, 15 2。
圆专题练习1.如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC 交AC的延长线于点E,BF⊥AB交AD的延长线于点F,(1)求证:DE是⊙O的切线;(2)若DE=3,⊙O的半径为5,求BF的长.2.如图,△ABC中,∠C=90°,AC=6,BC=3,点D在AC边上,以D为圆心的⊙D与AB相切于点E,(1)求证:AD•BC=AB•ED;(2)设⊙D与BC交于点F,当CF=2时,求CD的长.3.如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连接DE.(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;(2)若AD=4、AB=6,求直角边BC的长.4.如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM=AN;(2)若⊙O的半径R=3,PA=9,求OM的长.5.如图,已知AB=AC,∠BAC=120°,在BC上取一点O,以O为圆心OB为半径作圆,且⊙O过A点,过A作AD∥BC交⊙O于D,求证:(1)AC是⊙O的切线;(2)四边形BOAD是菱形.6.如图,AB为⊙O的直径,BC为⊙O的切线,AC交⊙O于点E,D为AC 上一点,∠AOD=∠C.(1)求证:OD⊥AC;(2)若AE=8,tanA=34,求OD的长.7.如图,四边形ABCD是平行四边形,以AB为直径的圆O经过点D,E是⊙O上一点,且∠AED=45°.(1)判断CD与⊙O的位置关系,并说明理由;(2)若⊙O半径为6cm,AE=10cm,求∠ADE的正弦值.8.如图,BD是⊙O的直径,OA⊥OB,M是劣弧AB上一点,过点M作⊙O的切线MP交OA的延长线于P点,MD与OA交于N点.(1)求证:PM=PN;(2)若BD=4,PA=32AO,过点B作BC∥MP交⊙O于C点,求BC的长.9.已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=13时,求⊙O的半径.10.如图所示,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O 上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.(1)求证:PB是⊙O的切线;(2)求证:AQ•PQ=OQ•BQ;(3)设∠AOQ=α,若cosα=45,OQ=15,求AB的长.11.如图,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N.(1)求证:BA•BM=BC•BN;(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.12.已知:如图,AB是⊙O的直径,AD是弦,OC垂直AD于F交⊙O于E,连接DE、BE,且∠C=∠BED.(1)求证:AC是⊙O的切线;(2)若OA=10,AD=16,求AC的长.13.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.14.如图所示,△ABC是直角三角形,∠ABC=90°,以AB为直径的⊙O 交AC于点E,点D是BC边的中点,连接DE.(1)求证:DE与⊙O相切;(2)若⊙O的半径为3,DE=3,求AE.15.已知:如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论;(3)若⊙O的直径为18,cosB=13,求DE的长.16.如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E;(1)求证:BE=CE;(2)若以O、D、E、C为顶点的四边形是正方形,⊙O的半径为r,求△ABC的面积;(3)若EC=4,BD=43,求⊙O的半径OC的长.17.如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AD的延长线相交于点F,且AD=3,cos∠BCD=34.(1)求证:CD∥BF;(2)求⊙O的半径;(3)求弦CD的长.18.如图,O⊙是ABC△的外接圆,AB AC=,过点A作AP BC∥,交BO的延长线于点P.(1)求证:AP是O⊙的切线;(2)若O⊙的半径58R BC==,,求线段AP的长.19.如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=6,∠ACB的平分线CO交AB于点O,以OB为半径作半⊙O.(1)请判断AC与⊙O的位置关系 (2)求⊙O的半径.20.