N皇后问题
- 格式:doc
- 大小:25.00 KB
- 文档页数:2
n皇后问题实验报告n皇后问题实验报告引言:n皇后问题是一个经典的数学问题,它要求在一个n×n的棋盘上放置n个皇后,使得它们互相之间不能相互攻击,即任意两个皇后不能处于同一行、同一列或同一对角线上。
本实验旨在通过编程实现n皇后问题的求解,并探索不同算法在解决该问题上的性能差异。
实验步骤及结果:1. 回溯算法的实现与性能分析回溯算法是最常见的解决n皇后问题的方法之一。
它通过递归的方式遍历所有可能的解,并通过剪枝操作来提高效率。
我们首先实现了回溯算法,并对不同规模的问题进行了求解。
在测试中,我们将问题规模设置为4、8、12和16。
结果表明,当n为4时,回溯算法能够找到2个解;当n为8时,能够找到92个解;当n为12时,能够找到14200个解;当n为16时,能够找到14772512个解。
可以看出,随着问题规模的增加,回溯算法的求解时间呈指数级增长。
2. 启发式算法的实现与性能分析为了提高求解效率,我们尝试了一种基于启发式算法的解决方法。
在该方法中,我们使用了遗传算法来搜索解空间。
遗传算法是一种模拟生物进化过程的优化算法,通过进化操作(如选择、交叉和变异)来寻找问题的最优解。
我们将遗传算法应用于n皇后问题,并对不同规模的问题进行了求解。
在测试中,我们将问题规模设置为8、12和16。
结果表明,遗传算法能够在较短的时间内找到问题的一个解。
当n为8时,遗传算法能够在几毫秒内找到一个解;当n为12时,能够在几十毫秒内找到一个解;当n为16时,能够在几百毫秒内找到一个解。
相比之下,回溯算法在同样规模的问题上需要几秒钟甚至更长的时间。
3. 算法性能对比与分析通过对比回溯算法和启发式算法的性能,我们可以看到启发式算法在求解n皇后问题上具有明显的优势。
回溯算法的求解时间随问题规模呈指数级增长,而启发式算法的求解时间相对较短。
这是因为启发式算法通过优化搜索策略,能够更快地找到问题的解。
然而,启发式算法并非没有缺点。
n皇后实验报告《n皇后实验报告》引言n皇后问题是一个经典的计算机科学问题,旨在找到一种方法,在n×n的棋盘上放置n个皇后,使得它们互相之间不能攻击到对方。
这个问题不仅在计算机科学领域有着重要的意义,也在数学和逻辑学中有着深远的影响。
在本实验中,我们将探讨不同解决n皇后问题的方法,并对它们进行实验和比较。
实验方法我们选择了几种常见的解决n皇后问题的算法,包括暴力搜索、回溯法、遗传算法和模拟退火算法。
我们使用Python编程语言实现了这些算法,并在不同规模的n值下进行了实验。
我们记录了每种算法的运行时间、内存占用和解的质量,并进行了对比分析。
实验结果在实验中,我们发现暴力搜索算法在较小规模的n值下表现良好,但随着n的增大,其运行时间呈指数级增长,内存占用也急剧增加。
回溯法在中等规模的n值下表现较好,但在大规模n值下也存在性能问题。
遗传算法和模拟退火算法在各种规模的n值下都表现出了较好的性能,尤其是在大规模n值下,其运行时间和内存占用都能保持在合理范围内,并且能够找到高质量的解。
结论通过本次实验,我们发现遗传算法和模拟退火算法是解决n皇后问题的较为有效的方法,尤其在大规模n值下表现出了明显的优势。
这些算法能够在合理的时间内找到高质量的解,对于解决实际问题具有一定的实用性。
同时,我们也意识到在选择解决n皇后问题的算法时,需要根据具体情况来进行选择,不能一概而论。
希望本实验能够为解决n皇后问题提供一些参考和启发。
展望在未来的研究中,我们可以进一步探讨不同算法在解决n皇后问题中的优劣势,尝试设计新的算法来解决这一问题,并且在更多的实际应用场景中进行验证。
同时,我们也可以将这些算法应用到其他类似的组合优化问题中,以期能够找到更加通用和高效的解决方法。
希望通过这些努力,能够为计算机科学和数学领域的发展做出一些贡献。
n皇后问题【问题描述】在n×n的国际象棋盘上,放置n个皇后,使任何一个皇后都不能吃掉另一个,需满足的条件是:同一行、同一列、同一对角线上只能有一个皇后。
求所有满足要求的放置方案。
【输入】一个正整数n,表示皇后的个数。
【输出】每行代表一种放置方案:第i行的第一个数是i,表示第i种方案,后面一个冒号,然后是用空格隔开的n个数,其中第i个数x[i]表示第i行上的皇后放在第x[i]列;最后一行:一个整数,表示方案总数。
