河北省石家庄市高考数学二模试卷(理科)
- 格式:doc
- 大小:703.50 KB
- 文档页数:14
试卷类型:A2022年石家庄市高中毕业班第二次模拟测试试卷数 学(理科)本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两分部.共150分,测试时间120分钟.第一卷〔选择题,共60分〕一、选择题:本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1. 假设ibiz +-=22(b ∈R )为纯虚数,那么b 的值为. A .-1 B .1 C .-2 D .4 2. 在等差数列{}n a 中,1,16375==+a a a ,那么9a 的值是.A .15B .30C . -31D .64 3. 给出以下命题:① 假设平面α内的直线l 垂直于平面β内的任意直线,那么βα⊥;② 假设平面α内的任一直线都平行于平面β,那么βα//; ③ 假设平面α垂直于平面β,直线l 在平面内α,那么β⊥l ; ④ 假设平面α平行于平面β,直线l 在平面内α,那么β//l . 其中正确命题的个数是.A .4B .3C .2D .14. 函数121)(1-⎪⎭⎫⎝⎛=-x x f ,那么)(x f 的反函数)(1x f-的图像大致为.5. 定义集合M 与N的运算:},{N M x N x M x x N M ∉∈∈=*且或,那么=**M N M )(A .N MB .N MC .MD .N6. 31)4cos(=+πα,其中)2,0(πα∈,那么αsin 的值为.A .624-B .624+C .6122-D .3122-7. 平面上不同的四点A 、B 、C 、D ,假设0···=++BC DA DC CD DC DB ,那么三角形ABC 一定是.A .直角或等腰三角形B .等腰三角形C .等腰三角形但不一定是直角三角形D .直角三角形但不一定是等腰三角形 8. 直线:01=++y x 与直线:⎪⎭⎫⎝⎛<<=-+2402cos sin παπααy x 的夹角为.A .4πα-B .4πα+C .απ-4D .απ-439. 设函数)(x f 是定义在R 上的以5为周期的奇函数,假设33)3(,1)2(2-++=>a a a f f ,那么a 的取值范围是.A .)3,0()2,( --∞B .),3()0,2(+∞-C .),0()2,(+∞--∞D .),3()0,(+∞-∞ 10. 假设)10(0log log log 3)1(212<<>==+a x x x a a a,那么321x x x 、、的大小关系为.A .123x x x <<B .312x x x <<C . 231x x x <<D .132x x x <<11. 点P 是双曲线116922=-x y 的上支上一点,F 1、F 2分别为双曲线的上、下焦点,那么 21F PF ∆的内切圆圆心M 的坐标一定适合的方程是.A .3-=yB .3=yC .522=+y xD .232-=x y12. 一个三棱椎的四个顶点均在直径为6的球面上,它的三条侧棱两两垂直,假设其中一条侧棱长是另一条侧棱长的2倍,那么这三条侧棱长之和的最大值为.A .3B .354C .10552D .2152第二卷〔非选择题,共90分〕二、填空题:本大题共四小题,每题4分,共16分,把答案填在题中横线上.13.设函数⎪⎩⎪⎨⎧>-=<=.1,5,1,,1,2)(x bx x a x x x f 在1=x 处连续,那么实数b a ,的值分别为 . 14.以椭圆14522=+y x 的右焦点为焦点,左准线为准线的抛物线方程为 . 15.如图,路灯距地面8m ,一个身高1.6m 的人沿穿过路灯的直路以84m/min 的速度行走,人影长度变化速率是 m/min .16.在直三棱柱111C B A ABC -中,有以下三个条件:①11AC B A ⊥;②C B B A 11⊥;③1111C A C B =.以其中的两个为条件,其余一个为结论,可以构成的真命题是 〔填上所有成立的真命题,用条件的序号表示即可〕.三、解做题:本大题共6小题,共74分,解容许写出文字说明、证实过程或演算步骤.17.〔本小题总分值12分〕函数∈-=x x x x x f ),cos sin 3(cos )(R . (Ⅰ)求函数)(x f 的最大值;(Ⅱ)试说明该函数的图像经过怎样的平移和伸缩变换,可以得到∈=x x y ,sin R 的图像? 18.〔本小题总分值12分〕数列}{n a 的首项21=a ,且)(121*+∈+=N n a a n n .(Ⅰ) 设n n na b =,求数列}{n b 的前n 项和n T ;(Ⅱ)求使不等式9110-+<-n n a a 成立的最小正整数n .(3010.02lg =)19.〔本小题总分值12分〕甲、乙两人进行投篮比赛,每人投三次,规定:投中次数多者获胜,投中次数相同那么成平局.假设甲、乙两人的投篮命中的概率分别为32和21,且两人每次投篮是否命中是相互独立的.(Ⅰ)求甲、乙成平局的概率; (Ⅱ)求甲获胜的概率. 20.〔本小题总分值12分〕如图,四棱锥P —ABCD 中,底面ABCD 为直角梯形,且,,//AD AB CD AB ⊥22===AB CD AD ,侧面APD ∆为等 边三角形,且平面APD ⊥平面ABCD . (Ⅰ)假设M 为PC 上一动点,当M 在何位置时,⊥PC 平面MDB ,并证实之; (Ⅱ)求直线AB 到平面PDC 的距离;(Ⅲ)假设点G 为PBC ∆的重心,求二面角C BD G --的大小.21.〔本小题总分值12分〕如图,A 1、A 2为双曲线C :)0,0(12222>>=-b a by a x的两个顶点,过双曲线上一点B 1作x 轴的垂线,交双曲线于另一点B 2,直线A 1B 1、A 2B 2相交于点M . (Ⅰ)求点M 的轨迹E 的方程;(Ⅱ)假设P 、Q 分别为双曲线C 与曲线E 上不同于A 1、A 2的动点,且)(2121Q A Q A m P A P A +=+(∈m设直线A 1P 、A 2P 、A 1Q 、A 2Q 的斜率分别为k 1、k 2、k 3、k 4,试问k 1+k 2+k 3+k 4是否为定值?说明理由. 22.〔本小题总分值14分〕 函数131)(23+-+=bx ax x x f (∈x R, a ,b 为实数)有极值,且1=x 在处的切线与直线01=+-y x 平行. (Ⅰ)求实数a 的取值范围;(Ⅱ)是否存在实数a ,使得函数)(x f 的极小值为1,假设存在,求出实数a 的值;假设不存在,请说明理由; (Ⅲ)设21=a ,)(x f 的导数为)(x f ',令),0(,3)1()(+∞∈-+'=x xx f x g ,求证: )(221)(*∈-≥--N n xx x g n n n n .2022年石家庄市高中毕业班第二次模拟测试试卷数学(理科)参考答案一、选择题: DABCD ADAAD BC二、填空题: 13.3,2==b a ; 14.)2(122+=x y ; 15.21; 16.①②⇒③;①③⇒②;②③⇒①.三、解做题: 17.(Ⅰ)x x x x f 2cos cos sin 3)(-=22cos 12sin 23x x +-=………………………………………〔2分〕 21)62sin(--=πx …………………………………………〔4分〕当)(,2262Z k k x ∈+=-πππ,即)(,3Z k k x ∈+=ππ时,)62sin(π-x 有最大值1.此时函数)(x f 的值最大, 最大值为21.……〔6分〕 (Ⅱ) 将21)62sin(--=πx y 的图像依次进行如下变换:① 把函数21)62sin(--=πx y 的图像向上平移21个单位长度,得到函数)62sin(π-=x y 的图像; …………………………………………〔8分〕② 把得到的函数图像上各点横坐标伸长到原来的2倍(纵坐标不变),得到函数)6sin(π-=x y 的图像; …………………………………………〔10分〕③ 将函数)6sin(π-=x y 的图像向左平移6π个单位长度,就得到函数x y sin =的图像. …………………………………………〔12分〕〔注:如考生按向量进行变换,或改变变换顺序,只要正确,可给相应分数〕18.(Ⅰ)由121+=+n n a a 得)1(2111-=-+n n a a 可知数列}1{-n a 是以111=-a 为首项,公比为21的等比数列. )(1211*-∈+⎪⎭⎫⎝⎛=∴N n a n n . …………………………………………〔4分〕从而有n n na b n n n +⎪⎭⎫⎝⎛==-121·.n n b b b T +++= 21)21(21·21·321·221·1121n n T n n ++++⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∴- ………①2)1(·2121·21)1(21·221·121121++⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∴-•n n n n T nn n ………② ① - ②并整理得2)1(21)24(4++⎪⎭⎫⎝⎛+-=•n n n T nn . ………………〔8分〕(Ⅱ) 911021-+<⎪⎭⎫⎝⎛=-nn n a a两边取常用对数得:9.292lg 9≈>n ∴使不等式成立的最小正整数n 为30. ………………………………〔12分〕19.(Ⅰ) 甲、乙各投中三次的概率:271213233=⎪⎭⎫⎝⎛⨯⎪⎭⎫ ⎝⎛, …………………………………………〔1分〕甲、乙各投中两次的概率:61213132323223=⎪⎭⎫ ⎝⎛⨯⨯⨯⎪⎭⎫ ⎝⎛⨯C C , …………………………………〔2分〕甲、乙各投中一次的概率:121213132313213=⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯C C , …………………………〔3分〕甲、乙两人均投三次,三次都不中的概率:2161213133=⎪⎭⎫⎝⎛⨯⎪⎭⎫ ⎝⎛, …………………………………………〔4分〕∴甲、乙平局的概率是:247216112161271=+++. ……………〔6分〕 (Ⅱ) 甲投中三球获胜的概率:277811323=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛, …………………………………〔8分〕甲投中两球获胜的概率:9221213132313303223=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯⎪⎭⎫ ⎝⎛⨯C C C , ………〔9分〕甲投中一球获胜的概率:3612131323213=⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯C , …………………………〔10分〕 甲获胜的概率为:1085536192277=++. ………………………〔12分〕 20.(Ⅰ) 当M 在中点时,⊥PC 平面MDB ………………………………〔1分〕连结BM 、DM ,取AD 的中点N ,连结PN 、NB .∵AD PN ⊥且面⊥PAD 面ABCD , ∴⊥PN 面ABCD . 在PNB Rt ∆中,,5,2,3=∴==PB NB PN又5=BC . PC BM ⊥∴ ……………………………………〔3分〕又PC DM DC PD ⊥∴==,2, 又⊥∴=PC M BM DM ,面MDB . ……………………〔4分〕(Ⅱ)⊂CD CD AB ,//面PDC ,⊄AB 面PDC ,∴//AB 面PDC .∴AB 到面PDC 的距离即A 到面PDC 的距离. ………………〔6分〕 ⊥∴=⊥⊥CD N PN DA PN CD DA CD ,,, 面P AD , 又⊂DC 面PDC ,∴面⊥PAD 面PDC . 作PD AE ⊥,AE 就是A 到面PDC 的距离,3=∴AE , 即AB 到平面PDC 的距离为3. ………………〔8分〕 (Ⅲ)过M 作BD MF ⊥于F ,连结CF .⊥PC 面MBD ,MFC ∠∴就是二面角C BD G --的平面角. ………………〔10分〕 在BDC ∆中,,5,2,5===BC DC BD,554=∴CF 又,2=CM 410sin ==∠∴CF CM MFC .即二面角C BD G --的大小是410arcsin. ……………〔12分〕 21.(Ⅰ) 设),(001y x B 、),(002y x B -且00≠y ,由题意)0,(1a A -、)0,(2a A ,那么直线A 1B 1的方程为:a x a x y y ++=00………① 直线A 2B 2的方程为:ax a x y y --=-00………② …………〔2分〕 由①、②可得⎪⎪⎩⎪⎪⎨⎧==.x ay y x a x 020,………………………………〔4分〕又点),(001y x B 在双曲线上,所以有12222224=-bx y a a x a , 整理得12222=+by a x ,所以点M 的轨迹E 的方程为12222=+by a x 〔0≠x 且0≠y 〕.……〔6分〕(Ⅱ) k 1+k 2+k 3+k 4为定值.设),(11y x P ,那么2212221b y a a x =-,那么112222111111121·22y x a b a x y x a x y a x y k k =-=-++=+……③ 设),(22y x Q ,那么同理可得222243·2y x a b k k -=+ ……④ ………〔8分〕设O 为原点,那么OQ Q A Q A OP P A P A 2,22121=+=+.)(2121Q A Q A m P A P A +=+ OQ m OP =∴∴O 、P 、Q 三点共线, ………………………………〔10分〕∴2211y x y x =, 再由③、④可得,k 1+k 2+k 3+k 4 = 0 ∴k 1+k 2+k 3+k 4为定值0. ………………………………〔12分〕另解:由)(2121Q A Q A m P A P A +=+,得)],(),[(),(),(22221111y a x y a x m y a x y a x -++=-++即),(),(2211y x m y x = ∴2211y x y x =, 再由③、④可得,k 1+k 2+k 3+k 4 = 022.(Ⅰ) ∵131)(23+-+=bx ax x x f∴b ax x x f -+='2)(2由题意121)1(=-+='b a fa b 2=∴ ……① ………………………………………〔2分〕∵)(x f 有极值,∴方程02)(2=-+='b ax x x f 有两个不等实根.0442>+=∆∴b a 02>+∴b a ……②由①、②可得,02022>-<∴>+a a a a 或. 故实数a 的取值范围是),0()2,(+∞--∞∈ a …………〔4分〕(Ⅱ)存在38-=a , ………………………………………〔5分〕由(Ⅰ)可知b ax x x f -+='2)(2,令0)(='x f ,a a a a 2,222++2时,取极小值, ………………………………………〔7分〕那么11231)(22322=+-+=ax ax x x f , 02=∴x 或063222=-+a ax x ,假设02=x ,即022=++-a a a ,那么0=a 〔舍〕 ………………〔8分〕 假设063222=-+a ax x ,又0)(2='x f ,022222=-+∴a ax x ,042=-∴a ax , 402=∴≠x a ,422=++-∴a a a 238-<-=∴a ,∴存在实数a =38-,使得函数)(x f 的极小值为1. …………〔9分〕(Ⅲ) 13)1(1)(,2122++=+'∴-+='=x x x f x x x f a ,xx x x x x f 113)1(2+=+=-+'∴, ),0(,1)(+∞∈+=∴x xx x g . …………………………………〔10分〕n n nn nnx x x x x x x g 111)(--⎪⎭⎫ ⎝⎛+=--11222222111111------⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=n n n n n n n n n nx x C x x C x x C x x C⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=-------22144222111121n n n n n n n n n n x x C x x C x x C ≥⎥⎦⎤⎢⎣⎡+++-------221442221·121·21·221n n n n n n n n n n x x C x x C x x C 22121-=+++=-n n n n n C C C∴其中等号成立的条件为1=x . …………………………………〔13分〕∴)(221)(*∈-≥--N n xx x g n n n n …………………………〔14分〕。
