二次根式复习-例题精选-知识点整理
- 格式:doc
- 大小:237.00 KB
- 文档页数:4
4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。
练习1、x为何值时,下列各式有意义。
【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。
二次根式1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 25.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a ≥0,b ≥0);=b ≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】(2)、平方法当0,0a b >>时,①如果22a b >,则a b >;②如果22a b <,则a b <。
例1、比较与的大小。
例2、比较a (a >0)a -(a <0)0 (a =0);(3)、分母有理化法通过分母有理化,利用分子的大小来比较。
例3(4)、分子有理化法通过分子有理化,利用分母的大小来比较。
例4 (5)、倒数法例5的大小。
(6)、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。
例633的大小。
(7)、作差比较法在对两数比较大小时,经常运用如下性质: ①0a b a b ->⇔>;②0a b a b -<⇔<例7的大小。
(8)、求商比较法它运用如下性质:当a>0,b>0时,则: ①1a a b b>⇔>; ②1a a b b<⇔<例8、比较5与2+二次根式的概念和性质1.判断题(对的打“∨”,错的打“×”)(12=-12 ( );(2=-12 ( )(3)(2=-12 ( );(4)(2=2×12=1 ( ) 2.下面的计算中,错误..的是 ( )A=±0.03 B=±C.3.下列各式中一定成立的是( )AC .(213=2342=________; 5+(2=________.6.-7.数a│1-a │=_______.8.9-(12)210、35-23|11二次根式的乘除练习题1、填空:(1)二次根式的乘法法则用式子表示为__________(2)二次根式的除法法则用式子表示为__________(3)把分母中的___化去,叫做分母有理化. 将式子22a 分母有理化后等于_________(4)44162+⋅-=-x x x 成立的条件是_________(5)x x -=-2)2(2成立的条件是_________(6)(6)2121+-=+-x x x x 成立的条件是_________(7)化简: =24 =⨯1259 =-222129 =c b a 324=499 =944=224c b a (8)计算: =⋅1510 =⋅x xy 1312 =÷653211.下列运算正确的是( )A 2=-5 B.(2=-5 C.=5 D2.下面的计算中,正确的是( )A =0.1; B .=-0.03; C±13; Dπ-4 3.下列命题中,错误..的是( )A,则x=5;B .若a (a≥0Cπ-3D54)A .-11B .11C .22D .-225.(2=________; 67-(2=__________.8.比较大小>”,“=”,“<9.数a 在数轴上的位置如图所示,化简:│-a-1│. 10=________.11+…=______. 12│b-2│=0,求以a 、b 为边长的等腰三角形的周长.1、判断题:下列运算是否正确.( )(1)ππ-=-14.3)14.3(2( )(2)767372=⨯ ( )(3)636)9()4(94==-⨯-=--( )(4)5125432516925169=⨯=⋅= ( )(5)5.045.16=( )(6)73434342222=+=+=+( )(7)228= ( )(8)32123= 1、运用乘法分配律进行简单的根式运算.例1 计算 (1))2732(3+ (2)24)654(-(1) )82(2+ (2) a a a 5)5320(+(3) ab abb a a b ab ⋅--+)12(2、比较两个实数的大小.例2 比较下列两个数的大小(1)6与7 (2)23与321、8.2与4322、67与763、65-与56-4、323-与533- 3、二次根式的乘除混合运算.(1)21223222330÷⨯(2))23(62325b a a b b a ab b -⨯÷(1)21223151437⨯÷- (2))23()23(3a abab -⨯-÷4、运用分母有理化进行计算.例3 化简100991431321211++++++++分析:当分母里二次根式的被开方数都相差1时,如果分母有理化后则变为1或-1,就可将原式变为不含分母的二次根式.思考题:计算324213-+⋅-二次根式的加减1.若a a=_______,b=_______.2_________.3.4,则它的周长是________. 