如图,在Rt△ABC中,∠BAC=90°,∠BAC的平分线交BC于O,以点O为圆心作圆,⊙O与AC相切于点D.(1)试判断AB与⊙O的位置关系,并加以证明.(2)在Rt△ABC中,若AC=6,AB=3,求切线AD的长.21.如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边的中点,连接DE.(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;(2)若AD=4、AB=6,求直角边BC的长.22.如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC 交AC的延长线于点E,BF⊥AB交AD的延长线于点F,(1)求证:DE是⊙O的切线;(2)若DE=3,⊙O的半径为5,求BF的长.23.如图,△ABC中,∠C=90°,AC=6,BC=3,点D在AC边上,以D为圆心的⊙D与AB相切于点E,(1)求证:AD•BC=AB•ED;(2)设⊙D与BC交于点F,当CF=2时,求CD的长.24.如图,已知AB=AC,∠BAC=120°,在BC上取一点O,以O为圆心OB为半径作圆,且⊙O过A点,过A作AD∥BC交⊙O于D,求证:(1)AC是⊙O的切线;(2)四边形BOAD 是菱形.25.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AE=8,⊙O的半径为5,求DE的长.26.如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.(1)判断直线BD和⊙O的位置关系,并给出证明;(2)当AB=10,BC=8时,求BD的长.27.如图,AB是△ABC外接圆⊙O的直径,D是AB延长线上一点,且BD=12AB,∠A=30°,CE⊥AB于E,过C的直径交⊙O于点F,连接CD、BF、EF.(1)求证:CD是⊙O的切线;(2)求:tan∠BFE的值.28.如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,DB DP =DCDO=23.(1)求证:直线PB是⊙O的切线;(2)求cos∠BCA的值.29.如图,⊙O的直径AB=4,∠ABC=30°,BC=43,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由;(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.。
陕西中考圆的证明与计算(2023版)知识总结1.切线的性质:垂直于过切点的半径.(连半径,得垂直)2.切线的判定:(1)定义法:和圆只有一个交点的直线是圆的切线;(2)距离法:到圆心距离等于半径的直线是圆的切线;证明d =r 即可,常用于已知数据的计算,比如动圆相切问题.(3)判定定理:经过半径外端且垂直于这条半径的直线是圆的切线.换个说法:⎧⎨⎩有交点:连半径,证垂直无交点:作垂直,证半径,多用于几何证明.多数情况为有交点,重点考虑如何证垂直:①证明和已知垂线平行;②证明夹角为直角.3.常见相切图(1)角分+等腰得平行:点C 在以AB 为直径的圆O 上,AH ⊥CH ,且AC 平分∠HAB .【证明】连接OC,则OC=OA,∴∠OCA=∠OAC,又∠OAC=∠HAC,∴∠OCA=∠HAC,∴OC∥AH,∴OC⊥CH,∴CH是圆O的切线.(2)证明和已知直角相等.证明△PCO≌△PAO,可得∠PCO=∠PAO=90°.(3)证明夹角为直角.(弦切角定理)如图,若∠BAC=∠D,则AB是圆O切线.如图,连接AO并延长交圆O于点P,则∠P=∠D=∠BAC,∵∠P+∠PAC=90°,∴∠BAC+∠PAC=90°,即AB⊥AP,∴AB是圆O的切线.1.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC 于点E.(1)求证:DE=AE;(2)若AD=8,DE=5,求BC的长度.2.如图,在Rt△ABC中,∠ABC=90°,以BC为直径的⊙O交AC于点E,⊙O的切线DE交AB于点D.(1)求证:DA=DB;(2)连接BE,OD,交点为F,若cos A=,BC=6,求OF的长.3.如图,AB是⊙O的直径,经过⊙O上一点D,作⊙O的切线EF,交AB的延长线于点F,AE⊥EF,交BD的延长线于点C.(1)求证:AB=AC.(2)若⊙O的半径为3,,求BF的长.4.如图,AB为⊙O的直径,C、E为⊙O上的两点,过点E的切线交CB的延长线于点D,且CD⊥DE,连接CE,AE.(1)求证:∠ABC=2∠A;(2)若⊙O半径为,AB:BD=5:1,求AE的长.5.已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,∠D=30°,连接AC、BC,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.6.