《数学史概论》教案
- 格式:doc
- 大小:169.50 KB
- 文档页数:44
数学史教案数学史教案一、教学目标1、了解数学史的起源和发展历程。
2、掌握数学在不同历史时期的重大事件和成就。
3、分析数学在思想、文化、科技等方面的影响和贡献。
4、引导学生了解数学家的思想和创新精神,并能运用到今天的学习中。
二、教学内容1、数学史概述:介绍数学史的起源、早期发展以及中西方数学的发展概况。
2、古代数学:介绍古埃及、古希腊、古罗马等古代数学的发展和重要成就。
3、中世纪数学:介绍欧洲中世纪数学的发展和重要成就,包括阿拉伯数学的影响。
4、近代数学:介绍文艺复兴以来数学的发展和重大突破,包括微积分、概率论等领域。
5、现代数学:介绍20世纪数学的发展和创新,包括抽象代数、拓扑学等领域的发展。
三、教学方法1、讲授法:通过讲解让学生了解数学史的发展历程和重要成就。
2、案例法:通过具体案例分析,让学生了解数学在历史上的应用和贡献。
3、讨论法:组织学生进行讨论,引导他们自主探究数学史的相关知识。
4、互动式教学法:通过互动式教学活动,让学生参与其中,提高学习效果。
四、教学步骤1、导入新课:通过提出与数学史相关的问题,引导学生思考数学的历史和发展。
2、讲解数学知识:通过讲解让学生了解数学史的相关知识,包括数学概念的起源、发展历程以及在历史上的应用等。
3、组织讨论:针对数学史上的重要事件和人物,组织学生进行讨论,加深学生对数学史的理解和认识。
4、总结评价:通过总结评价,巩固学生对数学史知识的掌握,同时对学生的学习情况进行评估。
五、教学反思1、反思教学目标是否达成:检查学生对数学史知识的掌握情况,分析教学目标是否达成。
2、反思教学方法是否得当:评估教学方法是否符合学生的学习需求和特点,是否有待改进。
3、反思教学资源是否充分:检查教学资源的准备情况和使用效果,是否需要进一步丰富和完善。
4、反思教学过程中的优缺点:总结教学过程中的优点和不足之处,为今后的教学提供参考和改进方向。
六、作业布置1、完成数学史相关练习题:通过练习题巩固学生对数学史知识的掌握。
《数学史概论》教案一、教学目标1. 让学生了解数学发展的历史背景和主要成就,培养学生的数学素养。
2. 通过数学史的学习,使学生了解数学概念、方法和思想的演变过程,提高学生的数学思维能力。
3. 培养学生对数学的兴趣和热爱,激发学生学习数学的积极性。
二、教学内容1. 古代数学:埃及、巴比伦、印度、中国等地的数学发展概况。
2. 希腊数学:毕达哥拉斯、欧几里得、阿基米德等希腊数学家的贡献。
3. 中世纪数学:阿拉伯数学家阿尔·花拉子米的成就以及欧洲数学的发展。
4. 近代数学:哥白尼、伽利略、牛顿等科学家对数学的贡献。
5. 现代数学:计算机科学、信息论、拓扑学等领域的数学发展。
三、教学方法1. 讲授法:教师讲解数学发展的重要事件、人物和成果。
2. 案例分析法:分析具体数学问题在历史上是如何被解决的。
3. 小组讨论法:学生分组讨论数学史的相关内容,提高学生的参与度。
四、教学准备1. 教材:《数学史概论》教材。
2. 课件:制作与教学内容相关的课件,增加课堂趣味性。
3. 参考资料:收集与数学史相关的书籍、文章、网络资源等。
五、教学评价1. 平时成绩:考察学生课堂参与度、提问回答等情况。
2. 期中考试:设置相关数学史题目,检验学生对知识的掌握程度。
六、教学活动1. 课堂讲解:教师通过讲解数学史的相关知识,引导学生了解数学的发展脉络。
2. 观看视频:播放与数学史相关的纪录片或教学视频,帮助学生更直观地了解数学发展历程。
3. 实地考察:组织学生参观数学博物馆或相关展览,增强学生对数学历史的感受。
七、教学实践1. 数学问题解决:让学生尝试解决古代数学家提出的数学问题,体会数学问题的演变过程。
2. 数学实验:引导学生进行简单的数学实验,了解数学概念和方法的起源。
3. 数学创作:鼓励学生创作与数学史相关的绘画、手抄报等作品,展示自己对数学历史的理解。
八、教学拓展1. 邀请专家讲座:邀请数学史专家或相关领域学者进行讲座,丰富学生的知识视野。