河北省石家庄市(新版)2024高考数学统编版摸底(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知点都在球的球面上,,是边长为1的等边三角形,与平面所成角的正弦值为,若,则球的表面积为()A.B.C.D.第(2)题已知定义在R上的可导函数的导函数为,满足且为偶函数,,则不等式的解集为()A.B.C.D.第(3)题已知,,若不等式的解集中只含有个正整数,则的取值范围为()A.B.C.D.第(4)题设在中,角所对的边分别为, 若, 则的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定第(5)题如图,已知正方体的棱长为,,分别为,的中点.则下列选项中错误的是()A.直线平面B.在棱上存在一点,使得平面平面C.三棱锥在平面上的正投影图的面积为D.若为棱的中点,则三棱锥的体积为第(6)题已知数列满足,则A.B.C.D.第(7)题双曲线的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是()A.B.C.D.第(8)题经统计某射击运动员随机射击一次命中目标的概率为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生0到9之间取整数值的随机数,用0,1,2表示没有击中,用3,4,5,6,7,8,9表示击中,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:9597,7424,7610,4281,7520,0293,7140,9857,0347,4373,0371,6233,2616,8045,6011,3661,8638,7815,1457,5550.根据以上数据,则可估计该运动员射击4次恰有3次命中的概率为().A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知分别是定义在R上的奇函数和偶函数,且,则下列说法正确的有()A.B.在上单调递减C.关于直线对称D.的最小值为1第(2)题已知函数是偶函数,是奇函数,且满足,则下列结论正确的是()A.是周期函数B.的图象关于点中心对称C .D.是偶函数第(3)题已知函数,则()A.在上的极大值和最大值相等B.直线和函数的图象相切C.若在区间上单调递减,则D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知为等差数列的前项和.若,,则当取最大值时,的值为___________.第(2)题已知m、n是不同的直线,是不重合的平面,给出下列命题:①若,则;②若,则;③若,则;④m,n是两条异面直线,若,则.上面的命题中,真命题的序号是____________.(写出所有真命题的序号)第(3)题已知,是第三象限角,则___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(Ⅰ)当时,讨论的单调性;(Ⅱ)若对任意,恒成立,求m的取值范围.第(2)题甲、乙两队进行篮球比赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”,设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立.(1)在比赛进行4场结束的条件下,求甲队获胜的概率;(2)赛事主办方需要预支球队费用万元.假设主办方在前3场比赛每场收入100万元,之后的比赛每场收入200万元.主办方该如何确定的值,才能使其获利(获利=总收入预支球队费用)的期望高于万元?第(3)题已知数列满足.(1)证明是等比数列;(2)若,求的前项和.第(4)题定义:平面内两个分别以原点和两坐标轴为对称中心和对称轴的椭圆,它们的长、短半轴长分别为和,若满足,则称为的级相似椭圆.已知椭圆为的2级相似椭圆,且焦点共轴,与的离心率之比为.(1)求的方程.(2)已知为上任意一点,过点作的两条切线,切点分别为.①证明:在处的切线方程为.②是否存在一定点到直线的距离为定值?若存在,求出该定点和定值;若不存在,说明理由.第(5)题已知函数.(1)若函数在R上是增函数,求实数a的取值范围;(2)如果函数恰有两个不同的极值点,证明:.。
数学理科答案一、选择题1—5:DBACA 6—10:BABAD 11—12:BC二、填空题 13. 5 14.20x y -+=15. (1,3]三、解答题:(解答题按步骤给分,本答案只给出一种答案,学生除标准答案的其他解法,参照标准酌情设定,且只给整数分)17. 解:(Ⅰ):由已知的等差中项和是A c a B b cos C cos cos 得2bcosB=acosC+ccosA …………………………2分代入a=2RsinA,b=2RsinB,c=2RsinC,化简得2sinBcosB=sinAcosC+cosAsinC ,………………………4分所以2sinBcosB=sin(A+C)=sinB ,在三角形ABC 中,sinB ,0≠3,21cos π==B B 所以.………………………6分 (Ⅱ)当△ABC 的外接圆面积为π时,则R=1,所以直径2R=2, b=2RsinB=3,……………………8分由余弦定理,b 2=a 2+c 2-2accosB 得3=a 2+c 2-ac ≥ac ,当且仅当a=c 时取到等号。
所以得到ac ≤3,………………………10分 则433ABC ,433sin 21的面积的最大值为即∆≤=∆B ac s ABC .…………………12分 18.解:(Ⅰ)由频率分布直方图知,A 型节能灯中,一级品的频率为6.05040.05080.0=⨯+⨯,二级品的频率为4.05.06.05020.0=⨯+⨯,三级品的频率为0所以,在A 型节能灯中按产品级别用分层抽样的方法随机抽取10个,其中一级品6个,二级品4个设在这节能灯中随机抽取3个,至少有2个一级品为事件D ,恰好有n 个一级品为事件n D ,则=)(2D P 213101426=C C C ,=)(3D P 6131036=C C ……………………………2分因为事件32D D 、为互斥事件,所以,=+=)()()(32D P D P D P 326121=+ 即,在这10个节能灯中随机抽取3个,至少有2个一级品的概率为32……………………………4分(Ⅱ)设投资A 、B 两种型号节能灯的利润率分别为1X 、2X ,由频率分布直方图知,A 型节能灯中,一级品、二级品、三级品的概率分别为53、52,0 B 型号节能灯中一级品、二级品、三级品的概率分别为107、41、201 所以1X 、2X 的分布列分别是:……………………………………………………………….6分则1X 、2X 的期望分别是:53255253)(221a a a a X E +=⨯+⨯=,10720262045107)(2222a a a a a X E +=++⨯= 所以,a a X E X E 1012014)()(221-=-71()107a a =-………………………………8分因为61101<<a ,所以从长期看 当71101<<a 时,投资B 型号的节能灯的平均利润率较大 6171<<a 时,投资A 型号的节能灯的平均利润率较大x z71=a 时,投资两种型号的节能灯的平均利润率相等 …………………………………………………12分19.解:(Ⅰ)因为,AE EF ⊥所以,PE EF ⊥又因为PE EB ⊥,且,FE EB B =所以PE ⊥平面FEB ,即PE ⊥平面BCDFE …………………….4分(Ⅱ)在梯形ABCD 中,易求得2AB =.设AE t =(02)t <<,建立如图所示空间直角坐标系,则(0,0,0)E ,(,0,0)A t -,(0,0,)P t ,(2,0,0)B t -,(4C t -,所以BC =,(2,0,)PB t t =--,设平面PBC 的法向量为1(,,)n x y z =,则1100BC n PB n ⎧⋅=⎪⎨⋅=⎪⎩,所以20(2)0x t x tz ⎧+=⎪⎨--=⎪⎩, 令1y =得1(3,1,n =-为平面PBC 的一个法向量, 易知2(1,0,0)n =为平面PEF 的一个法向量,…………………8分所以(121212cos ,||||nn n n n n <>===,…………..10分因为平面PEF 与平面PBC 所成二面角的余弦值为 =23t =或2t =-(舍). 此时点E 为线段AB的三等分点(靠近点A )。
2024年河北省石家庄市高考数学模拟试卷附解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2024180,Z A k k αα︒==-︒+⋅∈∣中的最大负角α为()A .2024-︒B .224-︒C .44-︒D .24-︒2.已知()41i 1iz +=-,则z 的虚部为()A .2iB .2i-C .2-D .23.已知平面内的向量a 在向量b 上的投影向量为12b,且1a b == ,则2a b - 的值为()AB .1C .34D .324.设正项等比数列{}n a 的前n 项和为n S ,11a =,且3a -,2a ,4a 成等差数列,则2024S 与2024a 的关系是()A .2024202421S a =-B .2024202421S a =+C .2024202443S a =-D .2024202441S a =+5.已知变量x 和y 的统计数据如表:x 12345y66788根据上表可得回归直线方程0.6y x a =+,据此可以预测当8x =时,y =()A .8.5B .9C .9.5D .106.现将四名语文教师,三名心理教师,两名数学教师分配到三所不同学校,每个学校三人,要求每个学校既有心理教师又有语文教师,则不同的安排种数为()A .216B .432C .864D .10807.已知椭圆221222:1(0),,x y C a b F F a b+=>>为左、右焦点,P 为椭圆上一点,1260F PF ∠=,直线:l y x t =-+经过点P .若点2F 关于l 的对称点在线段1F P 的延长线上,则C 的离心率是()A .13B .22C .12D .238.已知函数()xf x x =,()0,x ∈+∞,则下列命题不正确的是()A .()f x 有且只有一个极值点B .()f x 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增C .存在实数()0,a ∈+∞,使得()1ef a =D .()f x 有最小值1e1e二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中,正确的是()A .一组数据10,11,11,12,13,14,16,18,20,22的第40百分位数为12B .两组样本数据1x ,2x ,3x ,4x 和1y ,2y ,3y ,4y 的方差分别为21s ,22s ,若已知10i i x y +=(1,2,3,4i =),则2212s s =C .已知随机变量X 服从正态分布()2,N μσ,若()()261P X P X ≥-+≥=,则2μ=D .已知一系列样本点(),i i x y (1,2,3,i =⋅⋅⋅)的回归方程为ˆˆ3y x a =+,若样本点(),3m 与()2,n 的残差(残差=实际值i y -模型预测值ˆy)相等,则310m n +=10.若关于x 的不等式22e 2ln x x ax x x -+-≥在()0+∞,上恒成立,则实数a 的值可以是()A .1eB .12C .e 3D .211.已知定义在实数集R 上的函数()f x ,其导函数为()f x ',且满足()()()f x y f x f y xy +=++,()()110,12f f '==,则()A .()f x 的图像关于点()1,0成中心对称B .()322f '=C .()202410122023f =⨯D .20241()10122024k f k ='=⨯∑三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}{}22230,0,M x x x N x x ax x =--<=-<∈Z ,若集合M N ⋂恰有两个元素,则实数a 的取值范围是.13.已知12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 与双曲线的一条渐近线平行的直线交双曲线于点P ,若213PF PF =,则双曲线的离心率为.14.如图,在梯形ABCD 中,190,22ABC BAD AB BC AD ∠=∠====,将BAC 沿直线AC 翻折至1B AC △的位置,13AM MB =,当三棱锥1B ACD -的体积最大时,过点M 的平面截三棱锥1B ACD -的外接球所得的截面面积的最小值是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()e e axf x x b =--在0x =处的切线为x 轴.(1)求,a b 的值;(2)求()f x 的单调区间.16.如图,三棱锥A BCD -中,,,,AD CD AD CD ADB BDC E ∠∠⊥==为线段AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设3,2,0AB BD BF FD EF BD ===⋅=,求直线CF 与平面ABC 所成角的正弦值.17.有无穷多个首项均为1的等差数列,记第()*N n n ∈个等差数列的第()N,2m m m ∈≥项为()m a n ,公差为()0n n d d >.(1)若()()22212a a -=,求21d d -的值;(2)若m 为给定的值,且对任意n 有()()12m m a n a n +=,证明:存在实数,λμ,满足1λμ+=,10012d d d λμ=+;(3)若{}n d 为等比数列,证明:()()()()()1122mm m m m a a n n a a a n +⎡⎤⎣⎦+++≤ .18.设椭圆E :22221x y a b +=()0a b >>经过点()2,1P -,且离心率e =:3m x =垂直x 轴交x 轴于T ,过T 的直线l 1交椭圆E 于()11,A x y ,()22,B x y 两点,连接PA ,PB ,PT .(1)求椭圆E 的方程;(2)设直线PA ,PB 的斜率分别为1k ,2k .(ⅰ)求12k k +的值;(ⅱ)如图:过P 作x 轴的垂线l ,过A 作PT 的平行线分别交PB ,l 于M ,N ,求||||MN MA 的值.19.