直角坐标平面内点到线距离
- 格式:docx
- 大小:161.07 KB
- 文档页数:4
空间直角坐标系中点到直线距离公式全文共四篇示例,供读者参考第一篇示例:在空间直角坐标系中,点到直线的距离是一个常见的几何问题。
我们经常会遇到这样的情况:已知一个点和一条直线的方程,求点到直线的距离。
这个问题在实际中有着很多应用,比如在工程中的测量、地图绘制等领域。
在本文中,我们将介绍如何求解空间直角坐标系中点到直线的距离,并给出相关的公式。
我们来了解一下点到直线的距离是如何定义的。
点到直线的距离是指从空间中的一个点到一条直线的最短距离。
在二维空间中,我们可以通过点到直线的垂直距离来求解。
但是在三维空间中,点到直线的距离可能不再是垂直距离,而是一个斜线的距离。
为了解决这个问题,我们可以通过向量的方法来进行求解。
假设直线的方程为Ax + By + Cz + D = 0,点的坐标为(x0, y0,z0),我们要求点到直线的距离。
我们可以计算点到直线的法向量n = (A, B, C),然后我们可以得到点P(x, y, z)到直线的一个向量v = P0P = (x-x0, y-y0, z-z0)。
点P到直线的距离就是向量v在法向量n上的投影长度。
根据向量的内积的定义,我们可以得到向量v在法向量n上的投影长度为:d = |v·n| / |n|其中|v·n|表示向量v和向量n的点积,|n|表示法向量n的模长。
这个公式可以帮助我们求解空间直角坐标系中点到直线的距禿。
d = |(2, 1, -1)·(1, 1, 1)| / |(1, 1, 1)| = |2+1-1| / √(1+1+1) = 2 / √3 ≈ 1.155点P(2,1,-1)到直线x+y+z-3=0的距禿为约1.155。
在实际的应用中,我们可能会遇到更加复杂的情况。
直线的方程可能不是标准形式,或者点的坐标为变量而非常数等。
在这种情况下,我们需要根据具体的情况进行分析和求解。
我们还可以通过向量的方法来求解点到平面的距禿,或者求解点到点的距离等问题。
平面上两点间的距离和点到直线的距离公式平面几何是几何学中的一个重要分支,它研究了平面上点、直线、圆等的性质和相互关系。
在平面上,我们经常需要计算两点之间的距离以及点到直线的距离,这些计算方法在实际生活中有着很广泛的应用。
下面我们将分别介绍两点间的距离和点到直线的距离的计算公式。
首先,考虑两点间的距离。
假设平面上有两个点A(x1,y1)和B(x2,y2),我们想要计算这两个点之间的距离d。
根据勾股定理,我们知道两点之间的距离可以通过点与坐标轴的距离的平方和来计算,即:d=√[(x2-x1)^2+(y2-y1)^2]。
这个公式的理解非常直观,我们可以将两点之间的直线看作是直角三角形的斜边,而点与坐标轴的距离就是直角三角形的两个直角边的长度。
因此,我们可以通过计算两个直角边的长度,然后应用勾股定理来求解斜边的长度,即两点之间的距离。
接下来,我们来讨论点到直线的距离的计算方法。
给定平面上一条直线L和一点C(x0,y0),我们想要计算点C到直线L的距离d。
为了方便计算,我们需要确定直线L的方程。
在平面几何中,常见的直线方程形式有一般式、斜截式和点斜式。
这里我们以一般式方程为例,一般式方程的形式为Ax+By+C=0,其中A、B和C是常数。
点到直线的距离的计算方法有多种,下面我们介绍其中的一种方法,即点到直线的投影方法。
我们可以将问题转化为求点C到直线L的垂直投影点D,然后计算点C到点D的距离d。
首先,我们可以利用点斜式确定直线L的斜率k。
假设直线L经过点P(x1, y1),斜率为k,则直线L的点斜式方程为y - y1 = k(x - x1)。
进一步化简,我们得到直线L的一般式方程Ax + By + C = 0,其中A =-k,B = 1,C = kx1 - y1接下来,我们需要求点C到直线L的垂直投影点D(xd, yd)的坐标。
根据垂直投影的性质,我们知道点D在直线L上,且点CD垂直于直线L。
因此,点D与直线L的斜率之积为-1,即k * kd = -1、由此,我们可以得到点D的坐标:xd = (B^2 * x0 - A * B * y0 - A * C) / (A^2 + B^2)yd = (A * B * x0 - A * A * y0 - B * C) / (A^2 + B^2)最后,我们可以计算点C到点D的距离d,即:d = √[(x0 - xd)^2 + (y0 - yd)^2]这个公式可以通过将点C到点D的距离看作直角三角形的斜边来进行解释。