〖问题描述〗在一个8×8的棋盘里放置8个皇后,要求每个皇后两两之间不相"冲"(在每一横列竖列斜列只有一个皇后)。
〖问题分析〗(聿怀中学吕思博)这道题可以用递归循环来做,分别一一测试每一种摆法,直到得出正确的答案。
主要解决以下几个问题:1、冲突。
包括行、列、两条对角线:(1)列:规定每一列放一个皇后,不会造成列上的冲突;(2)行:当第I行被某个皇后占领后,则同一行上的所有空格都不能再放皇后,要把以I 为下标的标记置为被占领状态;(3)对角线:对角线有两个方向。
在同一对角线上的所有点(设下标为(i,j)),要么(i+j)是常数,要么(i-j)是常数。
因此,当第I个皇后占领了第J列后,要同时把以(i+j)、(i-j)为下标的标记置为被占领状态。
2、数据结构。
(1)解数组A。
A[I]表示第I个皇后放置的列;范围:1..8(2)行冲突标记数组B。
B[I]=0表示第I行空闲;B[I]=1表示第I行被占领;范围:1..8 (3)对角线冲突标记数组C、D。
C[I-J]=0表示第(I-J)条对角线空闲;C[I-J]=1表示第(I-J)条对角线被占领;范围:-7..7 D[I+J]=0表示第(I+J)条对角线空闲;D[I+J]=1表示第(I+J)条对角线被占领;范围:2..16〖算法流程〗1、数据初始化。
2、从n列开始摆放第n个皇后(因为这样便可以符合每一竖列一个皇后的要求),先测试当前位置(n,m)是否等于0(未被占领):如果是,摆放第n个皇后,并宣布占领(记得要横列竖列斜列一起来哦),接着进行递归;如果不是,测试下一个位置(n,m+1),但是如果当n<=8,m=8时,却发现此时已经无法摆放时,便要进行回溯。
N皇后问题及答案解题⽬在⼀张N∗N的国际象棋棋盘上,放置N个皇后,使得所有皇后都⽆法互相直接攻击得到,(皇后可以直接攻击到她所在的横⾏,竖列,斜⽅向上的棋⼦),现在输⼊⼀个整数N,表⽰在N∗N的棋盘上放N个皇后,请输出共有多少种使得所有皇后都⽆法互相直接攻击得到的⽅案数。
例如下⾯这样的摆法,是4皇后的⼀个解 (1代表有皇后,0代表没有)0 1 0 00 0 0 11 0 0 00 0 1 0输⼊⼀个整数N,代表皇后的个数输出输出⽅案数样例输⼊样例输⼊14样例输⼊28样例输出样例输出12样例输出292⼀、DFS+回溯(1)设已经放好的皇后坐标为(i,j),待放⼊的皇后坐标为(r,c),则它们满⾜以下关系:(1)不同⾏,即 i ≠ r;(2)不同列,即 j ≠ c;(3)不在斜对⾓线上,即 |i-r| ≠ |j-c|.可以在⼀⾏逐列尝试,这样就不⽤考虑(1)了。
#include <iostream>#include <algorithm>#include <cstring>using namespace std;int n, tot = 0;int col[15] = {0}, ans[15] = {0}; //col[i]的值为第i⾏的皇后的列数的值,即j,ans[]数组⽤来存放结果bool check(int c, int r) //检查是否和已经放好的皇后冲突{for (int i = 0; i < r; i++)if (col[i] == c || (abs(col[i] - c) == abs(i - r))) //因为是逐⾏放置,所以只考虑纵向和斜向return false;return true;}void dfs(int r,int m) //在第r⾏放皇后,m表⽰⾏数{if(r==m){ //r==m,即皇后放到最后⼀⾏,满⾜条件,tot++,返回;tot++;return;}for(int c=0;c<m;c++) //在此⾏逐列尝试if(check(c,r)){ //检查是否冲突col[r]=c; //不冲突就在此列放皇后dfs(r+1,m); //转到下⼀⾏继续尝试}}int main(){cin>>n;for (int i = 0; i <= 13; i++) //算出所有N皇后的答案,先打表,不然会超时{memset(col, 0, sizeof(col)); //清空col,准备计算下⼀个N皇后问题tot = 0;dfs(0,i);ans[i] = tot;}cout << ans[n] << endl;return 0;}在上述程序中,dfs()⼀⾏⾏放置皇后,时间复杂度为O(N!);check()判断冲突,时间复杂度为O(N),总的为O(N*N!)!⾮常的⾼。
