4 分式方程的概念及列分式方程 【一等奖教案】 表格版
- 格式:doc
- 大小:999.00 KB
- 文档页数:2
北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教案一. 教材分析《分式方程的概念及列分式方程》是北师大版数学八年级下册第5.4节的内容。
本节课主要让学生掌握分式方程的概念,学会如何列分式方程,并能够解简单的分式方程。
这一内容是学生学习了分式运算和一元一次方程的基础上进行的,为后续解决实际问题打下基础。
二. 学情分析学生在八年级上学期已经学习了分式的概念、分式的运算以及一元一次方程的解法,对于分式的基本概念和运算规则有一定的了解。
但部分学生在分式运算中还存在一定的困难,对于分式方程的理解和应用还需要加强。
此外,学生对于实际问题的解决能力有待提高。
三. 教学目标1.了解分式方程的概念,理解分式方程与一元一次方程的联系和区别。
2.学会列分式方程,并能解简单的分式方程。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.重点:分式方程的概念,列分式方程的方法,解分式方程的步骤。
2.难点:理解分式方程与一元一次方程的联系和区别,解决实际问题中的分式方程。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等多种教学方法,引导学生主动探究、合作交流,培养学生的动手操作能力和思维能力。
六. 教学准备1.教学PPT2.教学素材(实际问题)七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何用数学模型来解决这些问题。
通过分析,引入分式方程的概念。
2.呈现(10分钟)讲解分式方程的概念,解释分式方程与一元一次方程的联系和区别。
通过示例,展示如何列分式方程。
3.操练(10分钟)让学生分组讨论,尝试解决一些简单的实际问题,引导学生运用分式方程来解决问题。
每组选择一个问题,列出分式方程,并求解。
4.巩固(10分钟)选取部分学生的解题过程和答案,进行讲解和分析。
针对学生解题中出现的问题,进行讲解和指导。
5.拓展(10分钟)让学生尝试解决一些稍复杂的实际问题,引导学生运用所学的分式方程知识来解决问题。
分式方程教案大班一、教学目标1. 了解分式方程的概念和基本性质;2. 掌握解分式方程的基本方法与技巧;3. 能够运用所学知识解决实际问题。
二、教学内容1. 分式方程的定义与基本性质;2. 解一元一次分式方程;3. 解一元二次分式方程;4. 实际问题中的应用。
三、教学步骤步骤一:引入教师可以通过提问或举例的方式引入分式方程的概念,引导学生思考为什么需要引入分式方程,并与线性方程进行对比,激发学生的兴趣。
步骤二:讲解与示范1. 首先讲解分式方程的定义,即含有一个或多个未知数的分式等式;2. 接着介绍一元一次分式方程的解法,重点讲解如何消去分母,使方程化为简单的线性方程,再求解得出结果;3. 然后讲解一元二次分式方程的解法,重点讲解如何将其化为一元二次方程,并运用二次方程求根公式或配方法求解;4. 最后通过一些实际问题的示例,展示分式方程在实际生活中的应用。
步骤三:练习与巩固安排一定数量的练习题,分别涵盖一元一次和一元二次分式方程的解法,让学生通过练习来巩固所学知识,并培养他们解题的能力和思维逻辑。
步骤四:拓展与应用安排一些拓展题,使学生能够将所学知识应用到更复杂的问题中,培养他们的问题分析和解决能力。
四、教学重点与难点教学重点:分式方程的定义与基本性质,一元一次和一元二次分式方程的解法。
教学难点:一元二次分式方程的解法。
五、教学方法与手段1. 讲授法:通过讲解、示范和解题示例等方式,向学生传递知识;2. 实践与体验法:通过实际问题的应用,引导学生参与探究,培养问题解决能力;3. 练习与巩固法:通过大量的练习题目巩固学生的知识,并培养解题的技巧与思维能力。
六、教学资源黑板、粉笔、教辅资料等。
七、教学评价与反馈1. 在课堂上进行教学评价,分别针对基础知识、能力素养和实际应用进行评价;2. 提供针对性的反馈,帮助学生发现和解决问题。