平面直角坐标系点到x轴y轴的距离类型题-概述说明以及解释1.引言1.1 概述在平面直角坐标系中,我们常常需要计算一个点到x 轴或y 轴的距离。
这种距离的计算在几何学和数学等领域中具有重要的应用。
本文将介绍点到x 轴和y 轴的距离的定义和计算方法。
在平面直角坐标系中,x 轴和y 轴分别是两条垂直于彼此的直线。
对于任意给定的点,我们可以通过求取该点到x 轴或y 轴的距离,来衡量该点在水平和垂直方向上的位置。
点到x 轴的距离定义为该点的纵坐标的绝对值,它表示该点在垂直方向上与x 轴的距离。
而点到y 轴的距离定义为该点的横坐标的绝对值,它表示该点在水平方向上与y 轴的距离。
计算点到x 轴的距离可以直接取纵坐标的绝对值,即距离= y 。
计算点到y 轴的距离可以直接取横坐标的绝对值,即距离= x 。
这两个计算方法非常简单直接。
本文将详细介绍点到x 轴和y 轴的距离的计算方法,并举例说明其具体应用。
我们将深入探讨这两种距离的性质和特点,以帮助读者更好地理解和应用这些概念。
在下一节中,我们将首先介绍点到x 轴的距离的定义和计算方法,进而阐述点到y 轴的距离的定义和计算方法。
通过深入分析这些内容,我们可以更好地理解平面直角坐标系中的点到轴线的距离类型题。
文章结构部分的内容如下:1.2 文章结构本篇文章主要围绕平面直角坐标系中点到x轴和y轴的距离展开讨论。
文章分为引言、正文和结论三个部分。
- 引言部分将对平面直角坐标系和点到x轴和y轴的距离进行概述,介绍文章的目的和整体结构。
- 正文部分将详细探讨点到x轴和y轴的距离的定义和计算方法。
其中,2.1小节将介绍点到x轴的距离的定义以及如何计算该距离;2.2小节将介绍点到y轴的距离的定义以及如何计算该距离。
每个小节将分为定义和计算方法两个子部分,以便读者全面了解和掌握这一知识。
- 结论部分将对全文进行总结,回顾点到x轴和y轴的距离的计算方法,并探讨其在实际应用中的意义和重要性。
空间直角坐标系点面距离公式(一)空间直角坐标系点面距离公式一、点到点的距离公式两点之间的距离可以用勾股定理来计算,即两点间直线的欧氏距离公式。
公式如下:d = √[(x2 - x1)² + (y2 - y1)² + (z2 - z1)²]其中,(x1, y1, z1)、(x2, y2, z2) 分别为两个点的坐标。
示例:假设有两个点 A(1, 2, 3) 和 B(4, 5, 6),要计算它们之间的距离。
根据公式计算可得:d = √[(4 - 1)² + (5 - 2)² + (6 - 3)²]= √[3² + 3² + 3²]= √[9 + 9 + 9]= √27≈所以点 A 到点 B 的距离约为。
二、点到直线的距离公式点到直线的距离可以利用点到点的距离公式来计算。
设点 P(x, y, z) 到直线 L 的距离为 d,直线 L 上一点为 A(x1, y1, z1),则有:d = |(Ax - Px) * i + (Ay - Py) * j + (Az - Pz) * k|/ √(i² + j² + k²)其中,(x, y, z) 为点 P 的坐标,(x1, y1, z1) 为直线上一点的坐标,(i, j, k) 为直线的方向向量。
示例:考虑一条直线 L 过点 A(1, 2, 3),且方向向量为 (2, 2, 1)。
现有一点 P(-1, 0, 1),要计算 P 到直线 L 的距离。
根据公式计算可得:d = |(2(-1 - 1) + 2(0 - 2) + 1(1 - 3))| / √(2² + 2²+ 1²)= |-4 - 8 - 2| / √(4 + 4 + 1)= |-14| / √9= 14 / 3≈所以点 P 到直线 L 的距离约为。
三、点到平面的距离公式点到平面的距离可以类比点到直线的距离公式,利用点到点的距离公式来计算。
空间直角坐标系点面距离公式在空间直角坐标系中,我们可以用坐标来描述一个点的位置。
一个点的坐标可以由三个数值表示,分别表示其在x轴、y轴和z轴上的位置。
假设我们有点A(x1,y1,z1)和一个平面上的点B(x2,y2,z2),我们可以通过计算点A和平面上的点B的距离来确定它们之间的距离。
在二维平面上,两点之间的距离可以通过勾股定理来计算。
然而,在空间直角坐标系中,我们需要使用三维空间中的距离公式来计算两点之间的距离。