《数学史概论》教案一、教学目标1. 让学生了解数学发展的历史背景和主要成就,培养学生对数学的兴趣和好奇心。
2. 帮助学生了解数学与其他学科的关联,提高学生的综合素质。
3. 引导学生认识数学家的贡献,培养学生热爱科学、追求真理的价值观。
二、教学内容1. 数学的起源与发展1.1 古代数学:埃及、巴比伦、印度、中国1.2 希腊数学:欧几里得、阿基米德、阿波罗尼奥斯1.3 阿拉伯数学:花拉子米、阿尔·卡西2. 欧洲中世纪与文艺复兴时期的数学2.1 欧洲中世纪数学:阿拉伯数字的传播、数学符号的发展2.2 文艺复兴时期数学:丢番图、斐波那契、布拉马古普塔3. 古典数学与现代数学的过渡3.1 笛卡尔与坐标系3.2 牛顿与微积分3.3 莱布尼茨与数学分析4. 19世纪以来的数学发展4.1 代数学:伽罗瓦、域的概念4.2 几何学:高斯、黎曼、非欧几何4.3 分析学:傅里叶、积分方程、泛函分析5. 计算机与数学5.1 计算机的起源与发展5.2 算法与程序设计5.3 数学在计算机科学中的应用三、教学方法1. 讲授法:讲解数学发展的重要时期、人物和成果。
2. 案例分析法:分析具体数学问题的解决过程,引导学生了解数学方法的演变。
3. 小组讨论法:分组探讨数学史中的有趣话题,培养学生的合作与交流能力。
4. 实践活动:让学生尝试编写简单程序,体验数学在计算机科学中的应用。
四、教学评价1. 平时成绩:课堂参与度、小组讨论表现、作业完成情况。
2. 期中考试:测试学生对数学史的基本概念、人物和成果的掌握程度。
五、教学资源1. 教材:《数学史概论》2. 参考书籍:数学史相关著作3. 网络资源:数学史网站、学术论文、视频讲座等4. 计算机软件:编程环境、数学软件等六、教学安排1. 课时:共计32课时,每课时45分钟。
2. 授课方式:课堂讲授与实践活动相结合。
3. 教学计划:6.1-6.4:数学的起源与发展6.5-6.8:欧洲中世纪与文艺复兴时期的数学6.9-6.12:古典数学与现代数学的过渡6.13-6.16:19世纪以来的数学发展6.17-6.20:计算机与数学七、教学重点与难点1. 教学重点:数学发展的重要时期、人物和成果。
数学史概论教案教案标题:数学史概论教案教学目标:1.了解数学史的重要里程碑和发展趋势;2.掌握数学史中的关键人物和他们的贡献;3.培养学生对数学的兴趣和热爱;4.提高学生的研究和分析能力;5.发展学生的团队合作和沟通能力。
教学内容:1.数学史的定义和研究方法;2.古代数学的发展和成就;3.中世纪数学的发展和影响;4.近代数学的突破和变革;5.现代数学的发展和应用。
教学步骤:引入:1.通过展示一些古代数学问题和解决方法,激发学生对数学史的兴趣;2.提出问题:“你认为数学史对我们学习数学有什么意义?”引导学生思考。
知识讲解:1.介绍数学史的定义和研究方法,引导学生了解数学史的研究领域和意义;2.分别介绍古代、中世纪、近代和现代数学的发展和重要成就,重点讲解每个时期的关键人物和他们的贡献;3.通过实例和案例,讲解数学史中的重要定理和公式,帮助学生理解和记忆。
讨论与互动:1.组织学生进行小组讨论,探讨古代数学和现代数学的联系和差异;2.设计数学史相关的问题,引导学生思考和分析,鼓励学生提出自己的见解和观点;3.组织学生展示自己的研究成果,分享对数学史的理解和认识。
练习与巩固:1.布置相关的阅读材料,要求学生在课后进行深入学习和思考;2.设计数学史相关的练习题,帮助学生巩固所学知识;3.组织学生进行小组活动,共同解决数学史中的问题和挑战。
总结与评价:1.总结本节课的学习内容和重点,强调数学史对学习数学的重要性;2.评价学生的表现和参与度,鼓励学生对数学史的进一步研究和学习;3.提供反馈和建议,帮助学生改进学习方法和提高学习效果。
教学资源:1.数学史相关的书籍和文献资料;2.多媒体设备,用于展示数学史中的图片和视频;3.小组活动所需的教学材料和工具。