5.在实数范围内分解因式:a 2-4=_________.6大小关系是_________. 7.下列根式中与其他三个不同类的是( )A B D 8.下列各组二次根式中,可以进行加减合并的一组是( )A B D .18 9.下列根式合并过程正确的是( )A .-=2B .C .1212.13-14=1121013- )A B ..11.若,则y 值为( )A .1 C ..312.一个等腰三角形的两边分别为,则这个三角形的周长为( )A ..C ..或 13.计算:(1) (2)(3(4)1414.如果△ABC 的三边P . 巩固练习1. )2. 下面说法正确的是( )A. 被开方数相同的二次根式一定是同类二次根式D. 同类二次根式是根指数为2的根式3. )4. 下列根式中,是最简二次根式的是( )★5. 若12x)A. 21x -B. 21x -+C. 3D. -3★6. 的整数部分为x ,小数部分为y y -的值是( )A. 37. 下列式子中正确的是( )=a b =-C. (a b =-22==8. 是同类二次根式的是 。
第十六章 二次根式的知识点、典型例题及相应的练习1、二次根式的概念:1、定义:一般地,形如a (a≥0)的代数式叫做二次根式。
当a≥0时,a 表示a 的算术平方根,当a 小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根)概念:式子a (a≥0)叫二次根式。
a (a≥0)是一个非负数。
题型一:判断二次根式(1)下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x 、x (x>0)、0、42、-2、1x y+、x y +(x≥0,y ≥0). (2)在式子()()()230,2,12,20,3,1,2x x y y x x x x y+=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个(3)下列各式一定是二次根式的是( )A. 7-B. 32mC. 21a +D. a b2、二次根式有意义的条件题型二:判断二次根式有没有意义1、写出下列各式有意义的条件:(1)43-x (2)a 831- (3)42+m (4)x 1- 2、21x x --有意义,则 ; 3、若x x x x --=--3232成立,则x 满足_______________。
典型练习题:1、当x 是多少时, 23x ++11x +在实数范围内有意义?2、当x 是多少时,23x x++x 2在实数范围内有意义? 3、当__________时,212x x ++-有意义。
4、使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数 5、已知y=2x -+2x -+5,求x y的值. 6、若3x -+3x -有意义,则2x -=_______.7、若11m m -++有意义,则m 的取值范围是 。
8、已知()222x x -=-,则x 的取值范围是 。
9、使等式()()1111x x x x +-=-+成立的条件是 。
10、已知233x x +=-x 3+x ,则( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤011、若x <y <0,则222y xy x +-+222y xy x ++=( )(A )2x (B )2y (C )-2x (D )-2y12、若0<x <1,则4)1(2+-x x -4)1(2-+xx 等( ) (A )x 2 (B )-x2 (C )-2x (D )2x 13、化简aa 3-(a <0)得( ) (A )a - (B )-a (C )-a - (D )a3、最简二次根式的化简最简二次根式是特殊的二次根式,他需要满足:(1)被开方数的因数是整数,字母因式是整式;(2)被开方数中不含能开的尽方的因数或因式。
第17章:二次根式第一课时:二次根式的概念与性质知识点1:二次根式的定义:(1)(a ≥0)的式子叫做二次根式。
(2)(a ≥0)表示非负数a 的算术平方根 (3) 二次根式的要求① 根指数为2② 被开方数可以是数,也可以是单项式、多项式、分式等,但必须是非负数类型一:二次根式的识别例1:已知式子 其中一定是二次根式的是 ①②④ 。
知识点2:二次根式中字母的取值范围:(1) 二次根式有意义的条件:被开方数大于或等于0。
(2) 二次根式无意义的条件:被开方数小于0 (3) 二次根式做分母时: 被开方数大于0.类型一:求字母的取值范围例1:x 取何值时,下列各式有意义?11(62501 6.6016630122102201122x x x x x x x x x x x x x ----⎧⎨-⎩+-⎧-⎪-⎨⎪-⎩--≥解:()由题意知解得≥5且≠≠ 所以当≥5且≠有意义≥ ()由题意知>解得<x ≤3且x ≠2≠ 所以当<x ≤3且x ≠2有意义类型二:根据字母隐含的的取值范围,求代数式的值(较难) 例2:x y y =若、为实数,且222224040, 14,20,2,4x x x x x x x y --=+==≥,即≥4, ≥即≤4, 所以又因为≠所以22240404,120,2432x x xx x y--∴=+∴=∴====解:由题意知:≥且≥又≠知识点3:二次根式的性质:(1)双重非负性:①被开方数为非负数,即a≥0;②二次根式的值为非负数,即a≥0(2)两个性质:性质1:(a)2= a(a≥0)语言叙述:一个非负数的算术平方根的平方等于它本身。