假设我们有点A(x1,y1,z1)和平面上的点B(x2,y2,z2),我们可以使用以下公式计算它们之间的距离:d=√[(x2-x1)²+(y2-y1)²+(z2-z1)²]其中,d表示点A和平面上的点B之间的距离。
这个公式可以推广到计算两点之间的任意距离。
让我们举一个具体的例子来说明如何使用这个公式来计算点和面之间的距离。
假设我们有一个点A(3,4,5)和一个平面上的点B(1,2,3),我们可以将这些数值代入上述公式中:d=√[(1-3)²+(2-4)²+(3-5)²]=√[(-2)²+(-2)²+(-2)²]=√[4+4+4]=√12≈3.464因此,点A和平面上的点B之间的距离约为3.464此外,我们还可以使用向量的方法来计算点和面之间的距离。
我们可以将点A和面上的点B之间的向量表示为AB=(x2-x1,y2-y1,z2-z1),然后计算这个向量的模长来得到距离。
因此,点A和平面上的点B之间的距离可以表示为:d=√[(x2-x1)²+(y2-y1)²+(z2-z1)²]使用向量方法计算距离与使用坐标差值计算距离是等效的,因为向量的模长就是坐标差值的模长。
总结起来,在空间直角坐标系中,点和面之间的距离可以通过坐标差值的模长或者向量的模长来计算。
这个距离公式可以推广到计算点与点、点与线、点与曲线等之间的距离。
1.5 平面直角坐标系中的距离公式填一填1.两点间的距离公式 (1)数轴上:一般地,数轴上两点A ,B 对应的实数分别是x A ,x B ,则|AB |=|x B -x A |. (2)平面直角坐标系中:一般地,若两点A ,B 对应的坐标分别为A (x 1,y 1),B (x 2,y 2),则|AB |=x 2-x 12+y 2-y 12. 2.点到直线的距离点P (x 0,y 0)到直线Ax +By +C =0的距离记为d ,则d =|Ax 0+By 0+C |A 2+B2. 3.两平行线间的距离两条平行直线的方程分别为l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0,两条直线间的距离记为d ,即d =|C 2-C 1|A 2+B2.判一判1.原点O 到点P (x ,y )的距离为|OP |=x 2+y 2.(√) 23.平面内任意两点间的距离均可使用两点间的距离公式.(√)4.直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0的距离是|C 1-C 2|.(×)5.原点到直线Ax +By +C =0的距离公式是|C |A 2+B2.(√)6.平行线间的距离是两平行线上两点间距离的最小值.(√) 7.连接两条平行直线上两点,即得两平行线间的距离.(×)8想一想1. 提示:点到直线的距离公式只适用直线方程的一般式.2.两条平行直线间的距离公式写成d =|C 1-C 2|A 2+B 2时对两条直线应有什么要求?提示:两条平行直线的方程都是一般式,并且x ,y 的系数分别对应相等. 3.两条平行直线间距离有哪几种求法? 提示:(1)直接利用两平行线间的距离公式.(2)在一条直线上任意选取一点利用点到直线的距离公式求解(一般要选特殊的点,如直线与坐标轴的交点、坐标为整数的点).(3)当两直线都与x 轴(或y 轴)垂直时,可利用数形结合来解决. ①当两直线都与x 轴垂直时,l 1:x =x 1,l 2:x =x 2,则d =|x 2-x 1|; ②当两直线都与y 轴垂直时,l 1:y =y 1,l 2:y =y 2,则d =|y 2-y 1|. 4.距离公式综合应用的常见类型有哪些? 提示:(1)最值问题.①利用对称转化为两点之间的距离问题.②利用所求式子的几何意义转化为点到直线的距离.③利用距离公式将问题转化为一元二次函数的最值问题,通过配方求最值. (2)求参数问题.利用距离公式建立关于参数的方程或方程组,通过解方程或方程组求值. (3)求方程的问题.立足确定直线的几何要素——点和方向,利用直线方程的各种形式,结合直线的位置关系(平行直线系、垂直直线系及过交点的直线系),巧设直线方程,在此基础上借助三种距离公式求解.思考感悟:练一练1.已知A (3,7),B A .5 B. 5 C .3 D .29 答案:B2.已知直线上两点A (a ,b ),B (c ,d ),且a 2+b 2-c 2+d 2=0,则( ) A .原点一定是线段AB 的中点 B .A ,B 一定都与原点重合C .原点一定在线段AB 上,但不是线段AB 的中点D .