在函数极限的运算过程中,洛必达法则是解决未定式00型或∞∞型极限的一种重要方法,其含义为:若函数()f x 和()g x 满足下列条件:①()lim 0x a f x →=且()lim 0x a g x →=(或()lim x a f x →=∞,()lim x ag x →=∞);②在点a 的附近区域内两者都可导,且()0g x '≠;③()()lim x af x Ag x →'='(A 可为实数,也可为±∞),则()()()()limlimx ax af x f x Ag x g x →→'=='.(1)用洛必达法则求0limsin x xx→;(2)函数()()232112!3!21!n x x x f x x n -=+++++- (2n ≥,*n ∈N ),判断并说明()f x 的零点个数;(3)已知()()2cos g x g x x =⋅,()01g =,ππ,22x ⎛⎫∈- ⎪⎝⎭,求()g x 的解析式.参考公式:()()lim lim x a x af x f x →→=,()()lim lim x a x a kf x k f x →→=.1.C【分析】利用任意角的定义与集合A 所表示的角即可得解.【详解】因为04420211481︒=-︒-⨯︒-,所以集合{}2024180,Z A k k αα︒==-︒+⋅∈∣中的最大负角α为44-︒.故选:C.2.D【分析】利用复数的乘方运算和四则运算法则求出复数z ,继而得z 的虚部.【详解】由()42221i [(1i)](2i)4(1i)2(1i)22i 1i 1i 1i (1i)(1i)z ++-+=====-+=------+,则22i z =-+,z 的虚部为2.故选:D.3.A【分析】先根据条件,确定向量的夹角,再根据向量数量积的性质求模.【详解】因为2·1·2a b b b b = ⇒2·12a b b= ,又1a b == ,所以·12·a b a b =⇒1cos ,2a b = ⇒,60a b =︒ .所以:()2222a b a b-=-= 2214·41411432a ab b -+=-⨯⨯⨯+=,所以2a b -= 故选:A 4.A【分析】先利用等比数列的通项公式列方程求公比,然后求出2024S 和2024a 观察它们之间的关系即可.【详解】设正项等比数列{}n a 的公比为q ,0q >因为3a -,2a ,4a 成等差数列,所以2342a a a =-+,所以232q q q =-+,解得2q =,所以()20241202420241211a q S q-==--,20232023202412a a q==,则2024202421S a =-.故选:A.5.D【分析】根据给定的数表,求出样本的中心点,进而求出a 即可得解.【详解】依题意,1234535x ++++==,6678875y ++++==,即样本的中心点为(3,7),于是70.63a =⨯+,解得 5.2a =,即0.6 5.2y x =+,当8x =时,预测0.68 5.210y =⨯+=.故选:D 6.B【分析】根据给定条件,利用分步乘法计数原理,结合分组分配列式计算得解.【详解】求不同的安排种数需要分成3步,把3名心理教师分配到三所学校,有33A 种方法,再把4名语文教师按2:1:1分成3组,并分配到三所学校,有2343C A 种方法,最后把2名数学教师分配到只有1名语文教师的两所学校,有22A 种方法,由分步乘法计数原理得不同的安排种数为32323432A C A A 432⋅⋅=.故选:B 7.B【分析】根据题意,得到点M 与点2F 关于PH 对称,从而2120F PM ∠=,在12PF F △中,利用正弦定理得到121212sin15sin105sin PF PF F F F PF +=+∠ ,结合sin 60sin15sin105c e a ==+,即可求解.【详解】由直线:l y x t =-+,且点2F 关于l 的对称点在线段1F P 的延长线上,如图所示,可得点M 与点2F 关于PH 对称,且1260F PF ∠=,故在2PF M 中,则2120F PM ∠= ,故230PF M ∠=又PH 的倾斜角为135 ,则245HF M ∠=,故在12PF F △中,有1260F PF ∠= ,21105PF F ∠=,1215PF F ∠= ,又由1212211212sin sin sin PF PF F F PF F PF F F PF ==∠∠∠,可得121212sin15sin105sin PF PF F F F PF +=+∠,即1222sin15sin105sin a cF PF =+∠ ,又因为1sin15sin(4530)22224=-⨯-⨯=,1sin105sin(6045)2=++ ,所以sin 602sin15sin1052c e a ===+.故选:B.8.C【分析】由条件可得函数ln z x x =可以看作为函数ln z y =与函数x y x =的复合函数,然后求导判断其单调性与极值,即可得到结果.【详解】由x y x =得ln ln y x x =,令ln z x x =,则函数ln z x x =可以看作为函数ln z y =与函数x y x =的复合函数,因为ln z y =为增函数,所以ln z x x =与x y x =单调性、图象变换等基本一致,ln 1z x '=+,由0z '=得1ex =,列表如下:x10,e ⎛⎫ ⎪⎝⎭1e 1,e ∞⎛⎫+ ⎪⎝⎭z '-+z1e-由表知,ln z x x =在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ∞⎛⎫+ ⎪⎝⎭上单调递增,在1ex =时,取得极小值(最小值)1e -,所以()xf x x =在1,e ∞⎛⎫+ ⎪⎝⎭上单调递增,即B 正确;在1e x =时,取得唯一极值(极小值,也是最小值)1e 1e e->,即A 、D 都正确,C 错误.故选:C 9.BC【分析】A 选项,根据百分位数的运算公式得到答案;B 选项,利用平均数定义得到10y x =-,根据方差的计算公式得到()()()()2222123422214s x x x x x x x xs -++-++-++-+==;C 选项,由正态分布的对称性得到C 正确;D 选项,由题意得到()()ˆˆ336m an a -+=-+,得到D 错误.【详解】A 选项,0010404⨯=,故从小到大从第4个和第5个数的平均数作为第40百分位数,即121312.52+=,A 错误;B 选项,12344x x x x x +++=,12344y y y y y +++=,因为10i i x y +=,(1,2,3,4i =),故123410101010104x x x x y x -+-+-+-==-,故()()()()22221423124s x x x x x x x x-+-+--=+,()()()()2222123422*********s y x y x y x y x-++-++-++-+=()()()()2222123410101010101010104x x x x x x x x --++--++--++--+=()()()()222212344x x x x x x x x-++-++-++-+=,故2212s s =,B 正确;C 选项,因为()2,X N μσ ,()()261P X P X ≥-+≥=,2,6X X =-=关于x μ=对称,所以2622μ-+==,C 正确;D 选项,由题意得()()ˆˆ336m an a -+=-+,整理得39m n +=,D 错误.故选:BC 10.AB【分析】根据题意分12a ≤和12a >两种情况讨论,当12a ≤时,有222ln e e 12ln 1ln e 1ln x x x x ax x x x x x x x----+-++-+=+-+≥,通过求导,判断函数的单调性,确定函数的最值得出2ln e 1ln 0x x x x --+-+≥结论验证;当12a >时,令()2ln u x x x =--,求导判断出函数存在零点设为0x ,即可判断020000e 12ln (12)0x ax x a x x -+-+=-<,最后综合得出a 的取值范围.【详解】依题意,2e 12ln 0x ax x x -+-+≥在()0+∞,上恒成立,当12a ≤时,222ln e e 12ln 1ln e 1ln x x x x ax x x x x x x x----+-++-+=+-+≥,令2ln t x x =--,则()e 1t h t t =--,()e 1t h t '=-,故当t (,0)∈-∞时,()0h t '<,当(0,)t ∈+∞时,()0h t '>,故()(0)0h t h >=,故2ln e 1ln 0x x x x --+-+≥,则不等式成立;当12a >时,令()2ln u x x x =--,因为(1)10u =-<,(4)22ln 20u =->,故()x μ在()1,4内必有零点,设为0x ,则002ln x x -=,则020ex x -=,故020000e 12ln (12)0x ax x a x x -+-+=-<,不合题意,舍去;综上所述,12a ≤.故选:AB.【点睛】恒成立问题求参数注意分类讨论;适当的构造函数通过函数的最值分析参数的取值.11.BCD【分析】对A 、B ,利用赋值法进行计算即可得;对C 、D ,利用赋值法后结合数列的性质进行相应的累加及等差数列公式法求和即可得.【详解】对A :令0x y ==,则有()()()0000f f f =++,即()00f =,令1x y ==,则有()()()2111f f f =++,又()10f =,故()21f =,()f x 不关于()1,0对称,故A 错误;对于B ,令1y =,则有()()()()11f x f x f x f x x +=++=+,两边同时求导,得()()11f x f x +='+',令1x =,则有()()13211122f f =+=+='',故B 正确;对C :令1y =,则有()()()11f x f x f x +=++,即()()1f x f x x +-=,则()()()()()()()2024202420232023202211f f f f f f f =-+-+-+ ()2023120232023202210101220232+⨯=++++==⨯ ,故C 正确;对D :令1y =,则有()()()11f x f x f x +=++,即()()1f x f x x +=+,则()()11f x f x +='+',即()()11f x f x +-'=',又()112f '=,故()11122f k k k -'=+=-,则()20241112024202422101220242k f k =⎛⎫+-⨯ ⎪⎝⎭==⨯'∑,故D 正确.故选:BCD.【点睛】关键点点睛:本题C 、D 选项关键在于利用赋值法,结合数列的性质进行相应的累加及等差数列公式法求和.12.(2,)+∞【分析】解二次不等式化简集合M ,再利用二次不等式解的形式与交集的结果即可得解.【详解】因为{}2230{13}M x x x xx =--<=-<<∣,{}20,{()0,}N x x ax x x x x a x =-<∈=-<∈Z Z ∣,又集合M N ⋂恰有两个元素,所以M N ⋂恰有两个元素1和2,所以2a >.故答案为:(2,)+∞.13【分析】设过2F 与双曲线的一条渐近线by x a=平行的直线交双曲线于点P ,运用双曲线的定义和条件可得1||3PF a =,2||PF a =,12||2F F c =,再由渐近线的斜率和余弦定理,结合离心率公式,计算即可得到所求值.【详解】解:设过2F 与双曲线的一条渐近线b y x a=平行的直线交双曲线于点P ,由双曲线的定义可得12||||2PF PF a -=,由12||3||PF PF =,可得1||3PF a =,2||PF a =,12||2F F c =,由12tan b F F P a ∠=可得12cos a F F P c ∠=,在三角形12PF F 中,由余弦定理可得:222121221212||||||2||||cos PF PF F F PF F F F F P =+-∠ ,即有2229422aa a c a c c=+- ,化简可得,223c a =,则双曲线的离心率==c e a【点睛】本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程和定义法,以及余弦定理,考查化简整理的运算能力,属于中档题.14.3π4【分析】当三棱锥1B ACD -的体积最大时,此时1B 到底面ACD 的距离最大,即此时平面1⊥B AC 平面ACD ,取AC 的中点E ,AD 的中点O ,O 是三棱锥1B ACD -的外接球球心,当且仅当过点M 的平面与OM 垂直时,截外接球的截面面积最小,此时,截面的圆心就是点M ,从而求解.【详解】当三棱锥1B ACD -的体积最大时,由于底面ACD 的面积是定值,所以此时1B 到底面ACD 的距离最大,平面1⊥B AC 平面ACD ,且平面1B AC 平面ACD AC =,取AC 的中点E ,则1B E AC ⊥,故1B E ⊥平面ACD ,取AD 的中点O,则OE =1B E =1π2B EO ∠=,则12OB =,又∵2OA OD OC ===,故O 是三棱锥1B ACD -的外接球球心,且该外接球的半径2R =;显然,当且仅当过点M 的平面与OM 垂直时,截外接球的截面面积最小,此时,截面的圆心就是点M ,记其半径为r ,则222R OM r ==+;由于AC CD ⊥,CD ⊂平面ACD ,所以CD ⊥平面1B AC ,而1AB ⊂平面1B AC ,则1CD AB ⊥,则1π2AB D ∠=,在1B AD 中,12,4B A AD ==,故1π3B AD ∠=;又13AM MB = ,故12AM =,又2OA =,故由余弦定理有211π13422cos 4234OM =+-⨯⨯⨯=,∴22234r R OM =-=,故所求面积为3π4.故答案为:3π4【点睛】关键点点睛:取AD 的中点O ,由12OA OD OC OB ====,确定点O O 是三棱锥1B ACD -的外接球球心.15.(1)e a =,1b =(2)单调递减区间为(),0∞-,单调递增区间为()0,∞+【分析】(1)求出函数的导函数,依题意可得()00f =且()00f '=,即可得到方程组,解得即可;(2)求出函数的导函数()f x ',再利用导数说明()f x '的单调性,即可求出()f x 的单调区间.【详解】(1)因为()e e ax f x x b =--,所以()e e ax f x a '=-,依题意()00f =且()00f '=,所以00e 0e e 0b a ⎧-=⎨-=⎩,解得e 1a b =⎧⎨=⎩.(2)由(1)可得()e e e 1x f x x =--函数的定义域为R ,又()()e 1e e e e e 1x xf x +'=-=-,令()()e 1e e xg x f x +'==-,则()e 2e0x g x +'=>,所以()g x (()f x ')在定义域R 上单调递增,又()00f '=,所以当0x <时()0f x '<,当0x >时()0f x ¢>,所以()f x 的单调递减区间为(),0∞-,单调递增区间为()0,∞+.16.(1)证明见解析(2)15【分析】(1)根据等腰三角形的三线合一及全等三角形的性质,利用线面垂直的判定定理及面面垂直的判定定理即可求解;(2)利用线面垂直的判定定理及性质定理,建立空间直角坐标系,求出相关点的坐标,分别求出直线CF 的方向向量与平面ABC 的法向量,利用向量的夹角公式,结合向量的夹角与线面角的关系即可求解.