或叙述为:一个非负数先开平方再平方等于这个数本身。
性质2(0)(0)a aaa a⎧==⎨-⎩≥<语言叙述:一个数先平方再开平方等于这个数的绝对值。
22222221==2(0),(0)1a(0)(0)(0)(0)x a x xx ax ax x xa ax x x aa aa aaa a=======⎧===⎨-⎩⎧==⎨-⎩证明:性质:设①则把把性质≥两边平方得:≥由性质得:≥所以<≥<类型一:简单的计算与化简例1:计算与化简2222;4=243=12.8881113(0)433(0)x xxx x⨯=⨯=-====-===-⎧-=⎨-⎩(解:(1)(≥(<类型二:在实数范围内因式分解例2:在实数范围内因式分解。
最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
二次根式的运算知识点及经典试题知识点一:二次根式的乘法法则:ab b a =⋅(0≥a ,0≥b ),即两个二次根式相乘,根指数不变,只把被开方数相乘. 要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a 、b 都必须是非负数;(2)该法则可以推广到多个二次根式相乘的运算:(3)若二次根式相乘的结果能化简必须化简,如416=. 知识点二、积的算术平方根的性质:b a ab ⋅=(0≥a ,0≥b ),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a 、b 可以是数,也可以是代数式,无论是数,还是代数式,都必须满足0≥a ,0≥b 才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2) 二次根式的化简关键是将被开方数分解因数,把含有2a 形式的a 移到根号外面. (3)作用:积的算术平方根的性质对二次根式化简(4)步骤:①对被开方数分解因数或分解因式,结果写成平方因式乘以非平方因式即:()()⨯2②利用积的算术平方根的性质b a ab ⋅=(0≥a ,0≥b );③利用⎩⎨⎧<-≥==)0()0(2a a a a a a (一个数的平方的算术平方根等于这个数的绝对值)即被开方数中的一些因式移到根号外;(5)被开方数是整数或整式可用积的算术平方根的性质对二次根式化简知识点三、二次根式的除法法则:baba =(0≥a ,0>b ),即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a 、b 的取值范围应特别注意,其中0≥a ,0>b ,因为b 在分母上,故b 不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.知识点四、商的算术平方根的性质bab a =(0≥a ,0>b ) ,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:(1)利用:运用次性质也可以进行二次根式的化简,运用时仍要注意符号问题. 对于公式中被开方数a 、b 的取值范围应特别注意,其中0≥a ,0>b ,因为b 在分母上,故b 不能为0. (2)步骤:①利用商的算术平方根的性质:bab a =(0≥a ,0>b ) ② 分别对a ,b 利用积的算术平方根的性质化简③分母不能有根号,如果分母有根号要分母有理化,即a a =2)((0≥a ) (3) 被开方数是分数或分式可用商的算术平方根的性质对二次根式化简知识点五:最简二次根式1.定义:当二次根式满足以下两条:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.把符合这两个条件的二次根式,叫做最简二次根式.在二次根式的运算中,最后的结果必须化为最简二次根式或有理式. 要点诠释:(1)最简二次根式中被开方数不含分母;(2)最简二次根式被开方数中每一个因数或因式的次数都小于根指数2,即每个因数或因式从次数只能为1次.2.把二次根式化成最简二次根式的一般步骤:(1)把根号下的带分数或绝对值大于1的数化成假分数,把绝对值小于1的小数化成分数; (2)被开方数是多项式的要进行因式分解; (3)使被开方数不含分母;(4)将被开方数中能开得尽方的因数或因式,用它们的算术平方根代替后移到根号外; (5)化去分母中的根号; (6)约分.3.把一个二次根式化简,应根据被开方数的不同形式,采取不同的变形方法.实际上只是做两件事:一是化去被开方数中的分母或小数;二是使被开方数中不含能开得尽方的因数或因式.