教学评估:1.观察学生的参与度和表现,评估他们对数学史的理解和兴趣;2.收集学生完成的练习和小组讨论的成果,评估他们的研究和分析能力;3.通过课堂讨论和学生展示,评估学生对数学史的整体掌握程度。
《数学史教案》word版一、教学目标1. 知识与技能:(1)了解古代数学的发展历程及其代表性人物和成就;(2)掌握数学的基本概念、原理和方法,提高数学思维能力。
2. 过程与方法:(1)通过探究数学历史,培养学生的自主学习能力和团队合作精神;(2)学会运用数学知识解决实际问题,提高解决问题的能力。
3. 情感态度与价值观:(1)感受数学的博大精深和魅力,增强对数学的兴趣和信心;(2)培养严谨治学、不断探索的科学研究态度。
二、教学内容1. 第一章:中国古代数学(1)概述中国古代数学的发展历程;(2)介绍《九章算术》和《周髀算经》等古代数学著作;(3)讲解中国古代数学家的成就和贡献。
2. 第二章:古希腊数学(1)概述古希腊数学的发展历程;(2)介绍毕达哥拉斯、欧几里得等古希腊数学家及其主要成就;(3)讲解勾股定理和圆的周长、面积等几何概念。
3. 第三章:阿拉伯数学(1)概述阿拉伯数学的发展历程;(2)介绍阿拉伯数学家花拉子密及其主要成就;(3)讲解阿拉伯数字和代数学的发展。
4. 第四章:欧洲中世纪数学(1)概述欧洲中世纪数学的发展历程;(2)介绍莱昂纳多·斐波那契及其主要成就;(3)讲解斐波那契数列和黄金分割等概念。
5. 第五章:欧洲近代数学(1)概述欧洲近代数学的发展历程;(2)介绍笛卡尔、牛顿等欧洲近代数学家及其主要成就;(3)讲解解析几何和微积分等概念。
三、教学方法1. 采用讲授法、讨论法、探究法等多种教学方法;2. 使用多媒体课件、实物模型等辅助教学;3. 组织学生进行小组合作、研究性学习等活动。
四、教学评价1. 平时成绩:包括课堂表现、作业完成情况等;2. 期中考试:考察学生对数学史知识的掌握和理解;3. 期末考试:综合考察学生的数学知识和运用能力。
五、教学资源1. 教材:《数学史教程》等;2. 参考书籍:《数学简史》、《数学发展史》等;3. 网络资源:数学史相关网站、视频等;4. 教具:多媒体课件、实物模型等。
《数学史概论》教学大纲课程编号:024ZX002课程名称(中文):数学史概论课程名称(英文):学分:3 总学时:54 实验学时:适应专业:数学与应用数学(选修)先修课程:数学分析,高等代数,概率统计一、课程的性质和任务数学史是师范本科数学专业必修的重要基础课程之一。
任何一门科学都有它自己的产生和发展的历史,数学史就是研究数学的发生、发展过程及其规律的一门学科。
它主要讨论的是数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系。
数学是非常古老而又有着巨大发展潜力的科学,其历史的足迹也就更漫长而艰辛。
数学的每一阶段性成果都有着它的产生背景:为何提出,如何解决,如何进一步改进。
这其中体现的思想方法或思维过程对数学专业的学生,甚至是对教师来说,无论是知识的丰富,还是其创造能力的发挥都是重要的。
讲授本课程要贯彻“夯实基础,拓宽视野,培养能力,提高素质”的教育方针,依据“有用、有效、先进”的教改指导原则,对原教材要进行彻底清理,重点放在培养学生的实践能力和创新能力上,同时深刻理解本课程与初等数学的内在联系以指导中学数学的教学。
二、课程基本要求数学史研究的主要对象是历史上的数学成果和影响数学发展的各种因素,如“数学年代”;数学各分支内部发展规律;数学家列传;数学思想方法的历史考察;数学论文杂志和数学经典著作的述评。
该课程要培养学生辩证唯物主义观点,使学生了解数学思想的形成过程,并指导当前的工作,要培养学生学习兴趣,要充分发挥数学史的教育功能。
通过本课程的学习要求学生掌握数学史的分期阶段,对数学的发展各时期有一个大致的了解;了解数学的起源与早期发展;了解古希腊数学对世界数学发展产生的积极影响;要求学生基本掌握中国数学史的分期及各时期的主要数学家与成果,特别是西方数学传入后,中西数学合流产生的影响,较为详细地了解中国现代数学发展概要。