N皇后问题算法一、实验目的及要求所要涉及或掌握的知识:1.了解皇后相互攻击的条件:如果任意两个皇后在同一行,同一列或同一对角线,则她们相互攻击。
2.运用迭代的方法实现6皇后问题,求解得到皇后不相互攻击的一个解。
3.在运用迭代的方法实现编程时,要注意回溯点。
二、N皇后问题:在一个 N * N 的国际象棋棋盘中,怎样放置 N 个皇后才能使 N 个皇后之间不会互相有威胁而共同存在于棋局中,即在 N * N 个格子的棋盘中没有任何两个皇后是在同一行、同一列、同一斜线上。
三、问题分析最容易想到的方法就是有序地从第 1 列的第 1 行开始,尝试放上一个皇后,然后再尝试第 2 列的第几行能够放上一个皇后,如果第 2 列也放置成功,那么就继续放置第 3 列,如果此时第 3 列没有一行可以放置一个皇后,说明目前为止的尝试是无效的(即不可能得到最终解),那么此时就应该回溯到上一步(即第 2 步),将上一步(第 2 步)所放置的皇后的位置再重新取走放在另一个符合要求的地方…如此尝试性地遍历加上回溯,就可以慢慢地逼近最终解了。
四、具体实现package queen;import java.util.Scanner;public class NQueensII {public static void main(String[] args){Scanner in=new Scanner(System.in);System.out.println("Please enter the number of queen you want(请输入你要求解的皇后的个数)");int n=in.nextInt();Queen(n);}/***用回溯法设计函数Queen(n)求解*/public static boolean Place(int x[],int k)//考察皇后k放置在x[k]列是否发生冲突{for(int i=1; i<k; i++)if (x[k]==x[i]||Math.abs(k-i)==Math.abs(x[k]-x[i])) return false;return true;}public static void Queen(int n){int x[]=new int[n+1];for (int i=1; i<=n; i++)//初始化x[i]=0;int k=1;while (k>=1){x[k]=x[k]+1;//在下一列放置第k个皇后while (x[k]<=n&&!Place(x,k))x[k]=x[k]+1;//搜索下一列if (x[k]<=n && k==n){ //得到一个解,输出System.out.println("The answer is(得到的解是):");for (int i=1; i<=n; i++)System.out.print("("+i+","+x[i]+")"+" ");System.out.println();return;}else if (x[k]<=n && k<n)k=k+1;//放置下一个皇后else{x[k]=0;//重置x[k],回溯k=k-1;}}}}运行结果:五、总结回溯法有“通用解题法”之称,用它可以搜索问题的所有解。
n 后问题1 问题描述:N 皇后问题是一个古老而著名的问题。
该问题是十九世纪著名的数学家高斯1850年提出的。
八皇后问题要求在一个N *N 的棋盘上放上N 个皇后,使得每一个皇后既攻击不到另外N-1个皇后,也不被另外N-1个皇后所攻击.按照国际象棋的规则,一个皇后可以攻击与之处在同一行或同一列或同一斜线上的其他任何棋子,问有多少种不同的摆法?并找出所有的摆法。
因此,N 皇后问题等于要求N 个皇后中的任意两个不能被放在同一行或同一列或同一斜线上。
2 回朔法回溯法有“通用的题解法”之称。
从问题的某种可能情况出发,搜索所有能到达的可能情况,然后以其中一种可能的情况为新的出发点,继续向下探索,当所有可能情况1 2 3 4 5 6 7 8 1 2 3 4 5 6 78都探索过且都无法到达目标的时候,再回退到上一个出发点,继续探索另一个可能情况,这种不断回头寻找目标的方法称为“回溯法”。
适用于解组合是较大的问题。
回朔法思想:1针对所给问题,定义问题的解空间。
2.确定易于搜索的解空间结构。
3.以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。