知识点六、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关. 2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似) 要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式; (3)不是同类二次根式,不能合并 知识点七、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.知识点与讲义3二次根式加减运算的步骤:(1)将每个二次根式都化简成为最简二次根式;(2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组; (3)合并同类二次根式. 知识点八、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果应写成最简形式,这个形式应是最简二次根式,或几个非同类最简二次 式之和或差,或是有理 式. 规律方法指导二次根式的运算,主要研究二次根式的乘除和加减. (1)二次根式的乘除,只需将被开方数进行乘除,其依据是:;;(2)二次根式的加减类似于整式的加减,关键是合并同类二次根式.通常应先将二次根式化简,再把同类二次根式合并.二次根式运算的结果应尽可能化简.经典例题透析类型一、二次根式的乘除运算1、计算 (1)×; (2)×; (3)×; (4)×.解:(1)×=; (2)×==;(3)×==9; (4)×==.2、计算:(1); (2); (3); (4).思路点拨:直接利用便可直接得出答案.解:(1)===2; (2)==×2=2;(3)===2; (4)===2.3、化简(1); (2); (3); (4); (5).思路点拨:利用直接化简即可.解:(1)=×=3×4=12; (2)=×=4×9=36;(3)=×=9×10=90;(4)=×=××=3xy (5)==×=3.举一反三【变式1】判断下列各式是否正确,不正确的请予以改正:(1); (2)×=4××=4×=4=8.解:(1)不正确.改正:==×=2×3=6;(2)不正确改正:×=×====4.4、化简:(1); (2); (3); (4).思路点拨:直接利用就可以达到化简之目的.解:(1)=(2)=(3)=;(4)=.举一反三知识点与讲义5【变式1】已知,且x 为偶数,求(1+x)的值.思路点拨:式子=,只有a ≥0,b >0时才能成立.因此得到9-x ≥0且x-6>0,即6<x ≤9,又因为x 为偶数,所以x=8.解:由题意得,即∴6<x ≤9,∵x 为偶数,∴x=8∴原式=(1+x)=(1+x)=(1+x)=∴当x=8时,原式的值==6.5、计算(1)·(-)÷(m >0,n >0); (2)-3÷()× (a >0).解:(1)原式=-÷=-==-;(2)原式=-2=-2=- a.类型二、最简二次根式的判别6、下列各式中,哪些是最简二次根式?哪些不是?请说明理由.(1);(2);(3);(4);(5);(6);(7).思路点拨:判断一个二次根式是不是最简二次根式,就看它是否满足最简二次根式的两个条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式;不满足其中任何一条的二次根式都不是最简二次根式.解:和都是最简二次根式,其余的都不是,理由如下:的被开方数是小数,能写成分数,含有分母;和的被开方数中都含有分母;和的被开方数中分别含有能开得尽方的因数和因式.总结升华:对于最简二次根式的判断,一定要把握其实质,既要注意其中的“似是而非”,还要注意其中的“似非而是”,特别象这样的式子,带有很大的隐蔽性,更应格外小心.7、把下列各式化成最简二次根式.(1); (2); (3); (4); (5)思路点拨:把被开方数分解因数或分解因式,再利用积的算术平方根的性质及进行化简.解:(1) ;(2) ;(3) ;(4);(5) .类型三、同类二次根式8、如果两个最简二次根式和是同类二次根式,那么a、b的值是( )A.a=2,b=1B.a=1,b=2C.a=1,b=-1D.a=1,b=1思路点拨:根据同类二次根式的识别方法,在最简二次根式的前提下,被开方数相同.解:根据题意,得解之,得,故选D.总结升华:同类二次根式必须满足两个条件:(1)根指数是2;(2)被开方数相同;由此可以得到关于a、b的二元一次方程组,此类问题都可如此.举一反三【变式1】下列根式中,能够与合并的是( ) A. B. C.D.思路点拨:首先要把不是最简二次根式的化成最简二次根式,然后比较它们的被开方数是否相同,如果相同,就能进行合并,反之,则不能合并.解:合并,故选B.知识点与讲义7总结升华:同类二次根式的判断,关键是能够熟练准确地化二次根式为最简二次根式.【变式2】若最简根式与根式是同类二次根式,求a 、b 的值.