2.1 二阶矩阵与平面列向量 (1)
- 格式:pdf
- 大小:149.48 KB
- 文档页数:6
《矩阵与变换》复习【知识梳理】1.二阶矩阵与平面向量:(1)矩阵的概念与表示:矩阵的行、列、元素;零矩阵、单位矩阵;行矩阵、列矩阵. (2)二阶矩阵与平面列向量的乘法:⎥⎦⎤⎢⎣⎡22211211a a a a ⎥⎦⎤⎢⎣⎡00y x = . (3)二阶矩阵M =⎥⎦⎤⎢⎣⎡d c b a 确定的变换T M 为:⎥⎦⎤⎢⎣⎡y x →⎥⎦⎤⎢⎣⎡''y x = = . 2.几种常见的平面变换:变换 恒等变换伸压变换反射变换旋转变换投影变换切变变换变换矩阵3.变换的复合与矩阵的乘法: (1)矩阵的乘法:⎥⎦⎤⎢⎣⎡22211211a a a a ⎥⎦⎤⎢⎣⎡22211211b b b b = . 4.逆变换与逆矩阵:(1)逆矩阵的概念:对于二阶矩阵A ,B ,若有 ,则称A 是可逆的,B 称为A 的逆矩阵,A 的逆矩阵记为 . (2)逆矩阵的几何意义: (3)二阶可逆矩阵A =⎥⎦⎤⎢⎣⎡d c b a的逆矩阵公式: . (4)若二阶矩阵A ,B 可逆,则(AB )-1= . 5.特征值与特征向量:(1)概念:设A 为二阶矩阵,若对于实数λ,存在一个非零向量α,使得 ,则称λ是A 的一个特征值,α是A 的属于特征值λ的一个特征向量. (2)特征多项式:f (λ) = . (3)特征值与特征向量的求解步骤:【典型例题】例1.已知变换T 把点(2,1),(-3,2)分别变换成点(7,0),(0,-7),(1)求变换T 对应的矩阵M ;(2)求直线l :x +5y -7=0在变换T 下所得的曲线方程.例2.在直角坐标系中,已知△ABC 的顶点坐标分别为A (0,0),B (1,1),C (0,2),M =⎥⎦⎤⎢⎣⎡1201,N =⎥⎦⎤⎢⎣⎡-0110求△ABC 在矩阵MN 作用下变换所得图形的面积.例3.已知矩阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211,定义其转置矩阵如下:A ′=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212221212111.(1)若A =⎥⎦⎤⎢⎣⎡d c b a ,写出A 的转置矩阵A ′,并求行列式|A |和|A ′|,两者有何关系? (2)若A ⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡43表示的方程组为⎩⎨⎧=+=-43352y x y x ,试求解A ′⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡-295表示的方程组.例4.已知矩阵A =⎥⎦⎤⎢⎣⎡d c 33,若矩阵A 属于特征值6的一个特征向量为⎥⎦⎤⎢⎣⎡=111α,属于特征值1的一个特征向量为⎥⎦⎤⎢⎣⎡-=232α. (1)求矩阵A 及其逆矩阵;(2)若向量α=⎥⎦⎤⎢⎣⎡-91,试计算A n α.【反馈练习】1.下列说法中正确的是 .①反射变换,伸压变换,切变变换都是初等变换; ②任何矩阵都有逆矩阵;③若M ,N 互为逆矩阵,则MN =E ; ④反射变换矩阵都是自己的逆矩阵. 2.已知A =⎥⎦⎤⎢⎣⎡--+y yx 2002,B =⎥⎦⎤⎢⎣⎡-y x x200,若A =B ,则xy = . 3.将平面内的图形绕原点逆时针旋转045的变换矩阵记为M ,曲线C :1=xy 在M 确定的变换T M 作用下变为了曲线C ',则C '的方程为 . 4.若⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-13913214M ,则M = ;若⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-13913214M ,则M = . 