【详解】(1)因为DA DC =,E 为线段AC 的中点,所以DE AC⊥因为DA DC =,DB DB =,ADB CDB ∠=∠,所以ADB CDB ≌,故AB CB =.又E 为线段AC 的中点,所以BE AC ⊥.又DE BE E ⋂=,,DE BE ⊂平面BED .所以AC ⊥平面BED又AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)取DA 的中点G ,连接EG ,BG ,因为EG 为中位线,所以//EG CD ,又AD CD ⊥,所以AD EG ⊥.因为AB BD =,G 为DA 的中点,所以AD BG ⊥.又⋂=EG BG G ,,EG BG ⊂平面BEG ,所以AD ⊥平面BEG ,BE ⊂平面BEG ,所以AD BE ⊥,因为BA BC =,E 为AC 的中点,所以AC BE ⊥,又AC AD A = ,,AC AD ⊂平面ACD ,所以BE ⊥平面ACD .以E 为坐标原点,分别以EA 、EB 、ED 所在的直线为x 、y 、z 轴,建立空间直角坐标系E xyz -,如图所示设(),0,0A a ,(),0,0B b ,则()0,0,0E ,()0,0,D a ,()0,,0B b ,20,,33b a F ⎛⎫ ⎪⎝⎭.20,,33b a EF ⎛⎫= ⎪⎝⎭,()0,,BD b a =- ,由22222||92033AB a b b a EF BD ⎧=+=⎪⎨⋅=-+=⎪⎩,解得a b ⎧⎪⎨=⎪⎩.所以,33CF ⎫=⎪⎪⎭.又平面ABC 的法向量()0,0,1n = .设直线CF 与平面ABC 所成角为θ,则232153sin cos ,15CF n CF n CF nθ⋅===⋅ ,所以直线CF 与平面ABC.17.(1)212d d -=;(2)证明见解析(3)证明见解析【分析】(1)代入等差数列的通项公式,即可求解;(2)根据已知条件,代入等差数列的通项公式,得到数列{}n d 的递推公式,再通过构造得到数列{}n d 的通项公式,并根据(1)的结果,证明等式;(3)根据题意,结合等差数列和等比数列的综合应用,首先证明()()()()11m m m m a n i a i a n a +-+≤+,再利用求和,即可证明.【详解】(1)由题意得()()()2221212111a a d d d d -=+-+=-,又()()22212a a -=,所以212d d -=;(2)证明:因为()()12m m a n a n +=,所以()()111211n n m d m d ++-=+-⎡⎤⎣⎦,即1121n n d d m +=+-,所以111211n n d d m m +⎛⎫+=+ ⎪--⎝⎭,因此99100111211d d m m ⎛⎫+=+ ⎪--⎝⎭,所以99100111211d d m m ⎛⎫=+- ⎪--⎝⎭,又21121d d m =+-,即21121d d m =--,因此()()()()99999910012121122222221d d d d d d d d =+---=-+-,所以存在实数999922,21λμ=-=-,满足100121,d d d λμλμ+==+;(3)证明:因为{}n d 为等比数列,所以11n n d d q -=,其中q 为{}n d 的公比,于是()()1111n m a n m d q -=+-,当1i n ≤≤时,()()()()11m m m m a n i a i a n a +-+-+⎡⎤⎣⎦()()11111n i i n m d q q q ---=-+--()()()11111n i i m d q q --=----,因为0,0,10q n i i >-≥-≥,因此()()1110m i i q q ----≥,又()110m d --<,所以()()()()11m m m m a n i a i a n a +-+≤+,因此()()()()111nm m m m m a n i a i n a n a =+-+≤+⎡⎤⎡⎤⎣⎦⎣⎦∑,即()()()()()2121m m m m m a a a n n a n a +++≤+⎡⎤⎡⎤⎣⎦⎣⎦ ,所以()()()()()1122mm m m n a a n n a a a n +⎡⎤⎣⎦+++≤ .【点睛】关键点点睛:本题的关键是利用题意,并能正确表示()m a n 和公差为n d .18.(1)22163x y +=(2)(i )2;(ii )1【分析】(1)根据条件,列出关于,,a b c 的方程组,利用待定系数法,即可求解;(2)(ⅰ)首先设直线1l 的方程,并联立椭圆方程,转化为关于斜率的一元二次方程,利用韦达定理,即可求解;(ⅱ)首先设直线,PA PB 的倾斜角分别为,αβ,根据正弦定理利用角表示边长MN ,AN ,再求比值,利用(ⅰ)的结论,即可求解.【详解】(1)由题意知2222241122a b c a a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得ab c ==所以椭圆E 的方程为22163x y +=;(2)(ⅰ)易知()3,0T ,1PT k =,11112y k x +=-,22212y k x +=-,设直线1l 的方程为()()211m x n y -++=,由直线1l 过()3,0T 知1m n +=,联立方程()()22163210x y m x n y ⎧+=⎪⎨⎪-++=⎩得()()()()()()()2224144211420n y n m x y m x -++--+++-=,变形得:()()211244414022y y n n m m x x ++⎛⎫-+-++= ⎪--⎝⎭,即()1244144842424242n n n m n k k n n n ----+====---;(ⅱ)设直线,PA PB 的倾斜角分别为,αβ,则1tan k α=,2tan k β=,5π4NMP β∠=-,π2MPN β∠=-,π4PAN α∠=-,π2APN α∠=-,在PMN 中,πsin sin πsin 2sin 4PN PNMN MPN NMP ββ⎛⎫=∠=- ⎪∠⎛⎫⎝⎭- ⎪⎝⎭,在PAN △中,πsin sin πsin 2sin 4PN PN AN APN PAN αα⎛⎫=∠=- ⎪∠⎛⎫⎝⎭- ⎪⎝⎭,所以()ππsin sin cos sin cos tan 1242ππtan 1sin sin 422MN AN βαβαααββα⎛⎫⎛⎫-⋅--- ⎪ ⎪-⎝⎭⎝⎭===--⎛⎫⎛⎫-⋅- ⎪ ⎪⎝⎭⎝⎭由122k k +=知,tan tan 2αβ+=,即tan 11tan 1αβ-=--,故1MNAN =..【点睛】关键点点睛:本题第一问的转化比较巧妙,转化为关于斜率的方程,利用韦达定理即可求解,第二问巧妙设倾斜角,利用三角函数表示MN AN 的值.19.(1)1(2)仅在(),0x ∈-∞时存在1个零点,理由见解析(3)()()()sin ,π,00,π,1,0.x x g x x x ⎧∈-⋃⎪=⎨⎪=⎩【分析】(1)利用洛必达法则求解即可;(2)构造函数()e x f x ,结合()e xf x 的单调性求解即可;(3)利用累乘法求出()2n g x x g ⎛⎫ ⎪⎝⎭的表达式,然后结合()01g =,利用洛必达法则求极限即可.【详解】(1)001lim lim 1sin cos x x x x x →→==(2)()()2321123!21!n x x x f x x n -=+++++- ,()()232212!3!22!n x x x f x x n -'=+++++- ,所以()()()2121!n x f x f x n -'-=--,()()()()21e e e 21!n x x xf x f x f x x n -⎡⎤'-='=-⎢⎥-⎣⎦.当0x >时,()0e x f x ⎡⎤'<⎢⎥⎣⎦,函数()e x f x 在()0,∞+上单调递减,当0x <时,()0e x f x ⎡⎤'>⎢⎥⎣⎦,函数()e x f x 在(),0∞-上单调递增,()lime xx f x →-∞=-∞,()01f =,当0x >时,()0e x f x >,所以仅在(),0x ∈-∞时存在1个零点.(3)()()2cos g x x g x =,所以()cos 22g x x x g =⎛⎫ ⎪⎝⎭,2cos 44x g x x g ⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭,…,12cos 22n n n x g x x g -⎛⎫ ⎪⎝⎭=⎛⎫ ⎪⎝⎭将各式相乘得()cos cos cos 2422n n g x x x x x g =⋅⋅⋅⎛⎫ ⎪⎝⎭ cos cos cos sin 1sin 24222sin sin 22n n n n nx x xxx x x ⋅⋅⋅⋅=⋅ ,两侧同时运算极限,所以()1sin sin 22lim lim lim sin sin 222n n n n n n n n x x g x x x x x x g →+∞→+∞→+∞⋅==⋅⎛⎫ ⎪⎝⎭,即()()sin 2lim 0sin 2n n n x g x x xg x →+∞=,令2nx t =,原式可化为()()0sin lim 0sin t g x x t g x t →=,又()01g =,由(1)得0lim1sin t t t →=,故()()sin 0x g x x x=≠,由题意函数()g x 的定义域为()π,π-,综上,()()()sin ,π,00,π,1,0.x x g x x x ⎧∈-⋃⎪=⎨⎪=⎩【点睛】方法点睛:本题考查新定义,注意理解新定义,结合洛必达法则的适用条件,构造函数()2n g x x g ⎛⎫ ⎪⎝⎭,从而利用洛必达法则求极限.。
河北省石家庄市2020版高考数学二模试卷(理科)D卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019高一上·山丹期中) 已知集合,,则下列关系中正确的是()A .B .C .D .2. (2分)设偶函数f(x)的定义域为R,当时,f(x)是增函数,则的大小关系是()A .B .C .D .3. (2分)在极坐标系中,直线的方程为,则点到直线的距离为()A .B .C .D .4. (2分)以椭圆的焦点为顶点、顶点为焦点的的双曲线方程是()A .B .C .D .5. (2分)已知向量+=(2,﹣8),﹣=(﹣8,16),则与夹角的余弦值为()A .B . -C .D .6. (2分)某几何体的三视图如图所示,其中正(主)视图与侧(左)视图的边界均为直角三角形,俯视图的边界为直角梯形,则该几何体的体积是()A .B .C . 1D . 37. (2分) (2019高一上·平罗期中) 集合的真子集个数是().A . 8B . 7C . 4D . 38. (2分) (2016高一上·青浦期中) 已知a,b,c满足c<b<a且ac<0,则下列选项中不一定能成立的是()A . ab>acB . c(b﹣a)>0C . cb2<ca2D . ac(a﹣c)<0二、填空题 (共6题;共7分)9. (1分)已知z=(m+3)+(m﹣1)i复平面内对应的点在第四象限,则实数m的取值范围是________.10. (1分) (2017高二上·荔湾月考) 以下给出对程序框图的几种说法:①任何一个程序框图都必须有起止框;②输入框只能紧接开始框,输出框只能紧接结束框;③判断框是唯一具有超出一个退出点的符号;④对于一个问题的算法来说,其程序框图判断框内的条件的表述方法是唯一的.其中正确说法的个数是________个.11. (1分) (2019高三上·维吾尔自治月考) 已知角的顶点为坐标原点,始边为x轴的正半轴,若是角终边上一点,且,则y=________.12. (1分) (2017·新课标Ⅰ卷理) 设x,y满足约束条件,则z=3x﹣2y的最小值为________.13. (2分) (2016高三上·杭州期中) 已知x∈R,函数f(x)= 为奇函数,则t=________,g(f(﹣2))=________14. (1分) (2017高二下·高淳期末) 在△ABC中,已知,sinB=cosA•sinC,S△ABC=6,P为线段AB上的点,且,则xy的最大值为________.三、解答题 (共6题;共55分)15. (5分)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.16. (10分)(2017·南通模拟) 某乐队参加一户外音乐节,准备从3首原创新曲和5首经典歌曲中随机选择4首进行演唱.(1)求该乐队至少演唱1首原创新曲的概率;(2)假定演唱一首原创新曲观众与乐队的互动指数为a(a为常数),演唱一首经典歌曲观众与乐队的互动指数为2a.求观众与乐队的互动指数之和的概率分布及数学期望.17. (10分)(2017·深圳模拟) 如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE= ,∠EAD=∠EAB.(1)证明:平面ACEF⊥平面ABCD;(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.18. (15分) (2016高三上·成都期中) 已知函数f(x)=lnx﹣mx(m∈R).(1)若曲线y=f(x)过点P(1,﹣1),求曲线y=f(x)在点P处的切线方程;(2)求函数f(x)在区间[1,e]上的最大值;(3)若函数f(x)有两个不同的零点x1,x2,求证:x1x2>e2.19. (10分) (2018高二下·中山月考) 已知椭圆的方程为,其焦点在轴上,点为椭圆上一点.(1)求该椭圆的标准方程;(2)设动点满足,其中、是椭圆上的点,直线与的斜率之积为,求证:为定值.20. (5分)已知等比数列{an}的前n项和为Sn=a﹣2n﹣3(a为常数),且a1=3.(I)求数列{an}的通项公式;(II)设bn=n•an ,求数列{bn}的前n项和Tn .参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共6题;共55分)15-1、16-1、16-2、17-1、18-1、18-2、18-3、19-1、19-2、20-1、。
河北省石家庄市2024年数学(高考)部编版摸底(预测卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题已知,点P为直线上的一点,点Q为圆上的一点,则的最小值为()A.B.C.D.第(2)题如图,西周琱生簋(guǐ)是贵族琱生为其祖先制作的宗庙祭祀时使用的青铜器.该青铜器可看成由上、下两部分组成,其中上面的部分可看作圆台,下面的部分可看作圆柱,且圆台和圆柱的高之比约为,圆台的上底面与圆柱的底面完全重合,圆台上、下底面直径之比约为,则圆台与圆柱的体积之比约为()A.B.C.D.第(3)题若直线y=2x上存在点(x,y)满足约束条件,则实数m的最大值为A.-1B.1C.D.2第(4)题若,则下列不等式成立的是()A.B.C.D.第(5)题设为函数()图象上一点,点,为坐标原点,,的值为()A.-4B.C.4D.1第(6)题已知椭圆:的焦点分别为,,点在上,点在轴上,且满足,,则的离心率为()A.B.C.D.第(7)题若,则z=()A.1–i B.1+i C.–i D.i第(8)题在不超过20的素数(注:如果一个大于1的整数除了1和自身外无其它正因数,则称这个整数为素数)中,随机选取2个不同的数,这两个数的和等于20的概率是()A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知,且,则()A.B.C.D.第(2)题已知、都是复数,下列正确的是()A.若,则B.C.若,则D.第(3)题已知正整数x,n,其中x的因数不包含3,若的展开式中有且只有6项能被9整除,则n的取值可以是()A.6B.7C.8D.9三、填空(本题包含3个小题,每小题5分,共15分。