思路点拨:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;• 事实上,根式不是最简二次根式,因此把化简成|b|·,才由同类二次根式的定义得3a-b=•2,2a-b+6=4a+3b .解:首先把根式化为最简二次根式:==|b|·由题意得,∴,∴a=1,b=1.类型四、二次根式的加减运算 9、计算(1)+(2)-思路点拨:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并. 解:(1)+=2+3=(2+3)=5(2)-=4-8=(4-8)=-4总结升华:一定要注意二次根式的加减要做到先化简,再合并. 举一反三 【变式1】计算(1)3-9+3; (2)(+)+(-);(3); (4).解:(1)3-9+3=12-3+6=(12-3+6)=15; (2)(+)+(-)=++-=4+2+2-=6+;(3)(4)【变式2】已知≈2.236,求(-)-(+)的值.(结果精确到0.01)解:原式=4---=≈×2.236≈0.45.类型五、二次根式的混合运算10、计算:(1)(+)× (2)(4-3)÷2.思路点拨:二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.解:(1)(+)×=×+×=+=3+2;(2)(4-3)÷2=4÷2-3÷2=2-.11、计算(1)(+6)(3-);(2)(+)(-).(3)()()200020013232______________-+=思路点拨:二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立.解:(1)(+6)(3-)=3-()2+18-6=13-3;(2)(+)(-)=()2-()2=10-7=3.(3)略类型六、化简求值12、已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值.思路点拨:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.解:4x2+y2-4x-6y+10=04x2-4x+1+y2-6y+9=0∴(2x-1)2+(y-3)2=0∴x=,y=3知识点与讲义9原式=+y2-x 2+5x=2x +-x +5=x+6当x=,y=3时,原式=×+6=+3.举一反三【变式1】先化简,再求值.(6x +)-(4y +),其中x=,y=27.解:原式=6+3-(4+6)=(6+3-4-6)=-,当x=,y=27时,原式=-=-.【变式2】.已知x=2+1,求(22121x x x x x x +---+)÷1x 的值.类型七、二次根式的应用与探究13、一个底面为30cm ×30cm 长方体玻璃容器中装满水,•现将一部分水倒入一个底面为正方形、高为10cm 铁桶中,当铁桶装满水时,容器中的水面下降了20cm ,铁桶的底面边长是多少厘米? 解:设底面正方形铁桶的底面边长为x ,则x 2×10=30×30×20,x 2=30×30×2, x=×=30.答:铁桶的底面边长是30厘米.14、如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)15、探究过程:观察下列各式及其验证过程.(1)2=验证:2=×====(2)3=验证:3=×====同理可得:45,……通过上述探究你能猜测出: a=_______(a>0),并验证你的结论.解:a=验证:a====.总结升华:解答此类问题的特点是根据题目给出的条件,寻找内在联系和一般规律,然后猜想所求问题的结果,有利于提高综合分析能力.【变式1】对于题目“化简求值:1a+2212aa+-,其中a=15”,甲、乙两个学生的解答不同.甲的解答是:1a+2212aa+-=1a+21()aa-=1a+1a-a=2495aa-=知识点与讲义11乙的解答是:1a +2212a a+-=1a +21()a a -=1a +a -1a =a=15 谁的解答是错误的?为什么?跟踪练习21.1 二次根式: 1. 使式子4x -有意义的条件是 。
第十六章 二次根式知识点一、二次根式1.定义0)a ≥二次根号下的a 叫做被开方数.注意:(1)二次根号的定义是从形式上界定的,即必须含有二次根号.(2)二次根式的被开方数可以是一个数字,也可以是一个代数式,但必须满足被开方数大于等于0. (3)根指数是2,这里的2可以省略不写.(4)形如0)a ≥的式子也是二次根式,它表示b例题:!1.下列各式中,一定是二次根式的是 .12x ⎫<⎪⎭练习:1.下列各式中,一定是二次根式的是 .0,0)x y ≥≥知识点二、二次根式有意义的条件1.0a ≥0a <2.从具体的情况总结,如下:(1)0A ≥;(2)⋅⋅⋅有意义的条件:000A B N ≥⎧⎪≥⎪⎨⋅⋅⋅⎪⎪≥⎩;?(3)0A >;(4)二次根式作为分式的分子如B A有意义的条件:00A B ≥⎧⎨≠⎩.例题:1.当x 是怎样的实数时,下列各式在实数范围内有意义.11x +练习:知识点三、二次根式的性质(重点,难点)性质10)a ≥具有双重非负性,它即表示二次根式,又表示非负数a 的算式平方根,具体描述为:0;a 是非负数. 