八、教学延伸分式方程是解决实际问题中常见的数学工具,教师可引导学生继续探究其他类型的分式方程,如含有多个分式项的方程,或含有复杂系数的方程等,提升学生的数学建模能力。
《分式方程》教案教材分析:分式的方程是义务教育课程标准实验教科书(北师版)《数学》八年级下册第五章第四节内容,本章主要是研究分式与分式方程的应用;本节要求将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.经历“实际问题——分式方程模型——求解——解释解的合理性”的过程。
所以本节的重点是让学生掌握分式乘除法的法则及其应用。
教学目标:【知识与能力目标】(1)能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。
(2)经历“实际问题——分式方程模型——求解——解释解的合理性”的过程。
【过程与方法目标】(1)学会举一反三,进一步提高分析问题与解决问题的能力。
(2)提高学生的阅读理解能力,从多角度思考问题,注意检验,解释所获得结果的合理性。
【情感态度价值观目标】初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识;初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性;体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。
【教学重点】让学生掌握分式乘除法的法则及其应用。
【教学难点】分子、分母是多项式的分式的乘除法的运算。
教师准备课件、多媒体;学生准备;练习本;第一环节:回顾活动内容:1.列一元一次方程解应用题的一般步骤有哪些?2.列一元一次方程解下列应用题:某工人原计划13小时生产一批零件,后因每小时多生产10件,用12小时不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?活动目的:回顾列一元一次方程解应用题的一般步骤,引出新问题。
教学效果:首先请一位学生分析题中的已知条件和未知条件,列出题中所反应的等量关系式,再让所有学生列出方程并解出方程。
大部分学生依然记得列方程解应用题的基本方法,并能很快解出这一题。
只有小部分学生有些困难,在老师和同学的帮助下也能完成。
1、分式方程的教学设计一等奖一、教学目标1.使学生掌握的解法,能用去分母的方法或换元的方法求此类方程的解,并会验根。
2.通过本节课的教学,向学生渗透“转化”的数学思想方法;3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点。
二、重点·难点·疑点及解决办法1.教学重点:的解法.2.教学难点:解分式方程,学生不容易理解为什么必须进行检验.3.教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0。
三、教学步骤(一)教学过程1.复习提问(1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么?(2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么?(3)解方程,并由此方程说明解方程过程当中产生增根的原因。
通过(1)、(2)、(3)的准备,可直接点出本节的内容:的解法相同。
在教师点出本节内容的处理方法与以前所学的知识完全类同后,让全体学生对照前面复习过的分式方程的`解,来进一步加深对“类比”法的理解,以便学生全面地参与到教学活动中去,全面提高教学质量。
在前面的基础上,为了加深学生对新知识的理解,教师与学生共同分析解决例题,以提高学生分析问题和解决问题的能力。
2.例题讲解例1 解方程。
分析对于此方程的解法,不是教师讲如何如何解,而是让学生对已有知识的回忆,使用原来的方法,去通过试的手段来解决,在学生叙述过程当中,发现问题并及时纠正。
解:两边都乘以,得去括号,得整理,得解这个方程,得检验:把代入,所以是原方程的根。
北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)教学设计一. 教材分析北师大版数学八年级下册5.4《分式方程的概念及列分式方程》(第1课时)的内容包括分式方程的定义、性质和列分式方程的方法。