请按题目要求作答,并将答案填写在答题纸上对应位置) (共3题)第(1)题如图,已知二面角的棱是,,,若,,,且,,则二面角的大小为______,此时,四面体的外接球的表面积为______.第(2)题已知抛物线的焦点为,点在上,若,则到直线的距离为:________ .第(3)题的内角A,B,C的对边分别为a,b,c,若,则a的最小值为_________.四、解答题(本题包含5小题,共77分。
河北省石家庄市数学高考理数二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017高一上·武汉期末) 集合A={x|x2﹣3x+2=0},B={0,1},则A∪B=()A . {1}B . {0,1,2}C . (1,2)D . (﹣1,2]2. (2分)若=a+bi(a,b∈R,i为虚数单位),则a﹣b等于()A .B . 1C . 0D . -13. (2分) (2016高二下·三门峡期中) 已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>2)=0.023,则P(﹣2<ξ≤2)=()A . 0.477B . 0.628C . 0.954D . 0.9774. (2分) (2016高二上·天心期中) 双曲线 =1(a>0,b>0)的左右焦点分别为F1 , F2渐近线分别为l1 , l2 ,位于第一象限的点P在l1上,若l2⊥PF1 ,l2∥PF2 ,则双曲线的离心率是()A .B .C . 2D .5. (2分)若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A .B .C .D .6. (2分)(2012·山东理) 执行如图的程序框图,如果输入a=4,那么输出的n的值为()A . 5B . 4C . 3D . 27. (2分)若实数满足,则的取值范围是()A .B .C .D .8. (2分)一个几何体的三视图如图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是()A .B .C .D .9. (2分) (2019高二下·延边月考) 若,则的值为()A .B .C .D .10. (2分)(2016·城中模拟) 已知函数f(x)满足f(﹣x)=f(x),f(x+8)=f(x),且当x∈(0,4]时f(x)= ,关于x的不等式f2(x)+af(x)>0在[﹣2016,2016]上有且只有2016个整数解,则实数a 的取值范围是()A . (﹣ ln6,ln2]B . (﹣ln2,﹣ ln6)C . (﹣ln2,﹣ ln6]D . (﹣ ln6,ln2)11. (2分)已知复数和复数,则Z1·Z2()A .B .C .D .12. (2分)与圆(x﹣2)2+y2=1外切,且与y轴相切的动圆圆心P的轨迹方程为()A . y2=6x﹣3B . y2=2x﹣3C . x2=6y﹣3D . x2﹣4x﹣2y+3=0二、填空题 (共4题;共4分)13. (1分)(2016·绍兴模拟) 各棱长都等于4的四面ABCD中,设G为BC的中点,E为△ACD内的动点(含边界),且GE∥平面ABD,若• =1,则| |=________.14. (1分)若f(n)为n2+1(n∈N*)的各位数字之和,如142+1=197,1+9+7=17,则f(14)=17,记f1(n)=f(n),f2(n)=f〔f1(n)〕,…,fk+1(n)=f〔fk(n)〕,k∈N* ,则f2012(8)=________.15. (1分) (2019高一下·黑龙江月考) 已知定义域为R的函数满足,且的导数,则不等式的解集为________.16. (1分) (2019高二下·奉化期末) 中,内角所对的边分别是,若边上的高,则的取值范围是________.三、解答题 (共6题;共45分)17. (10分)(2018·南阳模拟) 已知数列的前项和满足 .(1)求数列的通项公式;(2)求数列的前项和 .18. (10分)(2017·渝中模拟) 渝州集团对所有员工进行了职业技能测试从甲、乙两部门中各任选10名员工的测试成绩(单位:分)数据的茎叶图如图所示.(1)若公司决定测试成绩高于85分的员工获得“职业技能好能手”称号,求从这20名员工中任选三人,其中恰有两人获得“职业技能好能手”的概率;(2)公司结合这次测试成绩对员工的绩效奖金进行调整(绩效奖金方案如表),若以甲部门这10人的样本数据来估计该部门总体数据,且以频率估计概率,从甲部门所有员工中任选3名员工,记绩效奖金不小于3a的人数为ξ,求ξ的分布列及数学期望.分数[60,70)[70,80)[80,90)[90,100]奖金a2a3a4a19. (5分)(2017·青州模拟) 已知椭圆C: =1(a>b>0),O是坐标原点,F1 , F2分别为其左右焦点,|F1F2|=2 ,M是椭圆上一点,∠F1MF2的最大值为π(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l与椭圆C交于P,Q两点,且OP⊥OQ(i)求证:为定值;(ii)求△OPQ面积的取值范围.20. (5分)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=0处的切线为l:4x+y﹣5=0,若x=﹣2时,y=f(x)有极值.(1)求a,b,c的值;(2)求y=f(x)在[﹣3,1]上的最大值和最小值.21. (5分)(2020·郑州模拟) 在极坐标系中,圆C的方程为.以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,设直线l的参数方程为(为参数).(Ⅰ)求圆C的标准方程和直线的普通方程,(Ⅱ)若直线l与圆C交于两点,且.求实数a的取值范围.22. (10分) (2019高二下·太原月考) 设.(1)求的解集;(2)若不等式对任意实数恒成立,求实数的取值范围.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共6题;共45分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:。
2019年石家庄市高中毕业班第二次模拟考试高三数学(理科)注意事项:1. 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3. 回答第II卷时,将答案写在答题卡上,写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第I卷(选择题60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M={5,6,7 },N={5,7,8 },则A. B. C. D.2. 若F(5,0)是双曲线(m是常数)的一个焦点,则m的值为A. 3B. 5C. 7D. 93. 已知函数f(x),g(x)分别由右表给出,则,的值为A. 1B.2C. 3D. 44. 的展开式中的常数项为A. -60B. -50C. 50D. 605. 的值为A. 1B.C.D.6. 已知向量a=(1,2),b=(2,3),则是向量与向量n=(3,-1)夹角为钝角的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要的条件7. —个几何体的正视图与侧视图相同,均为右图所示,则其俯视图可能是8. 从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程,据此模型预报身高为172 cm的高三男生的体重为A. 70.09B. 70.12C. 70.55D. 71.059. 程序框图如右图,若输出的s值为位,则n的值为A. 3B. 4C. 5D. 610. 已知a是实数,则函数_的图象不可能是11. 已知长方形ABCD,抛物线l以CD的中点E为顶点,经过A、B两点,记拋物线l与AB 边围成的封闭区域为M.若随机向该长方形内投入一粒豆子,落入区域M的概率为P.则下列结论正确的是A.不论边长AB,CD如何变化,P为定值;B.若-的值越大,P越大;C.当且仅当AB=CD时,P最大;D.当且仅当AB=CD时,P最小.12. 设不等式组表示的平面区域为D n a n表示区域D n中整点的个数(其中整点是指横、纵坐标都是整数的点),则=A. 1012B. 2019C. 3021D. 4001第II卷(非选择题共90分)本卷包括必考题和选考题两部分,第13题〜第21题为必考题,每个试题考生都必须作答.第22题〜第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13. 复数(i为虚数单位)是纯虚数,则实数a的值为_________.14. 在ΔABC 中,,,则 BC 的长度为________.15. 己知F1F2是椭圆(a>b>0)的两个焦点,若椭圆上存在一点P使得,则椭圆的离心率e的取值范围为________.16. 在平行四边形ABCD中有,类比这个性质,在平行六面体中ABCD-A 1B1C1D1中有=________三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知S n是等比数列{a n}的前n项和,S4、S10、S7成等差数列.(I )求证而a3,a9,a6成等差数列;(II)若a1=1,求数列W{a3n}的前n项的积.18. (本小题满分12分)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准〜用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图,(I)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;(II)用样本估计总体,如果希望80%的居民每月的用水量不超出标准&则月均用水量的最低标准定为多少吨,并说明理由;(III)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量(看作有放回的抽样),其中月均用水量不超过(II)中最低标准的人数为x,求x的分布列和均值.19. (本小题满分12分)在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,A B=1,,D为AA1中点,BD与AB1交于点0,C0丄侧面ABB1A1(I )证明:BC丄AB1;(II)若OC=OA,求二面角C1-BD-C的余弦值.20. (本小题满分12分)在平面直角坐标系中,已知直线l:y=-1,定点F(0,1),过平面内动点P作PQ丄l于Q点,且•(I )求动点P的轨迹E的方程;(II)过点P作圆的两条切线,分别交x轴于点B、C,当点P的纵坐标y0>4时,试用y0表示线段BC的长,并求ΔPBC面积的最小值.21. (本小题满分12分)已知函数(A ,B R,e为自然对数的底数),.(I )当b=2时,若存在单调递增区间,求a的取值范围;(II)当a>0 时,设的图象C1与的图象C2相交于两个不同的点P、Q,过线段PQ的中点作x轴的垂线交C1于点,求证.请考生在第22〜24三题中任选一题做答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-1几何证明选讲已知四边形ACBE,AB交CE于D点,,BE2=DE-EC.(I)求证:;(I I)求证:A、E、B、C四点共圆.23. (本小题满分10分)选修4-4坐标系与参数方程在平面直角坐标系xOy中,以O为极点,X轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线C1的参数方程为:(为参数);射线C2的极坐标方程为:,且射线C2与曲线C1的交点的横坐标为(I )求曲线C1的普通方程;(II)设A、B为曲线C1与y轴的两个交点,M为曲线C1上不同于A、B的任意一点,若直线AM与MB分别与x轴交于P,Q两点,求证|OP|.|OQ|为定值.24. (本小题满分10分)选修4-5不等式选讲 设函数(I)画出函数的图象;(II )若不等式,恒成立,求实数a 的取值范围.2019年石家庄市高中毕业班第二次模拟考试高三数学(理科答案) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1-5 CDADB 6-10 ABBCB 11-12 AC二、填空题:本大题共4小题,每小题5分,共20分.13. 1 14. 1或2 15. 1,12⎡⎫⎪⎢⎣⎭16. 22214()AB AD AA ++.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17. 解:(Ⅰ)当1q =时,10472S S S ≠+所以1q ≠ ………………………………………………..2分10472S S S =+由,得()()1074111211(1)111a q a q a q q q q---=+--- 104710,12a q q q q ≠≠∴=+ , ………………………….4分则8251112a q a q a q =+,9362a a a ∴=+,所以3,9,6a a a 成等差数列. ………………………6分(Ⅱ)依题意设数列{}3n a 的前n 项的积为n T ,n T =3333123n a a a a ⋅⋅3323131()()n q q q -=⋅⋅=33231()()n q q q -⋅3123(1)()n q ++-==(1)32()n n q -,…………………8分又由(Ⅰ)得10472q q q =+,63210q q ∴--=,解得3311(,2q q ==-舍).…………………10分 所以()1212n n n T -⎛⎫=-⎪⎝⎭. …………………………………………….12分18. 解: (Ⅰ)………………………………3分(Ⅱ)月均用水量的最低标准应定为2.5吨.样本中月均用水量不低于2.5吨的居民有20位,占样本总体的20%,由样本估计总体,要保证80%的居民每月的用水量不超出标准,月均用水量的最低标准应定为2.5吨.……………………………………………6分 (Ⅲ)依题意可知,居民月均用水量不超过(Ⅱ)中最低标准的概率是45,则4~(3,)5X B , 311(0)()5125P X === 1234112(1)()55125P X C ===2234148(2)()()55125P X C === 3464(3)()5125P X ===………………8分分布列为412()355E X =⨯=………………………………………………………………12分19. 解:(Ⅰ)因为11ABB A 是矩形,D 为1AA 中点,1AB =,1AA,2AD =, 所以在直角三角形1ABB 中,11tan AB AB B BB ∠==, 在直角三角形ABD中,1tan 2AD ABD AB ∠==, 所以1AB B ∠=ABD ∠, 又1190BAB AB B ∠+∠=,190BAB ABD ∠+∠=,所以在直角三角形ABO 中,故90BOA ∠=,即1BD AB ⊥, …………………………………………………………………………3分 又因为11CO ABB A ⊥侧面,111AB ABB A ⊂侧面,所以1CO AB ⊥所以,1AB BCD ⊥面,BC BCD ⊂面, 故1BC AB ⊥…………………………5分 (Ⅱ) 解法一:如图,由(Ⅰ)可知,,,OA OB OC 两两垂直,分别以,,OA OB OC 为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -. 