注意:几个非负数的和为0时,这几个非负数必须同时为0.、例题:@练习:则2015)(yx 的值为________.3.已知a ,b 4b +,求a ,b 的值.·2210b b -+=,求221a b a +-的值.性质2:2(0)a a=≥,即一个非负数的算术平方根的平方等于它本身.注意:不能忽略0a≥这一限制条件,导致类似24=-的错误.性质3(0)(0)a aaa a≥⎧==⎨-<⎩,即当一个数为非负数时,它的平方的算术平方根等于它本身,(0)a a=≥;(0)a a-<.&注意:不要认为a2-的错误.2的区别与联系:例题:1.计算:(1) 2(2)2(3) 2(-(4)22.计算:'(1)23()5(2)23()5- (3)2(6)- (4)2(3.14)π-3.当m <3时,2(3)m -=_______.4.设三角形的三边长为a ,b ,c ,试化简:2222()()()()a b c a b c b a c c b a +++--+-----.、练习: 1.计算:(1) 2( 3.4) (2) 2( 3.4)- (3)2(3)π- (4) 2(4)π-2.若23a <<,则22(2)(3)a a ---等于( )~A . 52a -B . 12a -C . 25a -D . 21a - 3.已知实数a b 、在数轴上的位置如图所示,化简:222+()a b a b +-.4.已知a 2224a a a +--的值.$知识点四、二次根式的乘除1.二次根式的乘法法则0,0)a b ab a b =≥≥.提示:(1)在设计二次根式运算时没有特备说明,所有字母都表示正数;(2),a b 可以是数,也可以是代数式,但必须是非负的. 推广a b cd abcd =()0,0,0,0a b c d ≥≥≥≥.2.ab ab =a b (0,0a b ≥≥).#例题: 1.计算:(1)62⨯ (2) )32(276-⨯ (3))196()121(-⨯-(4))33)(31(+- (5) 38xy y 8y y!2.化简:(1)1259⨯ (2) 24323.(1)比较的大小__________, (2)比较3655与的大小__________. 练习: 1.计算: (1) )196()121(-⨯- (2) )33)(31(+- (3) 329y (4) 9y xy@2.化简:(1)12116⨯ (2) 96323.比较6456与的大小__________,(2)比较8338与的大小__________. 3.分母有理化:把分母中的根号化去,叫做分母有理化。
第二十一章二次根式复习(1):1.二次根式:式子(a≥0)叫做二次根式。
2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式;(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式。
如不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如,,..........都不是最简二次根式,而,,5 ,都是最简二次根式。
3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
如, , 就是同类二次根式,因为=2 ,=3 ,它们与的被开方数均为2。
4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。
如与,a+ 与a- ,- 与+ ,互为有理化因式。
二次根式的性质:1. (a≥0)是一个非负数, 即≥0;2.非负数的算术平方根再平方仍得这个数,即:( )2=a(a≥0);3.某数的平方的算术平方根等于某数的绝对值,即=|a|=4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a ≥0,b≥0)。
5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=(a≥0,b>0)。
21.2 二次根式的乘除1. 二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,、都是非负数;(2)(≥0,≥0)可以推广为(≥0,≥0);(≥0,≥0,≥0,≥0)。
(3)等式(≥0,≥0)也可以倒过来使用,即(≥0,≥0)。
也称“积的算术平方根”。
它与二次根式的乘法结合,可以对一些二次根式进行化简。
2. 二次根式的除法两个二次根式相除,把被开方数相除,根指数不变,即(≥0,>0)。
说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,≥0,在分母中,因此>0;(2)(≥0,>0)可以推广为(≥0,>0,≠0);(3)等式(≥0,>0)也可以倒过来使用,即(≥0,>0)。
二次根式复习
班级 姓名
1.二次根式的概念:式子 叫做二次根式.