已知:如图,⊙O过正方形ABCD的顶点A,B,且与CD边相切于点E.点F是BC与⊙O的交点,连接OB,OF,AF,点G是AB延长线上一点,连接FG,且∠G+∠BOF=90°.(1)求证:FG是⊙O的切线;(2)如果正方形边长为8,求⊙O的半径.7.如图,在△AOB中,以点O为圆心的⊙O与AB相切于点D,延长AO交⊙O于点C,连接CD,过点A作AF⊥BO,交BO的延长线于点H,交⊙O于点F,∠B=∠C.求证:(1)AF∥CD;(2)AH2=OH⋅BH.8.如图,AB是⊙O的直径,已知点D是弧BC的中点,连接DO并延长,在延长线上有一点E,连接AE,且∠E=∠B.(1)求证:AE是⊙O的切线;(2)连接AC,若AC=6,CF=4,求OE的长.9.如图,AB是⊙O的直径,C在AB的延长线上,⊙O与CD相切于点D,过点A作AE ⊥CD,垂足为E.(1)求证:AD平分∠EAC.(2)若BC=3,,求⊙O的半径以及线段ED的长.10.如图,AB是⊙O的直径,点D是直径AB上不与A,B重合的一点,过点D作CD⊥AB,且CD=AB,连接BC交⊙O于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)当D是OA的中点时,AB=4,求BF的长.11.如图,△ABC内接于⊙O,AB=AC,过点A作BC平行线AM,连接BO并延长,交AM于点D,连接AO、CO.(1)求证:AM是⊙O的切线;(2)若BC=10,AD=8,求⊙O的半径.12.如图,已知△ABC的边AB所在的直线是⊙O的切线,切点为B,AC经过圆心O并与圆交于点D、C,E为AB延长线上一点,连接CE交⊙O于点F,且∠BCE=∠ACB.(1)求证:CE⊥AB;(2)若⊙O的半径是6,AB=8,求EF的长.13.如图,在△ABC中,∠C=90°,以FB为直径作⊙O,⊙O与直角边AC相切,切点为E.(1)求证:∠DBE=∠EBA;(2)若AB=10,DB=4,求EB的长.14.如图,已知AB是⊙O的直径,C是⊙O上一点,OD⊥BC,垂足为D,连接AD,过点A作⊙O的切线与DO的延长线相交于点E.(1)求证:∠B=∠E;(2)若⊙O的半径为4,OE=6,求AD的长.15.如图,AB是⊙O的直径,点D、E均在⊙O上,连接AD、BD、BE、DE,过点D作⊙O的切线,交AB的延长线于点C.(1)求证:∠DEB=∠CDB;(2)若BD=DE=6,BE=9.6,求⊙O的半径.16.如图,△ABC是⊙O的内接三角形,BC为⊙O的直径,点E是⊙O上一点,连接OE 并延长交过点C的切线CD于点D,∠B=∠D.(1)求证:OD∥AC;(2)延长EO交AB于点F,AF=2,⊙O的直径为2,求OD的长.17.如图,已知△ABC的外接圆直径是AB,点O是圆心,点D在⊙O上,且=,过点D作⊙O的切线,与CA、CB的延长线分别交于点E、F.(1)求证:AB∥EF;(2)若⊙O的半径为5,BC=8,求DF的长度.18.如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)判定直线CE与⊙O的位置关系,并说明你的理由;(2)若AD=3,AC=4,求圆的半径.19.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,与AC边的交点为F,过点D作DE⊥AC于点E.(1)求证:直线DE是⊙O的切线;(2)若AB=5,tan∠ACB=2,求弦AF的长度.20.如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作DE⊥AC,垂足为E,延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,⊙O的半径为5,求线段CF的长.21.如图,AB为⊙O的直径,OD为⊙O的半径,⊙O的弦CD与AB相交于点F,⊙O的切线CE交AB的延长线于点E,EF=EC.(1)求证:OD垂直平分AB;(2)若⊙O的半径长为3,且BF=BE,求OF的长.22.如图,AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,BD⊥CD,DB的延长线与⊙O交于点E.(1)求证:∠ABE=2∠A;(2)若,BD=4,求BE的长.23.如图,在△ABC中,AC=AB,以AB为直径的⊙O交BC于点D,过点D作ED⊥AC 点E,交AB延长线于点F.(1)求证:EF是⊙O的切线;(2)若DF=4,tan∠BDF=,求AC的长.24.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,F是AD延长线上一点,连接CD,CF,且∠DCF=∠CAD.