在搜索过程中,通常采用两种策略避免无效搜索:一是用约束函数剪去得不到可行解的子树;二是用限界函数剪去得不到最优解的子树。
这两类函数统称为剪枝函数。
回溯算法的一个显著的特性是在搜索过程中动态产生问题的解空间。
在任何时刻,只保存从根结点到当前扩展结点的路径。
因此,回溯算法的空间需求为o(n),(n为从根结点起最长路径的长度)。
而显式地存储整个解空间则需要o(2n)或o(n!)内存空间。
回溯法对解空间作深度优先搜索,因此,在一般情况下用递归方法实现回溯法。
void backtrack (int t){if (t>n) output(x);elsefor (int i=f(n,t);i<=g(n,t);i++){x[t]=h(i);if (constraint(t)&&bound(t)) backtrack(t+1);}}采用树的非递归深度优先遍历算法,可将回溯法表示为一个非递归迭代过程。
问题描述:在n*n的棋盘上放置彼此不受攻击的n个皇后。
按国际象棋的规则,皇后可以与之处在同一行或者同一列或同一斜线上的棋子。
n后问题等价于在n*n格的棋盘上放置n皇后,任何2个皇后不放在同一行或同一列的斜线上。
算法设计:|i-k|=|j-l|成立,就说明2个皇后在同一条斜线上。
可以设计一个place函数,测试是否满足这个条件。
1 当i>n时,算法搜索至叶节点,得到一个新的n皇后互不攻击放置方案,当前已找到的可行方案sum加1.2 当i<=n时,当前扩展结点Z是解空间中的内部结点。
该结点有x[i]=1,2,3....n共n个儿子节点。
对当前扩展结点Z的每个儿子节点,由place检察其可行性。
并以深度优先的方式递归地对可行子树,或剪去不可行子树。
N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行、同一列、同一斜线上的皇后都会自动攻击)。
一、求解N皇后问题是算法中回溯法应用的一个经典案例回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。
回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。
在现实中,有很多问题往往需要我们把其所有可能穷举出来,然后从中找出满足某种要求的可能或最优的情况,从而得到整个问题的解。
回溯算法就是解决这种问题的“通用算法”,有“万能算法”之称。
N皇后问题在N增大时就是这样一个解空间很大的问题,所以比较适合用这种方法求解。
这也是N皇后问题的传统解法,很经典。
下面是算法的高级伪码描述,这里用一个N*N的矩阵来存储棋盘:1) 算法开始, 清空棋盘,当前行设为第一行,当前列设为第一列2) 在当前行,当前列的位置上判断是否满足条件(即保证经过这一点的行,列与斜线上都没有两个皇后),若不满足,跳到第4步3) 在当前位置上满足条件的情形:在当前位置放一个皇后,若当前行是最后一行,记录一个解;若当前行不是最后一行,当前行设为下一行, 当前列设为当前行的第一个待测位置;若当前行是最后一行,当前列不是最后一列,当前列设为下一列;若当前行是最后一行,当前列是最后一列,回溯,即清空当前行及以下各行的棋盘,然后,当前行设为上一行,当前列设为当前行的下一个待测位置;以上返回到第2步4) 在当前位置上不满足条件的情形:若当前列不是最后一列,当前列设为下一列,返回到第2步;若当前列是最后一列了,回溯,即,若当前行已经是第一行了,算法退出,否则,清空当前行及以下各行的棋盘,然后,当前行设为上一行,当前列设为当前行的下一个待测位置,返回到第2步;算法的基本原理是上面这个样子,但不同的是用的数据结构不同,检查某个位置是否满足条件的方法也不同。
常规N皇后解决问题过程一.问题描述运用回溯法解题通常包含以下三个步骤:(1)针对所给问题,定义问题的解空间;(2)确定易于搜索的解空间结构;(3)以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;通过上述的基本思路,我们可以将问题描述为:X(j)表示一个解的空间,j表示行数,里面的值表示可以放置在的列数,抽象约束条件得到能放置一个皇后的约束条件(1)X(i)!=X(k);(2)abs(X(i)-X(k))!=abs(i-k)。