例1. 下列各式22211,5,3)2,4,5)(),6)1,7)2153
x a a a --+---+ 其中是二次根式的是________ _(填序号).
2.二次根式a 有意义的条件式 ,无意义的条件式
例2. x 取什么值时,下列各式在实数范围内有意义:
(1) x 63- ;(2) 23-+-x x ;(3) 3-x
(4)32--x x ; (5) 32--x x ;(6) x x 22-+ ;
3.二次根式的性质:
(1) =2)(a (a ); (2) =2a
例3.(1)=-2)3(π ; 2(32)______-= (2)若1<x<2,则=---22)2()1(x x ;
(3)a a -=-2)2(2,则a 的取值范围是
(4)若230a b --=,则2a b -= . (5)已知 0|1|2=-++b a ,那么 ()2012b a + 的值为 ;
(6)如图,实数a 、b 在数轴上的位置,化简 222()a b a b -
4.最简二次根式:最简二次根式应满足的条件是 例4.1.在根式1) 222;2);3);4)275
x a b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)
2.化简下列二次根式:)0,0(1852><b a b a = ;)0(1253>y y
x = )5
1(110252<+-x x x = ;将a a 1-根号外的a 移到根号内,得 5.同类二次根式:二次根式化成 后,如果 则这几个根式叫叫同类二次根式. 例5.1. 下列各组二次根式中是同类二次根式的是( )
A .2112与
B .2718与
C .3
13与 D .5445与 2.若62312与-+n n m 是同类最简二次根式,则m= ,n=
6.分母有理化:(1).把分母中的 化去的过程称为分母有理化.
(2).两个含有二次根式的非零代数式相乘,如果 就称它们是互为有理化因式.
例6.1.写出下列二次根式的一个a +
a 2- 2. n m +的倒数是 ;n
b m a -的倒数是
3. 23211=)( ; 2
3252=-)( ;(3) 231=- 7. 二次根式的运算:
(1)二次根式的加减法:先把二次根式化成 再 .
(2)二次根式的乘除法:二次根式相乘(除),将被开方数 ,所得的积(商)仍作积(商)的被开方数并将运算结果化为 .
(a≥0,b≥0);=a b
(b≥0,a>0)
.
例7.计算(1) (2)÷
(3)2011
015152033)()(-+--
π- (4·(m>0,n>0)
(6))23(18+÷ (7))()2(y x y xy x -
÷+- (8))23)(23()13(2+---
例8.先化简,再求值:
(1)求22242b ab a ++的值,其中231,231==-=
b a
(2)先化简,再求值:)12(1)1(22x x x x x --÷-+ 其中x =2
11+
例9.(1)解不等式33x x >+2 (2)解不等式)3(3)2(2-<+x x
例10.在实数范围内分解因式.(1)= (2)=
例11.已知m,m 为实数,满足349922-+-+-=
n n n m ,求6m-3n 的值。
例12.(1)已知,则a _________
发展:已知,则a ______。
(2)已知a>b>0,a+b=6ab ,则a b a b
-+的值为( )A .22 B .2 C .2 D .12 (3)甲、乙两个同学化简
时,分别作了如下变形: 甲:==;
乙:=。
其中,( )。
A. 甲、乙都正确
B. 甲、乙都不正确
C. 只有甲正确
D. 只有乙正确
(4)观察下列各式:322322+=⨯;833833+=⨯;15
441544+=⨯;…… 则依次第四个式子是 ;用)2(≥n n 的等式表达你所观察得到的规律应是 。
(5)先阅读下列的解答过程,然后作答:有这样一类题目:将b a 2±化简,若你能找到两个数m 和n ,使a n m =+22且b mn =,则b a 2±可变为mn n m 222±+,即变成2)(n m ±开方,从而使得b a 2±化简。
例如: 52
6±=3226++=2223)2)223(32)++=, 2526(32)32±=+=
请仿照上例解下列问题:(1)625-; (2)324+。