(1)求证:CF是⊙O的切线;(2)若直径AD=10,cos B=,求FD的长.25.如图,AB是⊙O的直径,AE是⊙O的切线,点C为直线AE上一点,连接OC交⊙O 于点D,连接BD并延长交线段AC于点E.(1)求证:∠CAD=∠CDE;(2)若CD=6,tan∠BAD=,求⊙O的半径.26.如图,四边形ABCD是⊙O的内接四边形,且对角线BD为⊙O的直径,过点A作AE ⊥CD,与CD的延长线交于点E,且DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若⊙O的半径为5,CD=6,求AD的长.27.如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是的中点,过点B的切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=9,tan∠ABC=,求⊙O的半径.28.如图,△ABC中,∠C=90°,点O在AB上,⊙O经过点A,且与BC相切于点D.(1)求证:AD平分∠BAC;(2)若AC=6,cos∠BAC=,求⊙O的半径.29.如图,AB是⊙O的直径,点C为⊙O上一点,CD平分∠ACB,交AB于点E,交⊙O 于点D,延长BA到点P,使得PE=PC.(1)求证:PC与⊙O相切;(2)若⊙O的半径3,PC=4,求CD的长.30.如图,AB是⊙O的直径,点C、D是⊙O上两点,CE与⊙O相切,交DB延长线于点E,且DE⊥CE,连接AC,DC.(1)求证:∠ABD=2∠A;(2)若DE=2CE,AC=8,求⊙O的半径.31.如图,AB是⊙O的直径,AC是弦,且OD⊥AC于点E,OD交⊙O于点F,连接CF、BF,若∠BFC=∠ODA.(1)求证:AD是⊙O的切线:(2)若AB=10,AC=8,求AD的长.32.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,连接OD,过点D作⊙O的切线DE,交AC于点E,延长CA交⊙O于点F,连接BF.(1)求证:DE⊥AC;(2)若⊙O的直径为5,cos C=,求CF的长.33.如图,在⊙O中,PA是直径,PC是弦,PH平分∠APB且与⊙O交于点H,过H作HB⊥PC交PC的延长线于点B.(1)求证:HB是⊙O的切线;(2)若HB=4,BC=2,求⊙O的半径.34.如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使得EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.35.如图,四边形ABCD是⊙O的内接四边形,且对角线BD为直径,过点A作⊙O的切线AE,与CD的延长线交于点E,已知DA平分∠BDE.(1)求证:AE⊥DE;(2)若⊙O的半径为5,CD=6,求AD的长.36.如图,在Rt△ACD中,∠ACD=90°,点O在CD上,作⊙O,使⊙O与AD相切于点B,⊙O与CD交于点E,过点D作DF∥AC,交AO的延长线于点F,且∠OAB=∠F.(1)求证:AC是⊙O的切线;(2)若OC=3,DE=2,求DF的长.37.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,以CD为直径作⊙O,与BC交于点E,过点E作⊙O的切线EF,交AB于点F.(1)求证:EF⊥AB;(2)若⊙O的半径是,cos∠ACD=,求DF的长.38.如图,⊙O是△ABC的外接圆,=,过点A作AD∥BC交⊙O于点D,连接CD,延长DA到点E,连接CE,∠D=∠E.(1)求证:CE是⊙O的切线;(2)若CE=8,AE=5,求⊙O半径的长.39.如图,BD为⊙O的直径,∠ABE=∠BCA,过点A的直线与⊙O分别交于点E,C,与BD交于点F,连接BE,BC.(1)求证:AB为⊙O的切线.(2)若∠A=∠ABE,BE=5,BC=8,求⊙O的半径.40.如图,AB是⊙O的直径,AE是⊙O的切线,点C为直线AE上一点,连接OC交⊙O 于点D,连接BD并延长交线段AC于点E.(1)求证:∠CDE=∠CAD;(2)若CD=4,tan B=,求⊙O的半径.。
