23王镜岩生物化学教程 2008版 第23章_葡萄糖异生和糖 的其他代谢途径
- 格式:ppt
- 大小:3.77 MB
- 文档页数:29
01糖代谢概述Chapter糖代谢定义与特点定义特点糖代谢途径及关键酶糖酵解途径糖异生途径磷酸戊糖途径糖代谢与能量供应关系010203由于胰岛素分泌不足或作用障碍导致的糖代谢紊乱疾病。
糖尿病由于糖原合成或分解过程中酶缺陷导致的遗传性疾病。
糖原贮积病由于半乳糖代谢途径中酶缺陷导致的代谢性疾病。
半乳糖血症糖代谢异常疾病简介02糖原合成与分解Chapter糖原合成途径01关键酶调控02别构效应与激素调节03糖原分解途径糖原在糖原磷酸化酶的催化下逐步分解为葡萄糖-1-磷酸,再经过一系列反应生成葡萄糖。
关键酶调控糖原磷酸化酶是糖原分解的关键酶,其活性同样受到多种因素的调节。
激素与神经调节肾上腺素、胰高血糖素等激素可促进糖原分解,而胰岛素则抑制糖原分解。
同时,神经系统也可通过神经递质调节糖原分解。
糖原合成与分解在生理过程中的作用能量储存与供应血糖调节运动与应激反应糖尿病糖尿病患者胰岛素分泌不足或胰岛素抵抗,导致糖原合成减少、分解增加,血糖升高。
糖原贮积病由于糖原代谢相关酶缺陷导致糖原在肝脏或肌肉中异常贮积,引起相应的临床症状。
磷酸化酶缺乏症糖原磷酸化酶缺乏导致糖原分解障碍,患者可能出现低血糖、肝肿大等症状。
相关疾病案例分析03020103葡萄糖转运与利用Chapter01020304广泛分布于各种组织细胞,主要负责基础葡萄糖转运。
GLUT1主要表达于肝细胞和胰岛B 细胞,参与葡萄糖的释放和胰岛素分泌。
GLUT2主要分布于神经元,负责脑内葡萄糖的转运。
GLUT3主要表达于脂肪细胞和肌肉细胞,参与胰岛素刺激的葡萄糖转运。
GLUT4葡萄糖转运蛋白种类及功能三羧酸循环丙酮酸在有氧条件下进入线粒体,彻底氧化分解为CO2和H2O ,产生大量ATP 。
磷酸戊糖途径葡萄糖在细胞质中经过一系列反应,产生NADPH 和磷酸核糖等中间产物,参与细胞合成反应。
糖酵解途径ATP 。
葡萄糖在细胞内的利用途径通过调节葡萄糖转运和利用,维持血糖在正常范围内波动。
第十九章代谢总论新陈代谢(metabolism)是生命最基本的特征之一,泛指生物与周围环境进行物质交换、能量交换和信息交换的过程。
同化作用(assimilation):生物一方面不断地从周围环境中摄取能量和物质,通过一系列生物反应转变成自身组织成分。
异化作用(dissimilation ):将原有的组成成份经过一系列的生化反应,分解为简单成分重新利用或排出体外。
特点:特异、有序、高度适应和灵敏调节、代谢途径逐步进行。
新陈代谢是生物体内所有化学变化的总称;是生物体表现其生命活动的重要特征之一;它是由多酶体系协同作用的化学反应网络。
新陈代谢的功能:①从周围环境中获得营养物质。
②将外界引入的营养物质转为自身需要的结构元件。
③将结构元件装配成自身的大分子。
④形成或分解生物体特殊功能所需的生物分子。
⑤提供机体生命活动所需的一切能量。
代谢过程是通过一系列酶促反应完成的。
完成某一代谢过程的一组相互衔接的酶促反应称为代谢途径(metabolic pathways)。
代谢途径特点:1.没有完全可逆的代谢途径。
物质的合成与分解,有的要完全不同的两条代谢途径(如脂肪酸的代谢);有的要部分地通过单向不可逆反应(如糖代谢)。
2.代谢途径的形式是多样的,有直线型的,有分支型的,也有环形的。
3.代谢途径有确定的细胞定位。
酶在细胞内有确定的分布区域,所以每个过程都是在确定的区域进行的。
例如,糖酵解在细胞质中进行,三羧酸循环在线粒体基质中进行,氧化磷酸化在线粒体内膜进行。
4.代谢途径是相互沟通的。
5.代谢途径之间有能量关联。
6.代谢途径的流量可调控。
代谢是酶促过程,可通过控制酶的活力与数量来实现。
每个代谢途径的流量,都受反应速度最慢的步骤的限制,这个步骤称为限速步骤,或关键步骤,这个酶称为限速酶或关键酶。
新陈代谢包括分解代谢和合成代谢两个方面。
分解代谢:机体将营养物质转变为较小、较简单的物质,又称异化作用,是指机体将自身物质转化为代谢产物,排出体外合成代谢是机体利用小分子或大分子的结构元件建造成大分子。