在Rt ABD中,可求得3OB =,6OD =,3OC OA ==,在1Rt ABB中,可求得1OB = ,故D ⎛⎫ ⎪ ⎪⎝⎭,0,B ⎛⎫ ⎪ ⎪⎝⎭,C ⎛ ⎝⎭,13B ⎛⎫- ⎪ ⎪⎝⎭所以BD ⎛⎫= ⎪ ⎪⎝⎭,BC ⎛= ⎝⎭,1BB ⎛⎫= ⎪ ⎪⎝⎭可得,11BC BC BB ⎛=+= ⎝⎭…………………………………8分 设平面1BDC 的法向量为(),,x y z =m ,则 10,0BD BC ⋅=⋅=m m ,即03330x y z y ⎧-++=⎪⎪=,取1,0,2x y z ===, 则()1,0,2=m , …………………………………10分又BCD 面()1,0,0=n ,故cos ,==m n , 所以,二面角1C BD C --12分 解法二:连接1CB 交1C B 于E ,连接OE , 因为11CO ABB A ⊥侧面,所以BD OC ⊥,又1BD AB ⊥,所以1BD COB ⊥面,故BD OE ⊥ 所以E O C ∠为二面角1C BD C --的平面角…………………………………8分BD =,1AB ,1112AD AO BB OB ==,1123OB AB ==,113OC OA AB ===, 在1Rt COB中,1B C ===,……………………10分 又EOC OCE ∠=∠1cos OC EOC CB ∠==, 故二面角1C BD C --的余弦值为…………………………12分 20.解:(Ⅰ)设(),P x y ,则(),1Q x -,∵QP QF FP FQ =,∴()()()()0,1,2,1,2y x x y x +-=--. …………………2分 即()()22121y x y +=--,即24x y =,所以动点P 的轨迹E 的方程24x y =. …………………………4分 (Ⅱ)解法一:设00(,),(,0),(,0)P x y B b C c ,不妨设b c >. 直线PB 的方程:00()y y x b x b=--,化简得 000()0y x x b y y b ---=. 又圆心(0,2)到PB 的距离为22= ,故222220000004[()]4()4()y x b x b x b y b y b +-=-+-+,易知04y >,上式化简得2000(4)440y b x b y -+-=, 同理有2000(4)440y c x c y -+-=. …………6分所以0044x b c y -+=-,0044y bc y -=-,…………………8分 则2220002016(4)()(4)x y y b c y +--=-. 因00(,)P x y 是抛物线上的点,有2004x y =,则 2202016()(4)y b c y -=-,0044y b c y -=-. ………………10分所以0000002116()2[(4)8]244PBC y S b c y y y y y ∆=-⋅=⋅=-++--832≥=.当20(4)16y -=时,上式取等号,此时008x y ==. 因此PBC S ∆的最小值为32. ……………………12分解法二:设),(00y x P , 则420x y =,PB 、PC 的斜率分别为1k 、2k ,则PB :2010()4x y k x x -=-,令0y =得20014B x x x k =-,同理得20024C x x x k =-;所以||4|44|||||212120120220k k k k x k x k x x x BC C B -⋅=-=-=,……………6分下面求||2121k k k k -,由(0,2)到PB :2010()4x y k x x -=-的距离为22010|2|2x k x +-=, 因为04y >,所以2016x >,化简得2222220001010(4)(4)()024x x x k x k x -+⋅-+-=,同理得2222220002020(4)(4)()024x x x k x k x -+⋅-+-=…………………8分所以1k 、2k 是22222200000(4)(4)()024x x x k x k x -+⋅-+-=的两个根.所以2001220(4)2,4x x k k x -+=-222220000122200(1)()164,44x x x x k k x x --==--21220||4x k k x -==-,1220121||116k k x k k -=-, 22000120200120411||||44411416B C x x y k k x x y y x k k y --=⋅=⋅=⋅=---,……………10分 所以0000002116||2[(4)8]244PBC y S BC y y y y y ∆=⋅=⋅=-++--832≥=.当20(4)16y -=时,上式取等号,此时008x y ==.因此PBC S ∆的最小值为32. ……………………12分21.解:(Ⅰ)当2b =时,若2()()()2x x F x f x g x ae e x =-=+-,则2()221x x F x ae e '=+-,原命题等价于2()2210x x F x ae e '=+-…在R 上有解.……………2分 法一:当0a …时,显然成立; 当0a <时,2211()2212()(1)22xx x F x ae e a e a a'=+-=+-+ ∴ 1(1)02a -+>,即102a -<<. 综合所述 12a >-.…………………5分法二:等价于2111()2x x a e e>⋅-在R 上有解,即∴ 12a >-.………………5分 (Ⅱ)设1122(,),(,)P x y Q x y ,不妨设12x x <,则2102x x x +=, 2222x x ae be x +=,1121x x ae be x +=,两式相减得:21212221()()x x x x a e e b e e x x -+-=-,……………7分整理得212121212121221()()()()2()x x x x x x x x x x x x x x a e e e e b e e a e e eb e e +-=-++--+-…则21212122x x xxx x ae b e e +-+-…,于是 21212121212202()x x x x x x x x x x e ae be f x e e+++-'⋅+=-…,…………………9分 而212121212121221x x x x x x x x x x x x e e e e e +----⋅=⋅--令210t x x =->,则设22()tt G t e et -=--,则22111()1210222t t G t e e -'=+->⋅=,∴ ()y G t =在(0,)+∞上单调递增,则22()(0)0t t G t e e t G -=-->=,于是有22t t e et -->,即21t te te ->,且10te ->,∴ 211ttt e e <-, 即0()1f x '<.…………………12分请考生在第22~24三题中任选一题做答,如果多做,则按所做的第一题记分 22.选修4-1几何证明选讲 证明:(Ⅰ)依题意,DE BEBE EC=,11∠=∠ , 所以DEB BEC ∆∆,………………2分得34∠=∠, 因为45∠=∠,所以35∠=∠,又26∠=∠,可得EBD ACD ∆∆.……………………5分 (Ⅱ)因为因为EBD ACD ∆∆,所以ED BD AD CD =,即ED ADBD CD =,又ADE CDB ∠=∠,ADE CDB ∆∆,所以48∠=∠,………………7分因为0123180∠+∠+∠=,因为278∠=∠+∠,即274∠=∠+∠,由(Ⅰ)知35∠=∠, 所以01745180,∠+∠+∠+∠= 即0180,ACB AEB ∠+∠=所以A 、E 、B 、C 四点共圆.………………10分 23.选修4-4:坐标系与参数方程解:(Ⅰ)曲线1C 的普通方程为2221x y a+=,射线2C 的直角坐标方程为(0)y x x =≥,…………………3分可知它们的交点为⎝⎭,代入曲线1C 的普通方程可求得22a =. 所以曲线1C 的普通方程为2212x y +=.………………5分 (Ⅱ) ||||OP OQ ⋅为定值.由(Ⅰ)可知曲线1C 为椭圆,不妨设A 为椭圆1C 的上顶点,设,sin )M ϕϕ,(,0)P P x ,(,0)Q Q x , 因为直线MA 与MB 分别与x 轴交于P 、Q 两点, 所以AM AP K K =,BM BQ K K =,………………7分 由斜率公式并计算得1sin P x ϕϕ=-,1sin Q x ϕϕ=+,所以||||2P Q OP OQ x x ⋅=⋅=.可得||||OP OQ ⋅为定值.……………10分 24.选修4-5:不等式选讲 解: (Ⅰ)由于37,2,()35 2.x x f x x x +≥-⎧=⎨--<-⎩…………2分则函数的图象如图所示:(图略)……………5分 (Ⅱ) 由函数()y f x =与函数y ax =的图象可知, 当且仅当132a -≤≤时,函数y ax =的图象与函数()y f x =图象没有交点,……………7分所以不等式()f x ax ≥恒成立,则a 的取值范围为1,32⎡⎤-⎢⎥⎣⎦.…………………10分。
试卷类型:A2006年石家庄市高中毕业班第二次模拟考试试卷数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两分部.共150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若ibiz +-=22(b ∈R )为纯虚数,则b 的值为. A .-1 B .1 C .-2 D .42. 在等差数列{}n a 中,1,16375==+a a a ,则9a 的值是.A .15B .30C . -31D .64 3. 给出下列命题:① 若平面α内的直线l 垂直于平面β内的任意直线,则βα⊥;② 若平面α内的任一直线都平行于平面β,则βα//; ③ 若平面α垂直于平面β,直线l 在平面内α,则β⊥l ; ④ 若平面α平行于平面β,直线l 在平面内α,则β//l . 其中正确命题的个数是.A .4B .3C .2D .14. 已知函数121)(1-⎪⎭⎫⎝⎛=-x x f ,则)(x f 的反函数)(1x f -的图像大致为.5. 定义集合M 与N 的运算:},{N M x N x M x x N M ∉∈∈=*且或,则=**M N M )(A.N M B .N M C .MD .N6. 已知31)4cos(=+πα,其中)2,0(πα∈,则αsin 的值为.A .624-B .624+C .6122-D .3122-7. 已知平面上不同的四点A 、B 、C 、D ,若0···=++,则三角形ABC 一定是.A .直角或等腰三角形B .等腰三角形C .等腰三角形但不一定是直角三角形D .直角三角形但不一定是等腰三角形 8. 直线:01=++y x 与直线:⎪⎭⎫⎝⎛<<=-+2402cos sin παπααy x 的夹角为.A .4πα-B .4πα+C .απ-4D .απ-43 9. 设函数)(x f 是定义在R 上的以5为周期的奇函数,若33)3(,1)2(2-++=>a a a f f ,则a 的取值范围是.A .)3,0()2,( --∞B .),3()0,2(+∞-C .),0()2,(+∞--∞D .),3()0,(+∞-∞ 10. 若)10(0log log log 3)1(212<<>==+a x x x a a a,则321x x x 、、的大小关系为.A .123x x x <<B .312x x x <<C . 231x x x <<D .132x x x <<11. 点P 是双曲线116922=-x y 的上支上一点,F 1、F 2分别为双曲线的上、下焦点,则 21F PF ∆的内切圆圆心M 的坐标一定适合的方程是.A .3-=yB .3=yC .522=+y xD .232-=x y12. 一个三棱椎的四个顶点均在直径为6的球面上,它的三条侧棱两两垂直,若其中一条侧棱长是另一条侧棱长的2倍,则这三条侧棱长之和的最大值为.A .3B .354C .10552D .2152第Ⅱ卷(非选择题,共90分)二、填空题:本大题共四小题,每小题4分,共16分,把答案填在题中横线上.13.设函数⎪⎩⎪⎨⎧>-=<=.1,5,1,,1,2)(x bx x a x x x f 在1=x 处连续,则实数b a ,的值分别为 . 14.以椭圆14522=+y x 的右焦点为焦点,左准线为准线的抛物线方程为 . 15.如图,路灯距地面8m ,一个身高1.6m 的人沿穿过路灯的直路以84m/min 的速度行走,人影长度变化速率是 m/min .16.在直三棱柱111C B A ABC -中,有下列三个条件:①11AC B A ⊥;②C B B A 11⊥;③1111C A C B =.以其中的两个为条件,其余一个为结论,可以构成的真命题是 (填上所有成立的真命题,用条件的序号表示即可).三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数∈-=x x x x x f ),cos sin 3(cos )(R .(Ⅰ)求函数)(x f 的最大值;(Ⅱ)试说明该函数的图像经过怎样的平移和伸缩变换,可以得到∈=x x y ,sin R 的 图像? 18.(本小题满分12分)已知数列}{n a 的首项21=a ,且)(121*+∈+=N n a a n n .(Ⅰ) 设n n na b =,求数列}{n b 的前n 项和n T ;(Ⅱ)求使不等式9110-+<-n n a a 成立的最小正整数n .(已知3010.02lg =)19.(本小题满分12分)甲、乙两人进行投篮比赛,每人投三次,规定:投中次数多者获胜,投中次数相同则成平局.若甲、乙两人的投篮命中的概率分别为32和21,且两人每次投篮是否命中是相互独立的.(Ⅰ)求甲、乙成平局的概率; (Ⅱ)求甲获胜的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为直角梯形,且,,//AD AB CD AB ⊥22===AB CD AD ,侧面APD ∆为等 边三角形,且平面APD ⊥平面ABCD . (Ⅰ)若M 为PC 上一动点,当M 在何位置时,⊥PC 平面MDB ,并证明之; (Ⅱ)求直线AB 到平面PDC 的距离;(Ⅲ)若点G 为PBC ∆的重心,求二面角C BD G --的大小.21.(本小题满分12分)如图,已知A 1、A 2为双曲线C :0,0(12222>>=-b a by a x 的两个顶点,过双曲线上一点B 1作x 轴的垂线,交双 曲线于另一点B 2,直线A 1B 1、A 2B 2相交于点M . (Ⅰ)求点M 的轨迹E 的方程;(Ⅱ)若P 、Q 分别为双曲线C 与曲线E 上不同于A 1、A 2的动点,且)(2121A A m A A +=+(∈m R ,且1>m ),设直线A 1P 、A 2P 、A 1Q 、A 2Q 的斜率分别为k 1、k 2、k 3、k 4,试问k 1+k 2+k 3+k 4是否为定值?说明理由. 22.(本小题满分14分) 已知函数131)(23+-+=bx ax x x f (∈x R, a ,b 为实数)有极值,且1=x 在处的切线与直线01=+-y x 平行. (Ⅰ)求实数a 的取值范围;(Ⅱ)是否存在实数a ,使得函数)(x f 的极小值为1,若存在,求出实数a 的值;若不存在,请说明理由; (Ⅲ)设21=a ,)(x f 的导数为)(x f ',令),0(,3)1()(+∞∈-+'=x xx f x g ,求证: )(221)(*∈-≥--N n xx x g n n n n .2006年石家庄市高中毕业班第二次模拟考试试卷数学(理科)参考答案一、选择题: DABCD ADAAD BC二、填空题: 13.3,2==b a ; 14.)2(122+=x y ; 15.21; 16.