应用回溯法,当可以放置皇后时就继续到下一行,不行的话就返回到第一行,重新检验要放的列数,如此反复,直到将所有解解出。
也就是对于N×N的棋盘,选择出N个符合i!=r∧j!=s∧|i-r|!=|j-s|∨(i+r)!=(j+s)的点的排列总数。
二.伪代码:判断点是否符合要求:place(k, X)I=1While i<k doIf x[i]==x[k] orabs(x[i]-x[k])==abs(i-k) thenReturn falseI=i+1Return true求问题的所有解:Nqueens(n, X)Sum=0 , X[1]=0 , k=1While k>0 doX[k]=X[k]+1While X[k]<=n and !(place(k,x))X[k]=X[k]+1If X[k]<=n thenSum=Sum+1ElseK=K+1 ,X[k]=0ElseK=K-1Print sum三.代码实现#include <iostream>using namespace std;#include <math.h>/*检查可不可以放置一个新的皇后*/ bool place(int k, int *X){int i;i=1;while(i<k){if((X[i]==X[k])||(abs(X[i]-X[k] )==abs(i-k)))return false;i++;}return true;}/*求解问题的所有解的总数,X存放列数*/ void Nqueens(int n,int *X){int k,sum=0;X[1]=0;k=1;while(k>0){X[k]=X[k]+1;while((X[k]<=n)&&(!place(k, X)))X[k]=X[k]+1;if(X[k]<=n)if(k==n){for(int i=1;i<=n;i++)cout<<X[i]<<" ";cout<<endl;sum++;}else{k=k+1;X[k]=0;}elsek=k-1;}cout<<"解的总数为:"<<sum<<endl;}int main(){int n;int *X;cout<<"请输入皇后的个数:";cin>>n;X=new int[n];cout<<"问题的解如下:"<<endl;Nqueens(n,X);return 0;}五.存在的问题当皇后个数N大于等于16以上,程序对棋盘的扫描次数大到惊人:从维基百科列出的结果不难看出,在25皇后时,符合条件的解集已经如此庞大了。
N皇后问题
N皇后问题要求在N*N的棋盘上放置N个皇后,使其不能互相攻击,即任意2个皇后不能处于棋盘上的同一行、同一列或同一斜线上。
以下程序用回溯法求出所有满足要求的皇后布局数。
#include <iostream.h>
#include <iomanip.h>
#include <conio.h>
#define n 8
int a[n+1],c[n+1];
int l[2*n],r[2*n+1];
int count=0;
void place(int);
int main()
{
int k;
for(k=1;k <=n;k++)c[k]=1;
for(k=1;k <=2*n-1;k++)l[k]=1;
for(k=2;k <=2*n;k++)r[k]=1;
place(1);
if(count==0)cout < < "No Answer! " < <endl;
cout < < "Program end. " < <endl;
getch();
return 0;
}
void place(int i)
{
int j,k;
for(j=1;j <=n;j++)
{
if((c[j]==1)&&(l[i-j+n]==1)&&(r[i+j]==1))
{
a[i]=j;
c[j]=0;l[i-j+n]=0;r[i+j]=0;
if(i <n) place(i+1);
else
{
for(k=1;k <=n;k++)
cout < <setw(4) < <a[k];
count++;
cout < < " count= " < <count < <endl;
if(count%20==0){cout < < "Press any key to continue. " < <endl;getch();}
}
c[j]=1;l[i-j+n]=1;r[i+j]=1;
}
} }。