5.已知矩阵⎥⎦⎤⎢⎣⎡=2001M ,⎥⎥⎦⎤⎢⎢⎣⎡=10021N ,试求曲线C :y =sin x 在矩阵MN 变换下所得曲线的解析式.6.已知矩阵M =2313⎡⎢⎢⎢-⎢⎣ 1323⎤-⎥⎥⎥⎥⎦,N =2112⎡⎤⎢⎥⎣⎦及向量σ1=11⎡⎤⎢⎥⎣⎦,σ2=11⎡⎤⎢⎥-⎣⎦. (1)证明M 和N 互为逆矩阵;(2)证明σ1和σ2同时是M 和N 的特征向量.7.矩阵A =1102⎡⎤⎢⎥⎣⎦有特征向量α1=11⎡⎤⎢⎥⎣⎦,α2=10⎡⎤⎢⎥⎣⎦. (1)求出α1,α2对应的特征值;(2)对向量α=31⎡⎤⎢⎥⎣⎦,计算A n α.高三数学(理)《矩阵与变换》专题练习1、用矩阵与向量的乘法的形式表示方程组⎩⎨⎧-=-=+1y 2x 2y 3x 2其中正确的是( )A 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122132y x B 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122312y x C 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122132y x D 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-121223y x2、已知四边形ABCD 的顶点分别为A (-1,0),B (1,0),C (1,1),D (-1,1),四边形ABCD 在矩阵⎥⎦⎤⎢⎣⎡100a 变换作用下变成正方形,则a =( ) A 、21 B 、2 C 、3 D 、313、若矩阵M 1=⎥⎦⎤⎢⎣⎡1001,M 2=⎥⎦⎤⎢⎣⎡-1001,M 3=⎥⎦⎤⎢⎣⎡0101,则由M 1,M 2,M 3确定的变换分别是( )A 、恒等变换、反射变换、投影变换B 、恒等变换、投影变换、反射变换C 、投影变换、反射变换、恒等变换D 、反射变换、恒等变换、投影变换4、在直角坐标系xOy 内,将每个点的横坐标与纵坐标都变为原来的3倍,则该变换的矩阵是( )A 、1003⎛⎫⎪⎝⎭B 、0330⎛⎫⎪⎝⎭ C 、3003⎛⎫ ⎪⎝⎭ D 、3001⎛⎫⎪⎝⎭5、已知矩阵A =1111⎛⎫⎪-⎝⎭,B =2111-⎛⎫ ⎪-⎝⎭,则AB 等于( )A 、3120⎛⎫⎪-⎝⎭ B 、1032⎛⎫ ⎪-⎝⎭ C 、1302-⎛⎫ ⎪⎝⎭ D 、1320-⎛⎫ ⎪⎝⎭6、已知矩阵A = 1101-⎛⎫⎪⎝⎭,则矩阵A 的逆矩阵A -1等于( )A 、11221122⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭B 、11221122⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭C 、11221122⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭ D 、11221122⎛⎫⎪ ⎪ ⎪- ⎪⎝⎭7、点(-1,k )在伸压变换矩阵⎥⎦⎤⎢⎣⎡100m 之下的对应点的坐标为(-2,-4),则m 、k 的值分别为( )A 、2,4B 、-2,4C 、2,-4D 、-2,-48、设T 是以 ox 轴为轴的反射变换,则变换T 的矩阵为( )A 、⎥⎦⎤⎢⎣⎡-1001 B、 ⎥⎦⎤⎢⎣⎡-1001 C、 ⎥⎦⎤⎢⎣⎡--1001 D、⎥⎦⎤⎢⎣⎡01109、设A 是到ox 轴的正投影变换,A 把点P (x ,y )变成点P ′(x ,0),B 是到oy 轴的正投影变换B 把点P (x ,y )变成点P ″(0,y ),则变换A 和B 的矩阵分别为( ).A、⎥⎦⎤⎢⎣⎡0001,⎥⎦⎤⎢⎣⎡1000 B、⎥⎦⎤⎢⎣⎡1000,⎥⎦⎤⎢⎣⎡0001 