原点一定在线段AB 的垂直平分线上 答案:D3.点(1,-1)到直线x -y +1=0的距离是( )A .3 2 B.22C .3 D.322答案:D4.点(5,-3)到直线x +2=0的距离等于( ) A .7 B .5 C .3 D .2 答案:A5.直线l 1:x +y =0与直线l 2:2x +2y +1=0间的距离是________.答案:24知识点一两点间距离公式的应用1.已知点A (2,m )与点B (m,1)间的距离是13,则实数m =( )A .-1B .4C .-1或4D .-4或1 解析:∵|AB |=m -22+1-m 2=13,∴m 2-3m -4=0,解得m =-1或m =4. 答案:C2.已知点A (2,1),B (-2,3),C (0,1),则△ABC 中,BC 边上的中线长为________. 解析:BC 中点为(-1,2),所以BC 边上中线长为2+12+1-22=10. 答案:10知识点二 求点到直线的距离3.已知点(a,1)到直线x -y +1=0的距离为1,则a 的值为( ) A .1 B .-1 C. 2 D .± 2解析:由题意,得|a -1+1|12+-12=1,即|a |=2, 所以a =± 2.故选D. 答案:D4.点P (x ,y )在直线x +y -4=0上,O 是原点,则|OP |的最小值是( ) A.10 B .2 2 C. 6 D .2解析:由题意可知|OP |的最小值即原点(0,0)到直线x +y -4=0的距离d =|-4|2=2 2.知识点三 两条平行直线间的距离5.12b +c 等于( )A .-12B .48C .36D .-12或48解析:将l 1:3x +4y +5=0改写为6x +8y +10=0, 因为两条直线平行,所以b =8. 由|10-c |62+82=3,解得c =-20或c =40.所以b +c =-12或48.故选D. 答案:D6.已知直线3x +2y -3=0和6x +my +1=0互相平行,则它们之间的距离是( )A .4 B.21313C.51326 D.71326解析:由两直线平行可知36=2m ≠-31,故m =4.又方程6x +4y +1=0可化简为3x +2y +12=0,∴平行线间的距离为|12--3|22+32=71326.故选D. 答案:D知识点四 对称问题7.直线y =3xA .y =3x -10B .y =3x -18C .y =3x +4D .y =4x +3解析:在直线上任取两点A (1,-1),B (0,-4),则其关于点P 的对称点A ′,B ′可由中点坐标公式求得为A ′(3,-1),B ′(4,2),由两点式可求得方程为y =3x -10.答案:A8.直线2x +3y -6=0关于点(1,-1)对称的直线的方程是( ) A .3x -2y +2=0 B .2x +3y +7=0 C .3x -2y -12=0 D .2x +3y +8=0解析:由平面几何知识易知所求直线与已知直线2x +3y -6=0平行,则可设所求直线的方程为2x +3y +C =0(C ≠-6).在直线2x +3y -6=0上任取一点(3,0),其关于点(1,-1)对称的点为(-1,-2),则点(-1,-2)必在所求直线上,∴2×(-1)+3×(-2)+C =0,解得C =8. 故所求直线的方程为2x +3y +8=0. 答案:D综合知识 距离公式的综合应用9.已知△ABC 中,A (2,-1),B (4,3),C (3,-2). (1)求BC 边上的高所在直线方程的一般式; (2)求△ABC 的面积.解析:(1)因为k BC =3--24-3=5,所以BC 边上的高AD 所在直线斜率k =-15.所以AD 所在直线方程为y +1=-15(x -2).即x +5y +3=0.(2)BC 的直线方程为:y +2=5(x -3). 即5x -y -17=0,点A 到直线BC 的距离为|2×5--1-17|52+-12=626. 又因为|BC |=3-42+-2-32=26,所以△ABC 的面积S =12×626×26=3.10.已知直线l 1经过点A (0,1),直线l 2经过点B (5,0),且直线l 1∥l 2,l 1与l 2间的距离为5,求直线l 1,l 2的方程.解析:∵直线l 1∥l 2,∴当直线l 1,l 2垂直于x 轴时,直线l 1的方程为x =0,直线l 2的方程为x =5, 这时直线l 1,l 2之间的距离等于5,符合题意. 