基本掌握外国数学史的分期及各时期的主要成果;要详细了解数学史上的三次危机,掌握代数学、分析学、几何学的主要发展历程以及在这些发展过程中近代哪些数学家起了决定性的作用;了解数学与社会发展、经济发展、文化发展的关系。
数学史概论教案教案标题:数学史概论教学目标:1. 了解数学史的重要意义和发展历程;2. 掌握数学史中的重要数学家、理论和发现;3. 培养学生对数学的兴趣和探索精神;4. 提高学生的历史意识和科学素养。
教学内容:1. 数学史的定义和意义;2. 古代数学的发展与贡献;3. 中世纪数学的发展与贡献;4. 近代数学的发展与贡献;5. 现代数学的发展与贡献。
教学步骤:第一步:导入(5分钟)介绍数学史的概念和意义,引发学生对数学史的兴趣,并与学生讨论数学在现代社会中的重要性。
第二步:古代数学的发展与贡献(15分钟)1. 介绍古代数学的发展历程,如古埃及、古希腊、古印度等;2. 重点介绍古希腊数学家毕达哥拉斯、欧几里得和阿基米德的贡献;3. 分析古代数学在几何学、代数学和数论等方面的成就。
第三步:中世纪数学的发展与贡献(15分钟)1. 介绍中世纪数学的发展历程,如阿拉伯数学、印度数学等;2. 重点介绍中世纪数学家阿拉伯的贡献,如阿拉伯数字系统和代数学的发展;3. 分析中世纪数学在三角学、代数学和几何学等方面的成就。
第四步:近代数学的发展与贡献(15分钟)1. 介绍近代数学的发展历程,如文艺复兴时期和启蒙时代的数学发展;2. 重点介绍近代数学家笛卡尔、费马和牛顿的贡献;3. 分析近代数学在解析几何学、微积分和概率论等方面的成就。
第五步:现代数学的发展与贡献(15分钟)1. 介绍现代数学的发展历程,如19世纪末和20世纪的数学革命;2. 重点介绍现代数学家哥德尔、庞加莱和图灵的贡献;3. 分析现代数学在数理逻辑、拓扑学和计算机科学等方面的成就。
第六步:总结与拓展(5分钟)总结数学史的重要意义和发展历程,鼓励学生继续深入研究数学史,并探索数学的未来发展方向。
教学评估:1. 学生课堂参与度和回答问题的准确性;2. 学生完成的课后作业,如撰写数学史报告或进行相关研究;3. 学生对数学史的理解和兴趣是否提高。
教学资源:1. 数学史相关书籍和文献;2. 数学史的图片、视频和实物展示;3. 互联网资源,如数学史网站和在线学习资料。
《数学史概论》教案第一章:数学史的概述1.1 数学史的定义与意义1.2 数学发展的大致历程1.3 数学史的研究方法与资料来源1.4 数学史与数学教育的关联第二章:古代数学2.1 古代数学的背景与文化环境2.2 埃及数学与巴比伦数学2.3 古希腊数学:毕达哥拉斯学派与欧几里得2.4 中国古代数学:勾股定理与算盘第三章:中世纪数学3.1 印度数学:阿拉伯数字与零的概念3.2 伊斯兰数学家:阿尔·花拉子米与代数学的发展3.3 欧洲中世纪数学:数学符号与运算规则的改进3.4 中国宋元数学:天元术与代数学的进展第四章:文艺复兴与科学革命时期的数学4.1 欧洲文艺复兴时期的数学发展4.2 哥白尼、开普勒与牛顿的数学贡献4.3 解析几何的诞生:笛卡尔与费马4.4 微积分的创立:牛顿与莱布尼茨第五章:现代数学的发展5.1 17至18世纪数学:欧拉与拉格朗日5.2 19世纪数学:非欧几何与群论5.3 20世纪初数学:集合论、数理逻辑与泛函分析5.4 现代数学的多元化发展:计算机科学与数学的交叉第六章:中国的数学成就(续)6.1 明清时期的数学发展6.2 数学著作《数书九章》与《算法统宗》6.3 清朝的数学教育与科举中的数学考试6.4 中国数学对日本及朝鲜数学的影响第七章:欧洲启蒙时期的数学7.1 启蒙运动与数学的关系7.2 莱布尼茨与微积分的发展7.3 伯努利兄弟与概率论的兴起7.4 欧拉与数学分析的进一步发展第八章:19世纪的数学突破8.1 非欧几何的发现8.2 群论与域论的建立8.3 数学符号与逻辑的完善8.4 19世纪数学的其他重要进展第九章:20世纪的数学革命9.1 集合论与数理逻辑的进展9.2 泛函分析与谱理论的发展9.3 拓扑学与微分几何的新成就9.4 计算机科学与数学的关系第十章:数学史的教育意义与应用10.1 