①②⇒③;①③⇒②;②③⇒①.三、解答题:17.(Ⅰ)x x x x f 2cos cos sin 3)(-=22cos 12sin 23xx +-=………………………………………(2分) 21)62sin(--=πx …………………………………………(4分)当)(,2262Z k k x ∈+=-πππ,即)(,3Z k k x ∈+=ππ时,)62sin(π-x 有最大值1.此时函数)(x f 的值最大, 最大值为21.……(6分)(Ⅱ) 将21)62sin(--=πx y 的图像依次进行如下变换:① 把函数21)62s i n(--=πx y 的图像向上平移21个单位长度,得到函数)62sin(π-=x y 的图像; …………………………………………(8分)② 把得到的函数图像上各点横坐标伸长到原来的2倍(纵坐标不变),得到函数)6sin(π-=x y 的图像; …………………………………………(10分)③ 将函数)6sin(π-=x y 的图像向左平移6π个单位长度,就得到函数xy sin =的图像. …………………………………………(12分)(注:如考生按向量进行变换,或改变变换顺序,只要正确,可给相应分数)18.(Ⅰ)由121+=+n n a a 得)1(2111-=-+n n a a 可知数列}1{-n a 是以111=-a 为首项,公比为21的等比数列. )(1211*-∈+⎪⎭⎫ ⎝⎛=∴N n a n n . …………………………………………(4分)从而有n n na b n n n +⎪⎭⎫⎝⎛==-121·.n n b b b T +++= 21)21(21·21·321·221·11210n n T n n ++++⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∴- ………① 2)1(·2121·21)1(21·221·121121++⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛-++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∴-∙n n n n T nn n ………② ① - ②并整理得2)1(21)24(4++⎪⎭⎫⎝⎛+-=∙n n n T nn . ………………(8分)(Ⅱ) 911021-+<⎪⎭⎫⎝⎛=-nn n a a两边取常用对数得:9.292lg 9≈>n ∴使不等式成立的最小正整数n 为30. ………………………………(12分)19.(Ⅰ) 甲、乙各投中三次的概率:271213233=⎪⎭⎫⎝⎛⨯⎪⎭⎫ ⎝⎛, …………………………………………(1分)甲、乙各投中两次的概率:61213132323223=⎪⎭⎫ ⎝⎛⨯⨯⨯⎪⎭⎫ ⎝⎛⨯C C , …………………………………(2分)甲、乙各投中一次的概率:121213132313213=⎪⎭⎫ ⎝⎛⨯⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯C C , …………………………(3分)甲、乙两人均投三次,三次都不中的概率:2161213133=⎪⎭⎫⎝⎛⨯⎪⎭⎫ ⎝⎛, …………………………………………(4分)∴甲、乙平局的概率是:247216112161271=+++. ……………(6分) (Ⅱ) 甲投中三球获胜的概率:277811323=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛, …………………………………(8分)甲投中两球获胜的概率:9221213132313303223=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯⨯⨯⎪⎭⎫ ⎝⎛⨯C C C , ………(9分)甲投中一球获胜的概率:3612131323213=⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯C , …………………………(10分) 甲获胜的概率为:1085536192277=++. ………………………(12分) 20.(Ⅰ) 当M 在中点时,⊥PC 平面MDB ………………………………(1分)连结BM 、DM ,取AD 的中点N ,连结PN 、NB .∵AD PN ⊥且面⊥PAD 面ABCD , ∴⊥PN 面ABCD . 在PNB Rt ∆中,,5,2,3=∴==PB NB PN又5=BC . PC BM ⊥∴ ……………………………………(3分)又PC DM DC PD ⊥∴==,2,又⊥∴=PC M BM DM , 面MDB . ……………………(4分) (Ⅱ)⊂CD CD AB ,//面PDC ,⊄AB 面PDC ,∴//AB 面PDC .∴AB 到面PDC 的距离即A 到面PDC 的距离. ………………(6分) ⊥∴=⊥⊥CD N PN DA PN CD DA CD ,,, 面P AD , 又⊂DC 面PDC ,∴面⊥PAD 面PDC . 作PD AE ⊥,AE 就是A 到面PDC 的距离,3=∴AE , 即AB 到平面PDC 的距离为3. ………………(8分) (Ⅲ)过M 作BD MF ⊥于F ,连结CF .⊥PC 面MBD ,MFC ∠∴就是二面角C BD G --的平面角. ………………(10分) 在BDC ∆中,,5,2,5===BC DC BD,554=∴CF 又,2=CM 410sin ==∠∴CF CM MFC . 即二面角C BD G --的大小是410arcsin. ……………(12分) 21.(Ⅰ) 设),(001y x B 、),(002y x B -且00≠y ,由题意)0,(1a A -、)0,(2a A ,则直线A 1B 1的方程为:a x ax y y ++=00………① 直线A 2B 2的方程为:ax ax y y --=-00………② …………(2分) 由①、②可得⎪⎪⎩⎪⎪⎨⎧==.x ay y x a x 020, ………………………………(4分) 又点),(001y x B 在双曲线上,所以有12222224=-bx y a a x a , 整理得12222=+by a x ,所以点M 的轨迹E 的方程为12222=+by a x (0≠x 且0≠y ).……(6分)(Ⅱ) k 1+k 2+k 3+k 4为定值.设),(11y x P ,则2212221b y a a x =-,则112222111111121·22y x a b a x y x a x y a x y k k =-=-++=+……③ 设),(22y x Q ,则同理可得222243·2y x a b k k -=+ ……④ ………(8分)设O 为原点,则A A A A 2,22121=+=+.)(2121Q A Q A m P A P A +=+ OQ m OP =∴∴O 、P 、Q 三点共线, ………………………………(10分) ∴2211y xy x =, 再由③、④可得,k 1+k 2+k 3+k 4 = 0 ∴k 1+k 2+k 3+k 4为定值0. ………………………………(12分) 另解:由)(2121A A m A A +=+,得)],(),[(),(),(22221111y a x y a x m y a x y a x -++=-++即),(),(2211y x m y x = ∴2211y xy x =,再由③、④可得,k 1+k 2+k 3+k 4 = 022.(Ⅰ) ∵131)(23+-+=bx ax x x f∴b ax x x f -+='2)(2 由题意121)1(=-+='b a fa b 2=∴ ……① ………………………………………(2分) ∵)(x f 有极值,∴方程02)(2=-+='b ax x x f 有两个不等实根.0442>+=∆∴b a 02>+∴b a ……② 由①、②可得,02022>-<∴>+a a a a 或.故实数a 的取值范围是),0()2,(+∞--∞∈ a …………(4分)(Ⅱ)存在38-=a , ………………………………………(5分)由(Ⅰ)可知b ax x x f -+='2)(2,令0)(='x f ,a a a a 2,222++2时,取极小值, ………………………………………(7分)则11231)(22322=+-+=ax ax x x f , 02=∴x 或063222=-+a ax x ,若02=x ,即022=++-a a a ,则0=a (舍) ………………(8分) 若063222=-+a ax x ,又0)(2='x f ,022222=-+∴a ax x ,042=-∴a ax , 402=∴≠x a ,422=++-∴a a a 238-<-=∴a ,∴存在实数a =38-,使得函数)(x f 的极小值为1. …………(9分)(Ⅲ) 13)1(1)(,2122++=+'∴-+='=x x x f x x x f a ,xx x x x x f 113)1(2+=+=-+'∴,),0(,1)(+∞∈+=∴x xx x g . …………………………………(10分) n n nn n n x x x x x x x g 111)(--⎪⎭⎫ ⎝⎛+=--11222222111111------⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=n n n n n n n n n n x x C x x C x x C x x C⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=-------22144222111121n n n n n n n n n n x x C x x C x x C ≥⎥⎦⎤⎢⎣⎡+++-------221442221·121·21·221n n n n n n n n n n x x C x x C x x C 22121-=+++=-n n n n n C C C∴其中等号成立的条件为1=x . …………………………………(13分)∴)(221)(*∈-≥--N n xx x g n n n n …………………………(14分)沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。
2022年石家庄市高中毕业班复习教学质量检测〔二〕高三数学(理科〕(时间120分钟,总分值150分〕本卷须知:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两局部,答卷前考生务必将自己的姓名、准考证号填写在答题卡上.2. 答复第I 卷时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3. 答复第II 卷时,将答案写在答题卡上,写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题,共60分〕一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1. 复数i2110-= A. -4+2iB. 4-2iC. 2-4iD. 2+4i2. 命题R x p ∈∃0:,022020≤++x x 那么p ⌝为A.022,020>++∈∃x x R x B.022,0200<++∈∃x x R xC.022,0200≤++∈∀x x R x D.022,0200>++∈∀x x R x3.中心在坐标原点的椭圆,焦点在x 轴上,焦距为4,离心率为22,那么该椭圆的方程为A.1121622=+y xB.181222=+y xC. 141222=+y xD.14822=+y x4. 设(x 1,y 1),(x 2,y 2),…,(x n ,y n ),是变量x:和y 的n 个样本点,直线Z 是由这些样本点通过最小二乘法得到的线性回归方程(如图〕,以下结论中正确的选项是A. x;和y 正相关B. y 和y 的相关系数为直线I 的斜率C. x 和y 的相关系数在-1到O 之间D. 当n 为偶数时,分布在l 两侧的样本点的个数一定相同5.在ΔABC 中,角uC 所对的对边长分别为a 、b 、c ,sinA 、sinB 、sinC 成等比数列,且c= 2a ,那么cosB 的值为A.41B.43C.42D.326.等差数列{a n }满足a 2=3,S n -S n-3=51(n>3) ,Sn= 100,那么n 的值为A. 8B. 9C. 10D. 117.在圆的一条直径上,任取一点作与该直径垂直的弦,那么其弦长超过该圆的内接等边三角形的边长的概率为A.41B.31 C.21D.238.阅读程序框图(如右图〕,如果输出的函数值在区间[1,3]上,那么输入的实数x 的取值范围是A.}3log 0|{2≤≤∈x R x B.}22|{≤≤-∈x R x C.}2,3log 0|{2=≤≤∈x x R x 或 D.}2,3log 2|{2=≤≤-∈x x R x 或 9.以下列图是两个全等的正三角形.给定以下三个命题:①存在四棱锥,其正视图、侧视图如右图;②存在三棱锥,其正视图、侧视图如右图;③存在圆锥,其正视图、侧视图如右图.其中真命题的个数是A. 3B. 2C. 1D. O支分别交于A 、B 两点.假设ΔABF 2是等边三角形,那么该双曲线的离心率为11.设方程10x =|lg(-x)|的两个根分别为x 1,x 2,那么A. x 1 x 2<0B. x 1 x 2=1C. X i X 2>1 D0<x 1 x 2<112.直线l 垂直平面a ,垂足为O.在矩形ABCD 中AD=1,AB=2,假设点A 在l 上移动,点B 在平面a 上移动,那么O 、D 两点间的最大距离为第II 卷(非选择题,共90分〕二、填空题:本大题共4小题,每题5分,共20分.13.⎰+23)1(dx x 的值为_________.14.有4名同学参加唱歌、跳舞、下棋三项比赛,每项比赛至少有1人参加,每名同学只参加一项比赛,另外甲同学不能参加跳舞比赛,那么不同的参赛方案的种数为_____(用数字作答).15.在矩形ABCD 中,AB=2,BC=1,E 为BC 的中点,假设F 为该矩形内〔含边界〕任意一点,那么:AF AE .的最大值为______:16.对于一切实数x 、令[x]为不大于x 的最大整数,那么函数f(x)=[x]称为高斯函数或三、解答题:本大题共6小题,共70分.解容许写出文字说明,证明过程或演算步骤. 17.(本小题总分值12分〕(I)求函数f(x)的最小正周期;(II)求函数f(x)在区间]4,6[ππ-上的最大值和最小值. 18.(本小题总分值12分〕某市的教育研究机构对全市高三学生进行综合素质测试,随机抽取了局部学生的成绩,得到如下列图的成绩频率分布直方图.(I )估计全市学生综合素质成绩的平均值;(II)假设评定成绩不低于8o 分为优秀.视频率为概率,从全市学生中任选3名学生(看作有放回的抽样〕,变量ξ表示3名学生中成绩优秀的人数,求变量ξ的分布列及期望)(ξE19.(本小题总分值12分〕如图,三棱柱ABC-A 1B 1C 1,侧面BCC 1B 1丄底面ABC. (I)假设M 、N 分别是AB,A 1C 的中点,求证:MN//平面BCC 1B 1(II)假设三棱柱ABC-A 1B 1C 1的各棱长均为2,侧棱BB 1与底面ABC 所成的角为60°.问在线段A 1C 1上是否存在一点P ,使得平面B 1CP 丄平面ACC 1A 1,假设存在,求C 1P 与PA 1的比值,假设不存在,说明理由.20.(本小题总分值12分〕直线l 1:4x:-3y+6=0和直线l 2x=-p/2:.