本节课内容是在学生已经掌握了分式的概念、性质、运算的基础上进行的,是初中数学的重要内容,也是解决实际问题的重要工具。
分式方程在实际生活中的应用非常广泛,如解决利润问题、浓度问题等。
通过本节课的学习,使学生掌握分式方程的基本概念和列方程的方法,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了分式的基本概念、性质和运算,具备了一定的数学基础。
但是,对于分式方程的概念和列方程的方法,学生可能还比较陌生,需要通过实例来理解和掌握。
此外,学生可能对解决实际问题中的方程有一定的恐惧心理,需要教师通过引导和鼓励来激发学生的学习兴趣和自信心。
三. 教学目标1.知识与技能目标:使学生掌握分式方程的定义、性质,学会列分式方程的方法。
2.过程与方法目标:通过自主学习、合作交流,培养学生解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:分式方程的定义、性质和列分式方程的方法。
2.难点:理解分式方程的实际意义,学会解决实际问题。
五. 教学方法1.自主学习:引导学生通过自主学习,掌握分式方程的基本概念和性质。
2.合作交流:学生进行小组讨论,分享彼此的学习心得和解决问题的方法。
3.实例分析:通过具体的实例,使学生理解和掌握分式方程的列法。
4.实践操作:让学生亲自动手解方程,提高学生的操作能力。
六. 教学准备1.课件:制作课件,展示分式方程的定义、性质和列方程的方法。
2.实例:准备一些实际问题,用于引导学生解决实际问题。
3.练习题:准备一些练习题,用于巩固学生对分式方程的理解和掌握。
七. 教学过程1.导入(5分钟)教师通过引入一些实际问题,如利润问题、浓度问题等,引导学生思考如何用数学方法解决这些问题。
分式方程教案(小学)一、教学目标:1. 了解分式方程的概念及其应用。
2. 掌握解分式方程的基本方法和技巧。
3. 能够运用所学知识解决实际问题。
4. 培养学生的逻辑思维和数学推理能力。
二、教学重点:1. 理解分式方程。
2. 掌握解分式方程的步骤和方法。
三、教学难点:1. 解决涉及分式的复杂方程。
2. 运用分式方程解决实际问题。
四、教学准备:1. 课件或黑板、白板。
2. 教学用具:纸和笔。
3. 练习题和解答。
五、教学过程:步骤一:导入(5分钟)教师通过讲解例子或提问的方式引入分式方程的概念,激发学生对分式方程的兴趣和思考。
步骤二:概念解释和例题演示(10分钟)1. 教师简要解释什么是分式方程,并给出一些简单分式方程的例子。
2. 教师通过具体的例题演示,展示解决分式方程的步骤和方法。
步骤三:小组讨论和解题练习(20分钟)1. 学生分成小组,讨论并解决一些给定的分式方程问题。
2. 学生通过解题练习,巩固所学知识和技巧。
步骤四:解题方法总结(10分钟)教师总结解决分式方程的基本方法和技巧,并与学生一起进行归纳总结。
步骤五:拓展应用(15分钟)教师通过实际生活中的例子,引导学生将所学的分式方程知识应用于实际问题的解决中。
步骤六:练习和评价(15分钟)1. 学生独立完成一些练习题,巩固所学知识。
2. 教师对学生的练习进行评价和反馈。
步骤七:课堂总结(5分钟)教师对本节课的学习内容进行总结,并展示学生的学习成果和进步。
六、教学延伸:1. 可以通过提供更多的分式方程练习题来锻炼学生的解题能力。
2. 可以引导学生尝试解决更复杂的分式方程问题,培养他们的数学思维和推理能力。
七、教学反思:本节课采用了导入、概念解释和例题演示、小组讨论和解题练习等多种教学方法,使学生在积极思考和互动中学习和掌握了分式方程的基本内容和解题方法。
通过课堂练习和评价,可以了解学生的学习情况并及时进行调整和反馈。
未来可以多进行实际问题的拓展应用,培养学生将所学知识运用于实际问题解决的能力。
分式方程教案模版一、教学目标:1. 理解分式方程的概念和性质;2. 学会解分式方程并应用解题技巧;3. 培养学生的推理和解决问题的能力。
二、教学重点:1. 分式方程的基本概念;2. 求解分式方程的方法和技巧;3. 实际问题中的分式方程应用。
三、教学难点:1. 解决复杂的分式方程;2. 分析实际问题并建立相应的分式方程。