数学史在数学教育中的作用10.2 数学史如何激发学生对数学的兴趣10.3 数学史在数学课程设计中的应用10.4 数学史与跨学科研究的结合第十一章:数学与科技的互动11.1 计算机科学与数学的关系11.2 信息技术与数学软件的发展11.3 数学在生物科学、物理学等领域的应用11.4 数学模型与模拟在科学研究中的作用第十二章:数学哲学与数学思想12.1 数学哲学的基本问题12.2 形式主义、直觉主义与逻辑实证主义12.3 数学基础危机与集合论的困境12.4 数学思想在数学发展中的影响第十三章:数学与社会文化13.1 数学与文化的交融13.2 数学在民族志与人类学中的应用13.3 数学传播与教育的发展13.4 数学与社会公正、性别平等的关系第十四章:数学史的国际视角14.1 非洲、拉丁美洲数学史14.2 亚洲数学史:印度、日本与伊斯兰世界14.3 数学交流与比较数学史的研究14.4 数学史的国际会议与出版物第十五章:数学史的展望与挑战15.1 数学史的研究现状与趋势15.2 数字人文与数学史的结合15.3 跨学科研究在数学史中的应用15.4 数学史的未来挑战与机遇重点和难点解析本《数学史概论》教案涵盖了数学史的基本概念、古代数学、中世纪数学、文艺复兴与科学革命时期的数学、现代数学的发展、中国的数学成就、欧洲启蒙时期的数学、19世纪的数学突破、20世纪的数学革命、数学史的教育意义与应用、数学与科技的互动、数学哲学与数学思想、数学与社会文化、数学史的国际视角以及数学史的展望与挑战。
《数学史概论》教案《数学史概论》教案第一讲数学的起源与早期发展主要内容:数与形概念的产生、河谷文明与早期数学、西汉以前的中国数学。
1、数与形概念的产生从原始的“数”到抽象的“数”概念的形成,是一个缓慢、渐进的过程。
人从生产活动中认识到了具体的数,导致了记数法。
“屈指可数”表明人类记数最原始、最方便的工具是手指。
早期几种记数系统,如古埃及、古巴比伦、中国甲骨文、古希腊、古印度、玛雅(玛雅文明诞生于热带丛林之中,玛雅是一个地区、一支民族和一种文明,分布在今墨西哥的尤卡坦半岛、危地马拉、伯利兹、洪都拉斯和萨尔瓦多西部)等。
世界上不同年代出现了五花八门的进位制和眼花缭乱的记数符号体系,足以证明数学起源的多元性和数学符号的多样性。
2、河谷文明与早期数学2.1 古代埃及的数学(1)古王国时期:前2686-前2181年。
埃及进入统一时代,开始建造金字塔,是第一个繁荣而伟大的时代。
(2)新王国时期:前1567-前1086年。
埃及进入极盛时期,建立了地跨亚非两洲的大帝国。
数学贡献:记数制,基本的算术运算,分数运算,一次方程,正方形、矩形、等腰梯形等图形的面积公式,近似的圆面积,锥体体积等。
公元前4世纪希腊人征服埃及以后,这一古老的数学完全被蒸蒸日上的希腊数学所取代。
2.2 古代巴比伦的数学背景:古代巴比伦简况两河流域(美索不达米亚)文明上溯到距今6000年之前,几乎和埃及人同时发明了文字“楔形文字”。
(1)古巴比伦王国:公元前1894-前729年。
汉穆拉比(在位前1792-前1750)统一了两河流域,建成了一个强盛的中央集权帝国,颁布了著名的《汉穆拉比法典》。
(2)亚述帝国:前8世纪-前612年,建都尼尼微(今伊拉克的摩苏尔市)。
(3)新巴比伦王国:前612-前538年。
尼布甲尼撒二世(在位前604-前562年)统治时期达到极盛,先后两次攻陷耶路撒冷,建成世界古代七大奇观之一的巴比伦“空中花园”。
世界古代七大奇观指埃及金字塔、巴比伦空中花园、阿苔密斯神殿、摩索拉斯陵墓、宙斯神像、亚历山大灯塔、罗德岛太阳神铜像,他们是分布于西亚、北非和地中海沿岸的古迹,是古代西方人眼中的全部世界,而中国的长城距他们太远了。
数学史概论第四版微积分的创立教学设计教学设计题目:数学史概论第四版微积分的创立教学目标:1.理解微积分的基本概念和原理;2.了解微积分的历史背景和重要贡献者;3.探究微积分的应用领域和发展前景;4.培养学生对数学史的兴趣和探索精神。
教学内容:1.数学史概论第四版:微积分的创立;2.微积分的基本概念和原理;3.微积分的历史背景和重要贡献者;4.微积分的应用领域和发展前景。