2024年陕西省中考数学真题试卷一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的) 1.-3的倒数是( )A.13-B.13C.3-D.32.如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )3.如图,//AB DC ,//,145O BC DE B ∠=,则D ∠的度数为( )第3题图A.25oB.35oC.45oD.55o4.不等式2(1)6x -≥的解集是( ) A.2xB.2x ≥C.4xD.4x ≥5.如图,在ABC ∆中,90,BAC AD ︒∠=是BC 边上的高,E 是DC 的中点,,连接AE ,则图中的直角三角形有( )第5题图A.2个B.3个C.4个D.5个6.一个正比例函数的图象经过点(2,)A m 和点(,6)B n -,若点A 于点B 关于原点对称,则这个正比例函数的表达式为( ) A.3y x =B.3y x =-C.13y x =D.13y x =-7.如图,正方形CEFG 的顶点G 在正方形ABCD 的边CD 上AF 与DC 交于点H ,若6,2,AB CE ==则DH 的长为( )第7题图A.2B.3C.52D.838.已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表( )A.图象的开口向上B.当0x >时,y 的值随x 的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线1x =第二部分(非选择题共96分)二、填空题(共5小题,每小题3分,计15分) 9.分解因式:2a ab -=______.10.小华探究“幻方”时,提出了一个问题:如图,将0,-2,-1,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是___________.(写出一个符合题意的数即可)第10题图 第11题图 第13题图 11.如图,BC 是O 的弦,连接,,OB OC A ∠是BC 所对的圆周角,则A ∠与OBC ∠的和的度数是_________.12.已知点1(2,)A y -和点2(,)B m y 均在反比例函数5y x=-的图象上,若01m <<,则12_____0y y +.13.如图,在ABC ∆中,,AB AC E =是边AB 上一点,连接CE ,在BC 右侧作//BF C ,且BF AE =,连接CF .若13,10AC BC ==,则四边形EBFC 的面积为___________. 三、解答题(共13小题,计81分.解答题应写出过程) 14.(本题满分5分)计算0(7)(2)3-+-⨯. 15.(本题满分5分)先化简,再求值:2()(2),x y x x y ++-其中1,2x y ==- 16.(本题满分5分) 解方程:22111xx x +=-- 17.(本题满分5分)如图,已知直线l 和l 外一点A ,请用尺规作图法,求作一个等腰直角ABC ∆,使得顶点B 和顶点C 都在直线l 上.(作出符合题意的一个等腰直角三角形即可,保留作图痕迹,不写作法)18.(本题满分5分)=.如图,四边形ABCD是矩形,点E和点F在边BC上,且BE CF求证:AF DE=.19.(本题满分5分)一个不透明的袋子中共装有五个小球,其中3个红球,1个白球,1个黄球.这些小球除颜色外都相同.将袋中小球摇匀,从中随机摸出一个小球记色后放回,记作随机摸球一次.(1)随机摸球10次,其中摸出黄球3次,则这10次摸球摸出黄球的频率是________.(2)随机摸球2次,画树状图或列表的方法,求这两次摸出的小球都是红球的概率20.(本题满分5分)星期天,妈妈做饭,小峰和爸爸进行一次家庭卫生大扫除.根据这次大扫除的任务量,若小峰单独完成,需4h;爸爸单独完成,需2h.当天,小峰先单独打扫了一段时间后,去参加篮球训练,接着由爸爸单独完成剩余的打扫任务.小峰和爸爸这次一共打扫了3h,求这次小峰打扫了多长时间.21.(本题满分6分)如图所示,一座小山顶的水平观景台的海拔高度为1600m,小明想利用这个观景台测量对面山顶C点处的海拔高度,他在该观景台上选定了一点A,在点A处测得C点的仰角CAE ∠42︒=,再在AE 上选一点B ,在点B 处测得C 点的仰角45a ︒=,10AB =m.求山顶C 点处的海拔高度.(小明身高忽略不计,参考数据:420.67,420.74,420.90o o o sin cos tan ≈≈≈)22.(本题满分7分)我国新能源汽车快速健康发展,续航里程不断提升,王师傅驾驶一辆纯电动汽车从A 市前往B 市,他驾车从A 市一高速公路入口驶入时,该车的剩余电量是80kw·h,行驶了240km 后,从B 市一高速公路出口驶出,已知该车在高速公路上行驶的过程中,剩余电量y (kw·h)与行驶路程x (km)之间的关系如图所示(1)求y 与x 之间的关系式;(2)已知这辆车的“满电量”为100kW·h,求王师傅驾车从B 市这一高速公路出口驶出时,该车的剩余电量占“满电量”的百分之多少. 23.(本题满分7分)水资源问题是全球关注的热点,节约用水已成为全民共识.