四、教学准备:1. 教材:教材中有关分式方程的理论知识和习题;2. 教具:黑板、粉笔、而外写字工具;3. 其他辅助材料:教案、PPT等。
五、教学流程:1. 导入(5分钟)教师通过提问或举例的方式引入分式方程的概念,激发学生对数学问题的兴趣,并回顾分式的定义和性质。
2. 知识讲解(15分钟)a. 将分式方程的定义和性质进行详细讲解,包括分式方程的形式、解的概念和分式方程解的判断。
b. 介绍一元一次分式方程的解法和步骤,解释清楚解分式方程时需要注意的常见错误。
3. 解题方法与技巧(20分钟)a. 讲解解分式方程的常用方法和技巧,如通分、化简、消去等。
b. 通过具体的例题进行演示,并带领学生逐步分析解题的步骤和逻辑。
4. 练习与巩固(20分钟)a. 教师提供一些简单的练习题,让学生进行个别或小组讨论;b. 学生进行课堂练习,加深对分式方程解法的理解和掌握。
5. 拓展与应用(20分钟)a. 提供一些实际生活中能够建立分式方程的问题,并分步骤指导学生解题;b. 鼓励学生思考和探索更多分式方程的应用情境,并指导他们建立相应的方程。
6. 总结与归纳(10分钟)教师对本节课的内容进行总结,提醒学生掌握和记忆要点,并鼓励学生自主学习和思考。
七、教学反思:本节课以分式方程为主题,通过介绍分式方程的定义、性质和解题方法,培养学生对分式方程的理解和应用能力。
在教学过程中,利用多种教学方法,如讲解、演示、练习和探索等,激发学生的学习兴趣,以提高课堂效果。
整个教学流程清晰,环环相扣,有助于学生理解和掌握分式方程的解题方法和技巧,培养他们的数学思维和问题解决能力。
分式方程教案幼儿园一、教学目标:1. 让幼儿了解并理解分式方程的概念;2. 培养幼儿解决分式方程问题的能力;3. 培养幼儿的逻辑思维和推理能力;4. 培养幼儿的合作意识和团队精神。
二、教学准备:1. 教师准备一些简单的分式方程题目,如:1/x + 1/(x+1) = 1/2;2. 幼儿学习材料,如纸和铅笔;3. 幼儿游戏道具,如计数棒等。
三、教学过程:1. 导入新知:教师介绍分式方程的概念。
并以真实生活中的例子引出:如果小明的一半糖果加上他弟弟的三分之一糖果等于他们家里一共有的五分之二糖果,那么小明和他弟弟一共有多少个糖果?2. 给出解题方案:教师引导幼儿使用分式方程的方法来解决这个问题。
首先,设小明有x个糖果,弟弟有y个糖果,根据题意可以得到以下两个方程:1/2x + 1/3y = 5/2;x + y = ?;3. 进行解题练习:教师辅导幼儿使用适当的方法解决这个分式方程。
可以通过通分、消元等方法来解决,最终得到x和y的值。
4. 检查学习成果:教师提供其他类似的分式方程题目,让幼儿独立解决,并进行互相分享和讨论。
5. 游戏活动:教师引导幼儿进行分组活动,每个小组设计一个分式方程游戏,其他小组进行挑战。
通过游戏的方式,巩固幼儿对分式方程的理解和应用能力。
6. 小结:教师回顾今天学习的内容,提醒幼儿掌握了什么知识和技能,帮助他们总结经验和教训,形成正确的学习态度和方法。
四、教学反思:通过本课的教学,幼儿可以了解到分式方程的概念和应用方法,锻炼他们的逻辑思维和推理能力。
同时,通过游戏活动,培养了幼儿的合作意识和团队精神,使学习更加有趣和有意义。
然而,在教学过程中,教师需要注意引导幼儿的解题思路和方法,确保他们理解和掌握基本概念与技能。
另外,教师还需要根据幼儿的实际情况进行个性化的教学,确保每个幼儿都能够参与到学习中来,从而更好地达到教学目标。
分式方程教案模板一、教学目标:1. 了解分式方程的基本概念和性质;2. 学会解决基本的分式方程;3. 能够应用所学知识解决实际问题。
二、教学内容:1. 分式方程的基本概念;2. 分式方程的性质;3. 解决分式方程的方法;4. 实际问题的分式方程应用。
三、教学过程:1. 导入(5分钟):通过提问、举例等方式,引入分式方程的基本概念,引起学生的兴趣。
2. 知识讲解(20分钟):a. 分式方程的定义和性质;b. 分式方程的解法:通分,约分,化简,方程两边乘以相应因式等;c. 解决实际问题时的应用。
3. 解题演示(15分钟):在黑板上讲解并演示解决几个简单的分式方程的例子,引导学生掌握解题方法和步骤。