教学步骤:第一步:导入新知识(10分钟)通过几个有趣的问题引入微积分的概念,如速度问题和曲线面积问题。
鼓励学生思考问题的背后的原理和方法。
第二步:讲解微积分基本概念及原理(15分钟)介绍微积分的基本概念,如导数和积分,并且解释它们的物理意义和数学意义。
例如,导数可以理解为变化率,积分可以理解为累积。
第三步:探究微积分的历史背景(15分钟)介绍微积分的历史背景,包括其起源和发展。
重点介绍至关重要的贡献者,如牛顿和莱布尼茨,并比较他们的贡献。
第四步:分组讨论活动(20分钟)将学生分成小组,给每个小组分配一个微积分的应用领域,如物理学、经济学或工程学。
要求学生研究并展示该领域中微积分的重要性和应用案例。
第五步:学习案例分析(15分钟)为了进一步理解微积分的应用,教师可以提供一些实际问题或案例,让学生运用微积分的方法进行分析和解决。
例如,给出一个曲线的方程,让学生求其导数和定积分。
第六步:总结及展望(10分钟)教师对本节课的内容进行总结,并展望微积分的未来发展和可能的研究方向。
鼓励学生对微积分的发展前景进行思考和讨论。
教学评估:1.小组讨论活动中,观察学生的参与程度和团队合作能力;2.学生对微积分基本概念的理解程度;3.学生对微积分在不同领域的应用和发展前景的表达能力。
教学延伸:1.鼓励学生阅读相关的数学史资料,进一步了解微积分的历史发展;2.提供更复杂的微积分问题,挑战学生的分析和解决问题的能力;3.组织学生参加数学竞赛或项目,展示微积分的应用和创新成果。
《数学史概论》教案第一讲数学的起源与早期发展主要内容:数与形概念的产生、河谷文明与早期数学、西汉以前的中国数学。
1、数与形概念的产生从原始的“数”到抽象的“数”概念的形成,是一个缓慢、渐进的过程。
人从生产活动中认识到了具体的数,导致了记数法。
“屈指可数”表明人类记数最原始、最方便的工具是手指。
早期几种记数系统,如古埃及、古巴比伦、中国甲骨文、古希腊、古印度、玛雅(玛雅文明诞生于热带丛林之中,玛雅是一个地区、一支民族和一种文明,分布在今墨西哥的尤卡坦半岛、危地马拉、伯利兹、洪都拉斯和萨尔瓦多西部)等。
世界上不同年代出现了五花八门的进位制和眼花缭乱的记数符号体系,足以证明数学起源的多元性和数学符号的多样性。
2、河谷文明与早期数学2.1 古代埃及的数学(1)古王国时期:前2686-前2181年。
埃及进入统一时代,开始建造金字塔,是第一个繁荣而伟大的时代。
(2)新王国时期:前1567-前1086年。
埃及进入极盛时期,建立了地跨亚非两洲的大帝国。
数学贡献:记数制,基本的算术运算,分数运算,一次方程,正方形、矩形、等腰梯形等图形的面积公式,近似的圆面积,锥体体积等。
公元前4世纪希腊人征服埃及以后,这一古老的数学完全被蒸蒸日上的希腊数学所取代。
2.2 古代巴比伦的数学背景:古代巴比伦简况两河流域(美索不达米亚)文明上溯到距今6000年之前,几乎和埃及人同时发明了文字“楔形文字”。
(1)古巴比伦王国:公元前1894-前729年。
汉穆拉比(在位前1792-前1750)统一了两河流域,建成了一个强盛的中央集权帝国,颁布了著名的《汉穆拉比法典》。
(2)亚述帝国:前8世纪-前612年,建都尼尼微(今伊拉克的摩苏尔市)。
(3)新巴比伦王国:前612-前538年。
尼布甲尼撒二世(在位前604-前562年)统治时期达到极盛,先后两次攻陷耶路撒冷,建成世界古代七大奇观之一的巴比伦“空中花园”。
世界古代七大奇观指埃及金字塔、巴比伦空中花园、阿苔密斯神殿、摩索拉斯陵墓、宙斯神像、亚历山大灯塔、罗德岛太阳神铜像,他们是分布于西亚、北非和地中海沿岸的古迹,是古代西方人眼中的全部世界,而中国的长城距他们太远了。
记录者古希腊哲学家费隆·拜占廷说过:“心眼所见,永难磨灭”。
2.3 西汉以前的中国数学黄河壶口瀑布(中国,2002)《史记·夏本纪》大禹治水(公元前21世纪)中提到“左规矩,右准绳”,表明使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”。