某校课外兴趣小组想了解居民家庭用水情况,他们从一小区随机抽取了30户家庭,收集了这30户家庭去年7月份的用水量,并对这30个数据进行整理,绘制了如下统计图表:根据以上信息,解答下列问:(1)这30个数据的中位数落在组(填组别); (2)求这30户家庭去年7月份的总用水量;(3)该小区有1000户家庭,若每户家庭今年7月份的用水量都比去年7月份各自家庭的用水量节约10%,请估计这1000户家庭今年7月份的总用水量比去年7月份的总用水量节约多少m³? 24.(本题满分8分)如图,直线l 与O 相切于点A ,AB 是O 的直径,点C ,D 在l 上,且位于点A 两侧 连接,BC BD ,分別与O 交于点,E F ,连接,EF AF .(1)求证:BAF CDB ∠=∠.(2)若O 的半径6,9,12r AD AC ===,求EF 的长. 25.(本题满分8分)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索1L 与缆索2L 均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线'FF 为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索1L 所在抛物线与缆索2L 所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离100OC m =,17AO BC m ==,缆索1L 的最低点P 到$FF$的距离2PD m =(桥塔的粗细忽略不计)(1)求缆索1L 所在抛物线的函数表达式.(2)点E 在缆索2L 上,EF FF '⊥,且 2.6EF m =,FO OD <,求FO 的长. 26.(本题满分10分) 问题提出(1)如图1,在ABC ∆中,15,30AB C ︒=∠=,作ABC 的外接圆.O 则ACB 的长为______.(结果保留π) 问题解决(2)如图2所示,道路AB 的一侧是湿地.某生态研究所在湿地上建有观测点,,D E C ,线段,AD AC 和BC 为观测步道,其中点A 和点B 为观测步道出入口,已知点E =在AC =上,且,60,120,1200AE EC DAB ABC AB m ︒︒=∠=∠==,,900AD BC m ==,现要在湿地上修建一个新观测点P ,使60.DPC ︒∠=再在线段AB 上选一个新的步道出入口点F ,并修通三条新步道,,PF PD PC ,使新步道PF 经过观测点E ,并将五边形ABCPD 的面积平分请问:是否存在满足要求的点P 和点F ?若存在,求此时PF 的长;若不存在,请说明理由.(点,,,,A B C P D 在同一平面内,道路AB 与观测步道的宽、观测点及出人口的大小均忽略不计,结果保留根号)2024年陕西中考数学真题试卷参考答案一、选择题.二、填空题三解答题.14. 2-15. 222,6x y+16. 3x=-是原分式方程的解.17.(1)在l上取点,P Q分别以,P Q为圆心,,PA QA为半径画圆,得另一交点D.连接AD交l于B,则AB l⊥.(2)以B为圆心,BA为半径画圆,交l于C,则ABC∆即为所求.18.略19. (1)310(2)92520. 2小时21. 1690米22. (1)1805y x =-+ (2)32%23. (1)B (2)3255m (3)3850m24. (1)略 (2)525. (1)23(50)2500y x =-+或233175005y x x =-+ (2)40米26. (1)25π (2)米。
汕头市2009~2010学年九年级数学科联合考试参考答案
一.选择题
1.A 2.B 3.A 4.C 5.C 6.D 7.C 8.A
二.填空题
9.120 10.(2)(2)a a a +- 11.9
3.14210⨯ 12. 25.5,25.5 13. 4n+6,n (n+1) 三.解答题 14
.解:原式32133=++ 4分
6=. 7分
15.解:2x x ≥+1,解得x ≥1. 2分
8x x +≥4-1,解得x ≤3. 4分
∴原不等式组的解集为1x ≤≤3. 5分
不等式组的解集在数轴上表示如下:
7分
16.解:设原计划每天铺设x 米管道. 1分
则由题意可得5505505(110%)x x
=++, 4分 解得10x =, 5分
经检验10x =是原方程的根. 6分 答:原计划每天铺设10米管道. 7分
17.解:(1) 如图,DE 为所求; 3分
(2)∵△ABC 中,∠C =90°,∠A =30°.
∴∠CBA =60°. 4分
∵DE 垂直平分AB ,
∴DA=DB . 5分
∴∠DBA =∠A =30°.
∴ ∠DBC = ∠CBA-∠DBA =30°, 6分
∴ ∠DBC =∠DBA ,
∴BD 平分∠CBA . 7分
18.解:能.理由如下: 1分
过点A 作AD ⊥BE ,垂足为D , 2分
∵∠ACE =60°, ∠ABE =30°,∴∠CAB=∠ACE-∠ABE =30°.