4. 练习与巩固(30分钟):把学生分成小组进行练习,每组完成一些分式方程的练习题,既可以巩固所学知识,又可以增强合作意识。
5. 拓展应用(15分钟):使用实际问题来应用所学的分式方程知识,帮助学生更好地理解和掌握。
6. 总结与评价(5分钟):对本节课所学内容进行总结,并针对学生的表现进行评价和激励。
四、教学工具:黑板、白板笔,多媒体投影仪。
五、教学评价:1. 学生能够正确理解分式方程的基本概念和性质;2. 学生能够熟练解决基本的分式方程;3. 学生能够应用所学知识解决实际问题。
六、教学反思:通过本节课的教学,学生对分式方程有了初步的了解,能够掌握一些基本的解题方法和步骤。
但是,在实际问题的应用方面,还需要进一步指导和引导,以提高学生的应用能力。
教师在教学过程中应注意引导学生思考、启发学生学习的兴趣,创设良好的学习氛围。
在巩固练习环节中,可以使用更加贴近学生实际生活和感兴趣的例子,以提高学生的学习积极性和主动性。
通过及时的评价和激励,增强学生对分式方程的学习兴趣和自信心。
5.4 分式方程
第1课时 分式方程的概念及列分式方程
学习目标:
1.通过对实际问题的分析,感受分式方程是刻画现实世界的有效模型,归纳分式方程的概念。
2.在活动中培养学生乐于探究合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值。
学习重点:
根据实际问题中的数量关系列出分式方程,归纳出分式方程的定义。
学习难点:
根据实际问题中的数量关系列出分式方程。
学习过程:
问题1:某市从今年1月1日起调整居民用水价格,每立方米水费上涨0.4元.小丽家去年12月的水费是15元,而今年7月份的水费是25元.
如果设去年每立方米水费为x 元。
那么今年每立方米水费为 _________ 元。
小丽家去年12月的用水量是_________立方米。
今年7月份的用水量是____________立方米
问题2: 有两快面积相同的小麦实验田,第一块 使用原品种,第二块使用新品种,分别收获小麦9000 ㎏和15000 ㎏,已知第一块的小麦实验田每公顷的产量比第二块少3000㎏,如何设未知数列方程?
问:(1)如果设第一块小麦实验田的每公顷的产量为 x ㎏,那么第二块实验田每公顷的产量为_______ ㎏.
(2)第一块试验田有__________公顷?
第二块试验田有__________公顷?
(3)、你能发现这个问题中的等量关系吗?第一块试验田面积=第二块试验田面积
(4)、你能根据面积相等列出方程吗?
问题3:从甲地到乙地有两条路可以走:一条全长600 km 普通公路,另一条是全长 480km 的高速公路,某客车在高速公路上行驶的平均速度比普通公路上快45km/h ,由高速公路从甲地到乙地的所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间?
1)、你能发现这个问题中的等量关系吗?
9000150003000x x =-
2)、你能根据等量关系列出分式方程吗?
解:设走高速公路需时间x 小时,可列方程,
比较左右两边的方程, 有什么不同?
分母中含有_________的方程叫做分式方程
练习1:
下列各式中,是分式方程的是( )
A.x +y =5
B.3252z y x -=+
C.x 1
D.5+x y =0
练习2: 为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款,已知第一次捐款总额为4800元,第二次捐款总额5000元,第二次捐款人比第一次多20人,而且两次人均捐款额正好相等,如果设第一次捐款的人数为x 人,那么你能列出分式方程吗?
练习3:中国2002年吸收外国的投资总额达 530亿美员元,比上一年增加了13%,设2001年我国吸收外国的投资为x 亿美元,请你 写出x 满足的方程式?
积累与总结:
1.
什么是分式方程? 2. 注意掌握列分式方程的基本步骤:
一审:审清题意,弄清已知量与未知量之间的数量关系和相等关系。
二设:设未知数。
三列:列代数式,列方程。
480600452x x =-21-2y=3- 42 y- 1=2- 55 6x-2 = 4x+ 4 y y ++9000150003000x x =+480600452x x
=
-。