当直线l 1,l 2不垂直于x 轴时,可设其斜率为k , 依题意得,直线l 1的方程为y =kx +1,即kx -y +1=0,直线l 2的方程为y =k (x -5), 即kx -y -5k =0.由两条平行直线间的距离公式,得|1+5k |1+k2=5, 解得k =125.∴直线l 1的方程为12x -5y +5=0,直线l 2的方程为12x -5y -60=0.综上,符合题意的直线l 1,l 2的方程有两组:l 1:x =0,l 2:x =5或l 1:12x -5y +5=0,l 2:12x -5y -60=0.基础达标一、选择题1.点P (1,-1)到直线l :3y =2的距离是( )A .3 B.53C .1 D.22解析:点P (1,-1)到直线l 的距离d =|3×-1-2|02+32=53,选B. 答案:B2.已知点M (1,4)到直线l :mx +y -1=0的距离为3,则实数m =( )A .0 B.34C .3D .0或34解析:点M 到直线l 的距离d =|m +4-1|m 2+1=|m +3|m 2+1,所以|m +3|m 2+1=3,解得m =0或m =34,选D.答案:D3.两条平行直线3x +4y -12=0与ax +8y +11=0间的距离为( ) A.1310 B.135 C.72 D.235解析:直线3x +4y -12=0,即直线6x +8y -24=0,根据直线3x +4y -12=0与ax +8y +11=0平行,可得a =6,故两条平行直线3x +4y -12=0与ax +8y +11=0间的距离为|-24-11|36+64=72. 答案:C4.已知点A (1,3),B (3,1),C (-1,0),则△ABC 的面积等于( ) A .3 B .4 C .5 D .6解析:设AB 边上的高为h ,则S △ABC =12|AB |·h .|AB |=3-12+1-32=22,AB 边上的高h 就是点C 到直线AB 的距离.AB 边所在的直线方程为y -31-3=x -13-1,即x +y -4=0.点C 到直线x +y -4=0的距离为|-1+0-4|2=52,因此,S △ABC =12×22×52=5.答案:C5.直线l 垂直于直线y =x +1,原点O 到l 的距离为1,且l 与y 轴正半轴有交点.则直线l 的方程是( )A .x +y -2=0B .x +y +1=0C .x +y -1=0D .x +y +2=0解析:因为直线l 与直线y =x +1垂直,所以设直线l 的方程为y =-x +b .又l 与y 轴正半轴有交点,知b >0,即x +y -b =0(b >0),原点O (0,0)到直线x +y -b =0(b >0)的距离为|0+0-b |12+12=1,解得b =2(b =-2舍去),所以所求直线l 的方程为x +y -2=0. 答案:A6.已知△ABC 的三个顶点是A (-a,0),B (a,0)和C ⎝ ⎛⎭⎪⎫a2,32a ,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .斜三角形解析:因为k AC =32a a 2+a =33,k BC =32a a2-a=-3,k AC ·k BC =-1,所以AC ⊥BC ,又|AC |=⎝ ⎛⎭⎪⎫a 2+a 2+⎝ ⎛⎭⎪⎫32a 2=3|a |. |BC |=⎝ ⎛⎭⎪⎫a 2-a 2+⎝ ⎛⎭⎪⎫32a -02=|a |,|AC |≠|BC |. 所以△ABC 为直角三角形.答案:C7.若动点A (x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点距离的最小值为( )A .3 2B .2 C. 2 D .4解析:由题意,知点M 在直线l 1与l 2之间且与两直线距离相等的直线上,设该直线方程为x +y +c =0,则|c +7|2=|c +5|2,即c =-6,∴点M 在直线x +y -6=0上,∴点M 到原点的距离的最小值就是原点到直线x +y -6=0的距离,即|-6|2=3 2.答案:A 二、填空题8.已知点A (-1,2),B (3,b )的距离是5,则b =________.解析:根据两点间的距离公式,可得3+12+b -22=5,解得b =5或b =-1. 答案:5或-19.若点(2,k )到直线5x -12y +6=0的距离是4,则k 的值是________.