考古学的成就,充分说明了中国数学的起源与早期发展。
1952年在陕西西安半坡村出土的,至今六七千年的陶器上刻画的符号中,有一些符号就是表示数字的符号。
在殷墟出土的商代甲骨文中,有一些是记录数字的文字,表明中国已经使用了完整的十进制记数,包括从一至十,以及百、千、万,最大的数字为三万。
殷墟甲骨上数学(商代,公元前1400-前1100年,1983-1984年间河南安阳出土)。
算筹(1971年陕西千阳县西汉墓出土)是中国古代的计算工具,它的起源大约可上溯到公元前5世纪,后来写在纸上便成为算筹记数法。
至迟到春秋战国时代,又开始出现严格的十进位制筹算记数(约公元前300年)。
怎样用算筹记数呢?公元3-4世纪成书的《孙子算经》记载说:“凡算之法,先识其位,一纵十横,百立千僵,千十相望,万百相当。
”为了避免涂改,在唐代以后,我国又创用了一种商业大写数字,又叫会计体:壹、贰、叁、肆、伍、陆、柒、捌、玖、拾、佰、仟、万。
中国传统数学的最大特点是建立在筹算基础之上,是中国传统数学对人类文明的特殊贡献,这与西方及阿拉伯数学是明显不同的。
我国是世界上首先发现和认识负数的国家。
战国时法家李悝(约公元前455-前395年)曾任魏文侯相,主持变法,我国第一部比较完整的法典《法经》(现已失传)中已应用了负数,“衣五人终岁用千百不足四百五十”,意思是说,5个人一年开支1500钱,差450钱。
甘肃居延海附近(今甘肃省张掖市管领)发现的汉简中有“负四筭(suàn,筹码,同算),得七筭,相除得三筭”的句子。
在2002年中国考古发现报告会上,介绍了继秦始皇陵兵马俑坑之后秦代考古的又一重大发现:湖南龙山里耶战国-秦汉时期城址及秦代简牍。
2002年7月,考古人员在湖南龙山里耶战国-秦汉古城出土了36000余枚秦简,记录的是秦始皇二十六年至三十七年(即公元前221-前210年)的秦朝历史,其中有一份完整的“九九乘法口诀表”。
在《管子》、《荀子》、《战国策》等先秦典籍中,都提到过“九九”,但实物还是首次发现,这是我国有文字记录最早的乘法口诀表。
最后给一首数字诗,取自宋朝理学家邵康节(公元1011-1077年,中国占卜界的主要代表人物)写的一首诗,描绘像花园一样美丽的地方,一幅朴实自然的乡村风俗画,宛如一副淡雅的水墨画:一去二三里,烟村四五家。
亭台六七座,八九十枝花。
思考题1、您对《数学史》课程的期望。
2、谈谈您的理解:数学是什么?3、数学崇拜与数学忌讳。
4、从数学的起源简述人类活动对文化发展的贡献。
5、数的概念的发展给我们的启示。
6、探讨古代埃及和古代巴比伦的数学知识在现实生活中的意义。
第二讲古代希腊数学1、古典时期的希腊数学公元前600-前300年。
1.1 爱奥尼亚学派(米利都学派):泰勒斯(公元前625-前547年),出生于爱奥尼亚的米利都城,早年经商,被称为“希腊哲学、科学之父”。
1.2 毕达哥拉斯学派:毕达哥拉斯(约公元前560-前480年),出生于小亚细亚的萨摩斯岛,与中国的孔子(公元前551-前479年)同时,曾师从爱奥尼亚学派,年青时曾游历埃及和巴比伦,在萨摩斯岛建立了具有宗教、哲学、科学性质的学派,致力于哲学和数学的研究,繁荣兴旺达一个世纪以上。
1.3 伊利亚学派:芝诺(约公元前490-前430年),出生于意大利南部半岛的伊利亚城邦,毕达哥拉斯学派成员的学生。
芝诺悖论:两分法,运动不存在。
再由是:位移事物在达到目的地之前必须先抵达一半处,即不可能在有限的时间内通过无限多个点,所以,如果它起动了,它永远到不了终点,或者,它根本起动不了。
阿基里斯(荷马史诗《依里亚特》中的希腊名将,善跑)、飞矢不动。
芝诺的功绩在于把动和静的关系、无限和有限的关系、连续和离散的关系以非数学的形态提出,并进行了辩证的考察。
1.4 诡辩学派(智人学派):活跃于公元前5世纪下半叶的雅典城,代表人物均以雄辩著称,诡辩的希腊原词含智慧之意,故亦称智人学派。
古典几何三大作图问题:三等分任意角、化圆为方、倍立方。