∴∠CAB=∠ABE .∴AC=BC=500m . 4分
在Rt △ACD 中,∠ACD =60°,
∵sin ∠ACD =AD AC =2
, 6分
∴AD =AC 500
答:江宽为 7分
四.解答题
19.(1)50,50 4分
(2)补图略 6分
(3)130010%130⨯=人. 8分
答:该校约有130名学生很了解我国改革开放30年来所取得的辉煌成就. 9分
20.(1)证明:∵AB 为半⊙O 的直径,∴
90=∠BCA .
又∵BC ∥OD , ∴AC OE ⊥
∴090=∠+∠DAE D 而BAC D ∠=∠
∴090=∠+∠DAE OAE ∴OA AD ⊥ ∴AD 是半圆O 的切线. 4分
(2)∵AC OE ⊥ ∴222==CE AC
在ABC Rt ∆中,322)22(2222=+=+=BC AC AB 6分
由DOA ∆∽ABC ∆可得:BC OA AC AD = 即232
2=AD ∴6=AD 9分 21.解:将原函数转化成x 的一元二次方程,得2(3)(21)20y x y x y -+-+-=. 3分
∵x 为实数,∴△=2(21)4(3)(2)y y y ----=1623y -≥0. 7分 ∴2316
y ≥. 8分
因此,y 的最小值为
2316
. 9分 五.解答题 22.解:(1)∵∠ACB=900 ,BC ⊥BC ,∴D F ∥AC ,
又∵EF=AC ,∴四边形EFAC 是平行四边形,
∴AF=CE . 5分
(2)当∠B=300 时四边形EFAC 是菱形.
∵点E 在BC 的垂直平分线上,
∴DB=DC=2
1BC ,BE=EC ,∠B=∠ECD=300 , ∵D F ∥AC ,
∴△BD E ∽△BCA . ∴2
1==BC BD BA BE , 即BE=AE .
∴AE=CE .
又∠ECA=900 – 300 =600 ∴△AEC 是等边三角形.
∴CE=AC . 所以四边形EFAC 是菱形. 10分
(3)不可能.若四边形EFAC 是正方形,则E 与D 重合,A 与C 重合,
不可能有∠B=300 . 12分
23. 解:(1)1.5; 2. 4分
(2)当10x >时,设y 与x 之间的函数关系式为y=kx+b , 5分 当x=10时,y=15;当x=20时,y=35,则
15103520k b k b =+⎧⎨=+⎩
,解得 25k b =⎧⎨=-⎩ 7分 故当10x >时,y 与x 之间的函数关系式为25y x =-. 8分
(3)因1.510 1.5102446⨯+⨯+⨯<,
A B C
D
E F
所以甲、乙两家上月用水均超过10吨. 9分 设甲、乙两家上月用水分别为m 吨,n 吨,
则4252546.n m n m =-⎧⎨-+-=⎩
, 11分 解之,得1612.
m n =⎧⎨=⎩, 故居民甲上月用水16吨,居民乙上月用水12吨. 12分
24.(1)解:GH ∶GK 的值不变,GH ∶GK
1分 证明如下:∵CG ⊥AB ,∴∠AGC=∠BGC=90°.
∵∠B=30°,∠ACB=90°,∴∠A=∠GCH=60°. ∵∠AGB=∠BGC=90°,
∴∠AGK=∠CGH .
∴△AGK ∽△CGH .∴GH CG GK AG
=.
分 ∵在Rt △ACG 中,tan ∠A =3CG AG = ∴GH ∶GK 3 分 (2)证明:由(1)得,在Rt △KHG 中,tan ∠GKH =3GH GK
=GKH =60°. ∵在△EFG 中,∠E=∠EGF -∠F=90°-30°=60°,
∴∠GKH =∠E .
∴KH ∥EF . 7分
(3)解:存在x=1,使△CKH 的面积最大.理由如下: 8分
由(1)得△AGK ∽△CGH ,∴
CH CG AK AG
==CH =.9分 在Rt △EFG 中,∠EGF =90°,∠F=30°,∴AC =12EF=2, ∴CK=AC -AK=2-x . 10分 ∴2113(2)3(1)2222
CHK S CK CH x x x ==-=--+. ∴当x=1时,△CKH 的最大面积为
2. 12分
图2
K H G F
C B A。