解析:∵|5×2-12k +6|52+122=4, ∴|16-12k |=52,∴k =-3,或k =173.答案:-3或17310.两直线3x +y -3=0与6x +my +n =0平行且距离为10,则m +n =________. 解析:因为两直线平行,所以m =2, 由两平行线的距离公式知⎪⎪⎪⎪⎪⎪-3-n 232+12=10, 解得n =14或n =-26.所以m +n =16或m +n =-24. 答案:16或-2411.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________________________________________________________________________.解析:显然直线l 的斜率不存在时,不满足题意; 设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2, 所以k =2或k =-23.所以所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案:2x -y -2=0或2x +3y -18=012.已知实数x ,y 满足2x +y +5=0,那么x 2+y 2的最小值为________.解析:求x 2+y 2的最小值,就是求2x +y +5=0上的点到原点的距离的最小值,转化为坐标原点到直线2x +y +5=0的距离d =522+12= 5. 答案: 5 三、解答题13.已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程;(2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少?(3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.解析:(1)过P 点的直线l 与原点距离为2,而P 点坐标为(2,-1),可见,过P 点垂直于x 轴的直线满足条件,此时直线l 的斜率不存在,其方程为x =2.若直线l 的斜率存在,设其方程为y +1=k (x -2),即kx -y -2k -1=0.由已知,得|-2k -1|k 2+1=2,解得k =34,此时l 的方程为3x -4y -10=0.综上,直线l 的方程为x =2或3x -4y -10=0.(2)过P 点且与原点O 距离最大的直线是过P 点且与OP 垂直的直线.由l ⊥OP ,得k l k OP=-1,所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0.即直线2x -y -5=0是过P 点且与原点O 距离最大的直线,最大距离为|-5|5= 5.(3)由(2)可知,存在过点P 且到原点距离最大为5的直线,因此不存在过点P 到原点距离为6的直线.14.已知直线l 1:x +3y -3m 2=0和直线l 2:2x +y -m 2-5m =0相交于点P (m ∈R ). (1)用m 表示直线l 1与l 2的交点P 的坐标;(2)当m 为何值时,点P 到直线x +y +3=0的距离最短?并求出最短距离.解析:(1)解方程组⎩⎪⎨⎪⎧x +3y -3m 2=0,2x +y -m 2-5m =0,得x =3m ,y =m 2-m ,∴直线l 1与l 2的交点P 的坐标为(3m ,m 2-m ).(2)设点P 到直线x +y +3=0的距离为d ,d =|3m +m 2-m +3|2=|m 2+2m +3|2=|m +12+2|2=m +12+22,∴当m =-1时,即P 点坐标为(-3,2)时,点P 到直线x +y +3=0的距离最短,最短距离为 2.能力提升15.已知两点A (2,3),B (4,1),直线l :x +2y -2=0,在直线l 上求一点P . (1)使|PA |+|PB |最小; (2)使||PA |-|PB ||最大.解析:(1)可判断A ,B 在直线l 的同侧,设A 点关于l 的对称点A 1的坐标为(x 1,y 1), 则有⎩⎪⎨⎪⎧x 1+22+2·y 1+32-2=0,y 1-3x 1-2·⎝ ⎛⎭⎪⎫-12=-1,解得⎩⎪⎨⎪⎧x 1=-25,y 1=-95.由直线的两点式方程得直线A 1B 的方程为y -1-95-1=x -4-25-4,即y =711(x -4)+1,由⎩⎪⎨⎪⎧x +2y -2=0,y =711x -4+1得直线A 1B 与l 的交点为P ⎝⎛⎭⎪⎫5625,-325,由平面几何知识可知,此时|PA |+|PB |最小.