假设拋物线C:y 2=2px 上的点到直线l 1和直线l 2的距离之和的最小值为2.(I )求抛物线C 的方程;(II)假设以拋物线上任意一点M 为切点的直线l 与直线l 2交于点N ,试问在x 轴上是否存在定点Q ,使Q 点在以MN 为直径的圆上,假设存在,求出点Q 的坐标,假设不存在,请说明理由.21.(本小题总分值12分〕 函數f(x)=ln+mx 2(m ∈R) (I)求函数f(x)的单调区间;(II)假设m=0,A(a,f(a))、B(b ,f(b))是函数f(x)图象上不同的两点,且a>b>0,)(x f '为f(x)的导函数,求证:)()()()2(b f ba b f a f b a f '<--<+' (III)求证*)(1...31211)1ln(122...725232N n nn n ∈++++<+<+++++ 请考生在22〜24三题中任选一题做答,如果多做,那么按所做的第一题记分. 22.(本小题总分值10分)选修4-1几何证明选讲如图,AB 是O 的直径,BE 为圆0的切线,点c 为o 上不同于A 、B 的一点,AD 为BAC ∠的平分线,且分别与BC 交于H ,与O 交于D ,与BE 交于E ,连结BD 、CD.(I )求证:BD 平分CBE ∠〔II 〕求证:AH.BH=AE.HC23.(本小题总分值10分〕选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以坐标原点O 为极点x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为:)0(10cos 1332>-=ρθρρ (I)求曲线C 1的普通方程;(II)曲线C 2的方程为141622=+y x ,设P 、Q 分别为曲线C 1与曲线C 2上的任意一点,求|PQ|的最小值.24.(本小题总分值10分)选修4-5:不等式选讲 函数f(x)=|x-1| (I )解关于x ;的不等式f (x )+x2-1>0;(II )假设f(x)=-|x+3|m,f(x)<g(x)的解集非空,求实数m 的取值范围.2022年石家庄市高中毕业班教学质量检测(二)高三数学〔理科答案〕一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1-5 ADDCB 6-10 CCCAB 11-12DB二、填空题:本大题共4小题,每题5分,共20分.13. 6 14. 24 15.92 16.23122n n - 三、解答题:本大题共6小题,共70分.解容许写出文字说明,证明过程或演算步骤.(原那么上只给出一种标准答案,其他解法请老师根据评分标准酌情处理) 17.〔本小题总分值12分〕 解:〔Ⅰ〕因为()4cos cos()23f x x x π=--3sin 2cos 21x x =+-……………2分2sin(2)16x π=+-………………4分所以)(x f 的最小正周期为π.……………6分 〔Ⅱ〕因为,64x ππ-≤≤22.663x πππ-≤+≤所以……………8分于是,当6,262πππ==+x x 即时,)(x f 取得最大值1;…………10分当)(,6,662x f x x 时即πππ-=-=+取得最小值—2.……………12分18. 〔本小题总分值12分〕(Ⅰ)依题意可知550.12650.18+750.40+850.22+950.08⨯+⨯⨯⨯⨯……………3分所以综合素质成绩的的平均值为74.6.……………5分 (Ⅱ)由频率分布直方图知优秀率为100008+0022=03⨯(..)., 由题意知3(3,)10B ξ,3337()()()1010k k k p k C ξ-== 故其分布列为p123ξ34310004411000 1891000 271000………………9分39()31010E ξ=⨯=.………………12分 19.〔本小题总分值12分〕〔Ⅰ〕证明:连接,,11BC AC 那么1NC AN =,因为AM=MB,所以MN .//1BC ……………2分 又111.B BCC BC 平面⊂,所以MN//11.B BCC 平面.…………4分 〔Ⅱ〕作O BC O B 于⊥1, 因为面11B BCC ⊥底面ABC 所以ABC O B 面⊥1以O 为原点,建立如下列图空间直角坐 标系,那么)0,30(,A ,B(-1,0,0),C(1,0,0))300(1,,B .由,111BB CC AA ==可求出)30,2(),331(11,,,C A…………6分设P(x,y,z),P A C A 111λ= .解得)3,3311(λλ-+,P ,=CP )3,331(λλ-,,)30,1(1,-=CB .设平面CP B 1的法向量为1(,,)x y z =n1110,0,CP CB ⎧⋅=⎪⎨⋅=⎪⎩由n n 解得11(3,,1)1-λλ+=n ………8分同理可求出平面11A ACC 的法向量2(3,1,-1)=n .…………10分 由面⊥CP B 1平面11A ACC ,得120⋅=n n ,即01--113=++λλ解得:.2:3,311111===PA P C P A C A ,从而所以λ………………12分 20. 〔本小题总分值12分〕解: 〔Ⅰ〕由定义知2l 为抛物线的准线,抛物线焦点坐标)0,2(p F 由抛物线定义知抛物线上点到直线2l 的距离等于其到焦点F 的距离.所以抛物线上的点到直线1l 和直线2l 的距离之和的最小值为焦点F 到直线1l 的距离.…………2分 所以5622+=p ,那么p =2,所以,抛物线方程为x y 42=.………………4分〔Ⅱ〕设M ),(00y x ,由题意知直线l 斜率存在,设为k,且0k ≠,所以直线l 方程为)x -(-00x k y y =,代入x y 42=消x 得:.0-44-2002=+ky y y ky由2000216-4(4-)0,.k y ky k y ∆===得………………6分 所以直线l 方程为)x -(2-000x y y y =,令x=-1,又由0204x y =得)24-,1(020y y N - 设)0,1x Q (那么)24-,-1(-),,-(0201010y y x QN y x x QM ==由题意知0,QM QN ⋅=……………8分20011-4-)(-1-)02y x x x +=即(,把024x y =代入左式, 得:02-x x )x -112101=++x (,……………10分 因为对任意的0x 等式恒成立, 所以12111-0,x x -20.x =⎧⎨+=⎩ 所以11=x 即在x 轴上存在定点Q 〔1,0〕在以MN 为直径的圆上.……………12分 21. 〔本小题总分值12分〕解:〔Ⅰ〕f(x)的定义域为),(∞+0,x mx mx x x f 22121)('+=+= )21-(0x m ,∈时,)('x f >0, )(x f 在)21-(0m,上单调递增;),21-(x +∞∈m 时,)('x f <0, )(x f 在),21-(+∞m上单调递减.综上所述:0()(0,)m f x ≥+∞当时,在单调递增.时,当0<m )(x f 在)21-(0m ,上单调递增,在),21-(+∞m上单调递减.…………3分〔Ⅱ〕要证()()1f a f b a b b -<-,只需证ln 1a a b b <-,令1,at b=>即证ln 10t t -+<,令1()ln 1,()10g t t t g t t'=-+=-<,因此()(1)0g t g <=得证.…………………6分要证ln ln 2a b a b a b ->-+,只要证2(1)ln 1a a b a b b->+, 令1at b=>,只要证(1)ln 2(1)0t t t +-->, 令1()(1)ln 22,()ln 1h t t t t h t t t'=+-+=+-,211()0h t t t''=->因此()(1)0h t h ''>=,所以()(1)0h t h >=得证.………………9分 另一种的解法: 令a b =>1t ,2(-1)()=ln -+1t h t t t ,那么2214+2-3()=-=>0+1(+1)t t h t t t t t '>0t , 所以()h t 在(1,+)∞单调递增,即2(-1)ln >,+1a ab a b b得证.(Ⅲ)由〔Ⅱ〕知2ln ln 1a b a b a b b -<<+-,〔0a b >>〕,那么21ln(1)ln 21n n n n<+-<+所以2222111.........ln(1)1......3572123n n n+++<+<++++.………………12分请考生在第22~24三题中任选一题做答,如果多做,那么按所做的第一题记分22.〔本小题总分值10分〕选修4-1几何证明选讲证明:(Ⅰ)由弦切角定理知DAB DBE ∠=∠…………2分 由DAC DBC ∠=∠,DAC DAB ∠=∠所以DBC DBE ∠=∠, 即.CBE BD ∠平分…………5分 (Ⅱ)由(Ⅰ)可知.BH BE =所以BE AH BH AH ⋅=⋅,……………7分 因为DAC DAB ∠=∠,ABE ACB ∠=∠, 所以AHC ∆∽AEB ∆,所以BEHC AE AH =,即HC AE BE AH ⋅=⋅…………10分 即:HC AE BH AH ⋅=⋅.23.〔本小题总分值10分〕选修4-4:坐标系与参数方程解:(Ⅰ)原式可化为10-12)322x y x =+(,…………2分 即.32)2-(22=+y x ……………4分 (Ⅱ)依题意可设),sin 2,cos 4(θθQ 由(Ⅰ)知圆C 圆心坐标〔2,0〕。
河北省石家庄市高考数学二模试卷(理科)
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)命题“若α=,则tanα=1”的逆否命题是()
A . 若α≠,则tanα≠1
B . 若α=,则tanα≠1
C . 若tanα≠1,则α≠
D . 若tanα≠1,则α=
2. (2分) (2018高二下·长春月考) 若复数满足,则()
A .
B .
C .
D .
3. (2分) (2018高二下·温州期中) 如图,已知双曲线的右顶点为为坐标原点,以点为圆心的圆与双曲线的一条渐近线交于两点,若且 ,则双曲线的离心率为()
A .
B .
C .
D .
4. (2分) (2017高一下·宜昌期中) 设向量 =(cosα,)的模为,则cos2α=()
A .
B .
C . ﹣
D . ﹣
5. (2分)集合M={m|m=2n﹣1,n∈N* , m<60}的元素个数是()
A . 59
B . 31
C . 30
D . 29
6. (2分) (2017高三上·甘肃开学考) 某几何体的三视图如图所示,则其侧面积为()
A .
B .
C .
D .
7. (2分)若A为不等式组表示的平面区域,当a从-1连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为()
A .
B .
C .
D . 2
8. (2分)(2014·陕西理) 定积分(2x+ex)dx的值为()
A . e+2
B . e+1
C . e
D . e﹣1
9. (2分)已知x,y,z∈R+且x+y+z=1则x2+y2+z2的最小值是()
A . 1
B .
C .
D . 2
10. (2分) (2017高二上·临沂期末) 已知两点F1(﹣2,0),F2(2,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是()
A . + =1
B . + =1
C . + =1
D . + =1
11. (2分)(2017·南充模拟) 如图是一个几何体的正(主)视图和侧(左)视图,其俯视图是面积为8
的矩形,则该几何体的表面积是()
A . 20+8
B . 24+8
C . 8
D . 16
12. (2分) (2016高二下·新余期末) 若函数f(x)对任意的x∈R都有f′(x)>f(x)恒成立,则()
A . 3f(ln2)>2f(ln3)
B . 3f(ln2)=2f(ln3)
C . 3f(ln2)<2f(ln3)
D . 3f(ln2)与2f(ln3)的大小不确定
二、填空题 (共4题;共4分)
13. (1分)(2018高二下·辽源月考) 从
概括出第个式子为________
14. (1分) (2016高一下·大同期末) 已知数列{an}的前n项和为Sn ,且a1=1,an+1= Sn(n=1,2,3,…).则数列{an}的通项公式为________.
15. (1分)(2017·衡阳模拟) 双曲线E: =1(a>0,b>0)的左、右焦点分别为F1、F2 , P是E坐支上一点,且|PF1|=|F1F2|,直线PF2与圆x2+y2=a2相切,则E的离心率为________.
16. (1分) (2017高三下·静海开学考) 在△ABC中,边AC= ,AB=5,cosA= ,过A作AP⊥BC 于P,=λ +μ ,则λμ=________.
三、解答题 (共7题;共50分)
17. (5分) (2016高二上·衡水开学考) 在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.
(Ⅰ)证明:A=2B
(Ⅱ)若△ABC的面积S= ,求角A的大小.
18. (10分) (2017高二下·景德镇期末) 电商中“猫狗大战”在节日期间的竞争异常激烈,在刚过去的618全民年中购物节中,某东当日交易额达1195亿元,现从该电商“剁手党”中随机抽取100名顾客进行回访,按顾客的年龄分成了6组,得到如下所示的频率直方图.
(1)求顾客年龄的众数,中位数,平均数(每一组数据用中点做代表);
(2)用样本数据的频率估计总体分布中的概率,则从全部顾客中任取3人,记随机变量X为顾客中年龄小于25岁的人数,求随机变量X的分布列以及数学期望.
19. (5分)(2017·衡阳模拟) 如图1,在高为2的梯形ABCD中,AB∥CD,AB=2,CD=5,过A、B分别作AE⊥C D,BF⊥CD,垂足分别为E、F.已知DE=1,将梯形ABCD沿AE、BF同侧折起,得空间几何体ADE﹣BCF,如图2.
(Ⅰ)若AF⊥BD,证明:△BDE为直角三角形;
(Ⅱ)若DE∥CF,,求平面ADC与平面ABFE所成角的余弦值.
20. (5分) (2017高一下·河北期末) 若圆C1:x2+y2=m与圆C2:x2+y2﹣6x﹣8y+16=0外切.
(Ⅰ)求实数m的值;
(Ⅱ)若圆C1与x轴的正半轴交于点A,与y轴的正半轴交于点B,P为第三象限内一点,且点P在圆C1上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.
21. (15分)(2017·湖北模拟) 已知函数f(x)=lnx+ax在点(t,f(t))处的切线方程为y=3x+1
(1)求a的值;
(2)已知k≤2,当x>1时,f(x)>k(1﹣)+2x﹣1恒成立,求实数k的取值范围;
(3)对于在(0,1)中的任意一个常数b,是否存在正数x0,使得e + x02<1?请说明理由.
22. (5分)(2017·安庆模拟) 在平面直角坐标系中,以原点为极点,x轴的非负半轴为极轴,并在两坐标
系中取相同的长度单位,若直线l的极坐标方程是ρsin(θ+ )=2 ,且点P是曲线C:(θ为参数)上的一个动点.
(Ⅰ)将直线l的方程化为直角坐标方程;
(Ⅱ)求点P到直线l的距离的最大值与最小值.
23. (5分)设函数f(x)=|x﹣4|+|x﹣a|(a>1),且f(x)的最小值为3.
(1)求a的值;
(2)若f(x)≤5,求满足条件的x的集合.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共7题;共50分) 17-1、
18-1、
18-2、
20-1、
21-1、
21-2、21-3、
22-1、23-1、。