1.5 柏拉图学派:柏拉图(约公元前427-前347年),出生于雅典的显贵世家,曾师从毕达哥拉斯学派,哲学家苏格拉底(公元前469-前399年)的学生。
作为一名哲学家,柏拉图对于欧洲的哲学乃至整个文化的发展,有着深远的影响,特别是他的认识论、数学哲学和数学教育思想,后人将分析法和归谬法归的使用归功于柏拉图,在古代希腊社会条件下,对于科学的形成和数学的发展,起了不可磨灭的推进作用。
代表作《理想国》。
古希腊最著名的哲学家、科学家:亚里士多德(公元前384-前322年)(乌拉圭,1996),柏拉图的学生。
1.6 亚里士多德学派(吕园学派):出生于马其顿的斯塔吉拉镇,公元前335年建立了自己的学派,讲学于雅典的吕园,又称“吕园学派”,相传亚里士多德还做过亚历山大大帝的老师。
“吾爱吾师,吾尤爱真理”。
世界古代七大奇观指埃及金字塔、巴比伦空中花园、阿苔密斯神殿、摩索拉斯陵墓、宙斯神像、亚历山大灯塔、罗德岛太阳神铜像,他们是分布于西亚、北非和地中海沿岸的古迹,那是古代西方人眼中的全部世界,而中国的长城距他们太远了。
记录者古希腊哲学家费隆·拜占廷说过:“心眼所见,永难磨灭”。
2、亚历山大学派时期公元前300-前30年。
托勒密(托勒密·索特尔,约前367-前283年)统治下的希腊埃及,定都于亚历山大城,于公元前300年左右,开始兴建亚历山大艺术博物馆和图书馆,提倡学术,罗致人才,进入了亚历山大时期:希腊数学黄金时代,先后出现了欧几里得、阿基米德和阿波罗尼奥斯三大数学家,他们的成就标志了古典希腊数学的巅峰。
2.1 欧几里得(公元前325-前265年)早年学习于雅典,公元前300年应托勒密一世之请来到亚历山大,成为亚历山大学派的奠基人。
用逻辑方法把几何知识建成一座巍峨的大厦,他的公理化思想和方法历尽沧桑而流传千古,成为后人难以跨跃的高峰。
“几何无王者之道”,后推广为:“求知无坦途”。
《原本》(Στοιχετα,意指:学科中具有广泛应用的最重要的定理)。
2.2 数学之神:阿基米德(公元前287-前212年)与牛顿(英,1642-1727年)、高斯(德,1777-1855年)并列有史以来最伟大的三大数学家之一,出生于西西里岛的叙拉古,曾在亚历山大城师从欧几里得的门生。
2.3 阿波罗尼奥斯(约公元前262-前190年),出生于小亚细亚的珀尔加,年青时曾在亚历山大城跟随欧几里得的门生学习,贡献涉及几何学和天文学,最重要的数学成就是在前人工作的基础上创立了相当完美的圆锥曲线论,以欧几里得严谨风格写成的传世之作《圆锥曲线》,是希腊演绎几何的最高成就,用纯几何的手段达到了今日解析几何的一些主要结论,确实令人惊叹,对圆锥曲线研究所达到的高度,直到17世纪笛卡儿、帕斯卡出场之前,始终无人能够超越。
《圆锥曲线》全书共8卷,含487个命题。
3、希腊数学的衰落公元180年前后的罗马帝国版图。
公元前6世纪,在意大利半岛的台伯河畔,有一座罗马城逐渐建立起来。
公元前509年,罗马建立了共和国。
古罗马经过多个世纪的战争,时分时合多次。
公元前27年,罗马建立了元首政治,共和国宣告灭亡,从此进入罗马帝国时代。
在公元前1世纪完全征服了希腊各国而夺得了地中海地区的霸权,建立了强大的罗马帝国。
1世纪时,罗马帝国继续扩张,到2世纪,帝国版图确定下来,它地跨欧、亚、非三洲,地中海成了它的内湖。
传统的史学家把公元前27年到公元284年称为早期罗马帝国。
进入晚期罗马帝国时期,帝国在战乱中于395年由最后一个君主提奥多正式把帝国分为两部分,西部以罗马为首都分给了长子阿卡狄(称为西罗马帝国),东部以君士坦丁堡(今土耳其的伊斯坦布尔)为首都分给了次子贺诺里(称为东罗马帝国)。
476年,西罗马帝国皇帝被日耳曼人废掉,西罗马帝国灭亡,西欧奴隶制社会的历史结束了,从此进入了封建社会时期。
古罗马斗兽场(建于公元70-82年)。
西班牙古罗马高架引水桥(建于公元1世纪末2世纪初)高架引水桥从遥远的雪山引水到阿尔卡萨城堡,全长15公里,有166个拱门,它由2万多块大石头堆砌而成,石块间没有任何水泥等灰浆类物质黏合,至今仍能坚固完好,实在令人叹为观止。