(2)由直线的两点式方程求得直线AB 的方程为y -31-3=x -24-2,即x +y -5=0.由⎩⎪⎨⎪⎧x +2y -2=0,x +y -5=0得直线AB 与l 的交点为P (8,-3),此时||PA |-|PB ||最大.16.已知三条直线l 1:mx -y +m =0,l 2:x +my -m (m +1)=0,l 3:(m +1)x -y +(m +1)=0,它们围成△ABC .(1)求证:不论m 取何值时,△ABC 中总有一个顶点为定点; (2)当m 取何值时,△ABC 的面积取最值?并求出最值. 解析:(1)证明:设直线l 1与直线l 3的交点为A .由⎩⎪⎨⎪⎧mx -y +m =0,m +1x -y +m +1=0,解得⎩⎪⎨⎪⎧x =-1,y =0,∴点A 的坐标为(-1,0),∴不论m 取何值,△ABC 中总有一个顶点A (-1,0)为定点.(2)由⎩⎪⎨⎪⎧ x +my -m m +1=0,m +1x -y +m +1=0,解得⎩⎪⎨⎪⎧x =0,y =m +1,即l 2与l 3交点为B (0,m +1).再由⎩⎪⎨⎪⎧mx -y +m =0,x +my -m m +1=0,解得⎩⎪⎨⎪⎧x =m m 2+1,y =m 3+m 2+mm 2+1,即l 1与l 2交点为C ⎝ ⎛⎭⎪⎫mm 2+1,m 3+m 2+m m 2+1.设边AB 上的高为h , ∴S △ABC =12|AB |·h =12·1+m +12·⎪⎪⎪⎪⎪⎪m m +1m 2+1-m 3+m 2+m m 2+1+m +1m +12+1=12·|m 2+m +1|m 2+1=12·m 2+m +1m 2+1=12⎝ ⎛⎭⎪⎫1+m m 2+1.当m =0时,S =12;当m ≠0时,S =12⎝⎛⎭⎪⎪⎫1+1m +1m . ∵函数f (x )=x +1x的值域为[2,+∞)∪(-∞,-2].∴-12≤1m +1m <0或0<1m +1m≤12,∴14≤S <12或12<S ≤34. 当m =1时,△ABC 的面积的最大值为34,当m =-1时,△ABC 的面积的最小值为14.。
直角坐标平面内点到线的距离
在直角坐标平面内,我们都知道点和点之间的距离公式,这为我们的数学计算起到了极其大的帮助。
在学习了二次函数之后,发现在计算点到线的距离时,没有公式,不是很方便,所以,现在就要通过计算得出直角坐标平面内点到线的距离公式。
∴已知直线y=kx+b及点A(x,y)如图所示,AD⊥直线y=kx+b,垂足为D,求AD的长。
过点A分别作AB∥y轴,AC∥x轴,点B,点C均在直线y=kx+b上。
∵AB∥y轴,AC∥x轴
∴B(x,kx+b),C(,y)。
∴AB=,CA=,CB=
∴AD=
=
=
=
=
=
∴点A(x,y)到直线y=kx+b的距离公式为
这个公式的得出可以让我们在解一些直角坐标系内的题目时可以更加方便,以下就是几个运用到直角坐标平面内点到线的距离公式的例题。
例题1;已知A(-2,-3),B(2,-1),C(0,2),求△ABC的面积
分析:如果没有直角坐标平面内点到线的距离公式,那么解这一道题需要用一个梯形的面积减去两个小三角形的面积,列式计算较为繁琐。
但是如果用上这个距离公式,可以简化解题的过程,同时也可以提高准确率。
解:由A,B两点坐标可得直线AB的解析式为y=x-2,同时可以求出AB的长度为2。
又已知C的坐标(0,2),则可以算出C点与直线AB的距离h(即△ABC AB边上的高)为
=。
可得S△ABC=×2=8
例题2:如图,在直线上求两点B,C,使它与点A(2,-2)构成等边三角形
的三个顶点。
分析:本题需要用直角坐标平面内点到线的距离公式求这个等边三角形的高,然后利用等边三角形边长与高的比例关系求出边长,进而确定两点的位置。
解:点A(-2,2)到直线上的距离(即等边三角形的一条高)h==。
由此可得等边三角形的边长为
设此三角形在直线上的一个顶点的坐标为(x,)。
于是有(x+2)2+(
-2)2=。
整理解得x1=-1+,x2=-1-
故所求两点B(-1+,-1+),C(-1-,-1-)
由此可以看出,直角坐标平面内点到线的距离公式的作用是非常大的,以上列举的都是一些基础题,在解一些综合题的时候,同样可以使用这个公式,可以大大提高做题的速度以及准确度。
陈宇轩。