王镜岩生物化学经典课件糖的生物化学糖类是生物体中重要的营养物质,同时也是生命活动中不可或缺的分子。
糖类不仅为生物体提供能量,还参与细胞信号传导、细胞黏附、免疫识别等多种生物过程。
本文将结合王镜岩教授的生物化学经典课件,对糖的生物化学进行详细阐述。
一、糖的分类及结构特点根据分子结构的不同,糖类可分为单糖、双糖和多糖三大类。
其中,单糖是糖类的基本单位,包括葡萄糖、果糖、半乳糖等。
双糖由两个单糖分子通过糖苷键连接而成,如蔗糖、乳糖等。
多糖则由大量单糖分子通过糖苷键连接而成,如淀粉、纤维素等。
糖类分子的结构特点如下:1.多羟基:糖类分子中含有多个羟基(-OH),羟基的位置和数量不同,导致不同糖类分子的性质和功能各异。
2.羰基:糖类分子中含有一个醛基(-CHO)或酮基(-C=O),分别形成醛糖和酮糖。
3.立体异构:糖类分子中的碳原子连接的四个基团不同,导致糖类分子存在多种立体异构体。
例如,葡萄糖存在α和β两种异构体。
二、糖的代谢途径糖类在生物体内的代谢途径主要包括糖酵解、三羧酸循环、氧化磷酸化等过程。
1.糖酵解:糖酵解是指将葡萄糖等糖类分解为丙酮酸的过程。
糖酵解分为两个阶段:第一阶段为糖解作用,将葡萄糖分解为两分子的丙酮酸;第二阶段为乳酸发酵或酒精发酵,将丙酮酸进一步转化为乳酸或乙醇。
2.三羧酸循环:丙酮酸进入线粒体后,通过三羧酸循环(TCA 循环)彻底氧化分解。
在此过程中,丙酮酸被转化为柠檬酸,经过一系列反应,最终二氧化碳(CO2)和水(H2O)。
3.氧化磷酸化:在糖酵解和三羧酸循环过程中,产生的还原型辅酶NADH和FADH2通过电子传递链传递电子,最终与氧气结合水。
此过程伴随能量释放,用于合成ATP。
三、糖类的生理功能1.能量供应:糖类是生物体最主要的能量来源。
在氧化分解过程中,糖类可产生大量ATP,为生命活动提供能量。
2.结构支持:多糖如纤维素是植物细胞壁的主要成分,具有支持和保护细胞的作用。
3.细胞信号传导:糖蛋白和糖脂是细胞表面的重要组分,参与细胞识别、黏附、免疫应答等生物过程。
王镜岩生物化学课件糖类一、教学内容本节课的教学内容选自王镜岩生物化学课件中的糖类章节。
具体内容包括:糖类的分类、分布和功能,糖类的代谢途径以及糖类在生命活动中的作用。
二、教学目标1. 让学生了解糖类的分类、分布和功能,掌握糖类的代谢途径。
2. 培养学生运用糖类知识解决实际问题的能力。
3. 引导学生关注糖类在生命活动中的重要作用,提高学生的生命科学素养。
三、教学难点与重点1. 教学难点:糖类的分类、分布和功能,糖类的代谢途径。
2. 教学重点:糖类的分类、分布和功能,糖类的代谢途径。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:笔记本、彩色笔、教材。
五、教学过程1. 实践情景引入:以食物中的糖类为例,引导学生思考糖类在生活中的应用。
2. 知识讲解:a. 讲解糖类的分类:单糖、二糖、多糖。
b. 讲解糖类的分布:动植物细胞中的糖类分布。
c. 讲解糖类的功能:能量供应、结构组成、信号传递等。
d. 讲解糖类的代谢途径:糖酵解、三羧酸循环、糖异生等。
3. 例题讲解:以教材中的典型题目为例,讲解糖类的分类、分布和功能。
4. 随堂练习:设计有关糖类的题目,让学生巩固所学知识。
5. 知识拓展:介绍糖类在医学、农业等领域的应用。
六、板书设计1. 糖类分类:单糖、二糖、多糖。
2. 糖类分布:动植物细胞中的糖类分布。
3. 糖类功能:能量供应、结构组成、信号传递等。
4. 糖类代谢途径:糖酵解、三羧酸循环、糖异生等。
七、作业设计1. 题目:请列出糖类的分类、分布和功能。
答案:糖类的分类:单糖、二糖、多糖;糖类的分布:动植物细胞中的糖类分布;糖类的功能:能量供应、结构组成、信号传递等。
2. 题目:请简述糖类的代谢途径。
答案:糖类的代谢途径:糖酵解、三羧酸循环、糖异生等。
八、课后反思及拓展延伸1. 课后反思:本节课通过实践情景引入,让学生了解糖类在生活中的应用,提高了学生的学习兴趣。
在知识讲解环节,通过例题讲解和随堂练习,帮助学生巩固所学知识。