C、⎥⎦⎤⎢⎣⎡0101,⎥⎦⎤⎢⎣⎡0001 D、⎥⎦⎤⎢⎣⎡0001,⎥⎦⎤⎢⎣⎡010110、计算:⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡321110=__________ 11、点A (1,2)在矩阵⎥⎦⎤⎢⎣⎡-1022对应的变换作用下得到的点的坐标是___________12、若点A 在矩阵1222-⎡⎤⎢⎥-⎣⎦对应的变换作用下下得到的点为(2,4),则点A 的坐标为_________ 13、将向量⎥⎦⎤⎢⎣⎡=12a 绕原点按逆时针方向旋转4π得到向量b ,则向量b 的坐标为___________14、在某个旋转变换中,顺时针旋转3π所对应的变换矩阵为______ 15、曲线y x =在矩阵0110⎡⎤⎢⎥⎣⎦作用下变换所得的图形对应的曲线方程为______ 16、曲线xy=1绕坐标原点逆时针旋转90°后得到的曲线方程是 ,变换对应的矩阵是__ 17、若曲线x 3cos 21y =经过伸压变换T 作用后变为新的曲线cos y x =,试求变换T 对应的矩阵M =___. 18、求矩阵3221A ⎡⎤=⎢⎥⎣⎦的逆矩阵.19、已知△ABO 的顶点坐标分别是A (4,2),B (2,4),O (0,0),计算在变换T M =1111⎡⎤⎢⎥-⎣⎦之下三个顶点ABO 的对应点的坐标.20、在平面直角坐标系xOy 中,设椭圆2241x y +=在矩阵⎣⎡⎦⎤2 00 1对应的变换作用下得到曲线F ,求F 的方程.21、求曲线C :1xy =在矩阵1111M ⎛⎫= ⎪-⎝⎭对应的变换作用下得到的曲线C 1的方程.22、求将曲线2y x =绕原点逆时针旋转90︒后所得的曲线方程.23、直角坐标系xOy 中,点(2,-2)在矩阵010M a ⎛⎫=⎪⎝⎭对应变换作用下得到点(-2,4),曲线22:1C x y +=在矩阵M 对应变换作用下得到曲线C ',求曲线C '的方程.24、设点P 的坐标为(1,-2),T 是绕原点逆时针方向旋转3π的旋转变换,求旋转变换T 对应的矩阵,并求点P 在T 作用下的象点P ′的坐标.25、在平面直角坐标系xOy 中,A(0,0),B(-3,),C(-2,1),设k ≠0,k ∈R ,M=⎥⎦⎤⎢⎣⎡100k ,N=⎥⎦⎤⎢⎣⎡0110,点A 、B 、C 在矩阵MN 对应的变换下得到点A 1,B 1,C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求实数k 的值.26、若点(2,2)A 在矩阵=M ⎝⎛ααsin cos ⎪⎪⎭⎫-ααcos sin 对应变换的作用下得到的点为B (2,2)-,求矩阵M 的逆矩阵.27、已知矩阵M=⎥⎦⎤⎢⎣⎡x 221的一个特征值为3,求其另一个特征值.28、设矩阵A =⎣⎡⎦⎤1 a 0 1(a ≠0)、(1)求A 2 ,A 3;(2)猜想A n (n ∈N *);(3)证明:A n (n ∈N *)的特征值是与n 无关的常数,并求出此常数.29、已知△ABC ,A(-1,0),B(3,0),C(2,1),对它先作关于x 轴的反射变换,再将所得图形绕原点逆时针旋转90°.(1)分别求两次变换所对应的矩阵M 1,M 2;(2)求点C 在两次连续的变换作用下所得到的点的坐标.30、已知矩阵A =⎣⎢⎡⎦⎥⎤ 3 3 c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤3-2、求矩阵A ,并写出A 的逆矩阵.31、已知矩阵11A ⎡=⎢-⎣ 24⎤⎥⎦,向量74α⎡⎤=⎢⎥⎣⎦. (1)求A 的特征值1λ、2λ和特征向量1α、2α; (2)计算5A α的值.32、已知矩阵11A ⎡=⎢-⎣ a b ⎤⎥⎦,A 的一个特征值2λ=,其对应的特征向是是121α⎡⎤=⎢⎥⎣⎦.(1)求矩阵A ;(2)若向量74β⎡⎤=⎢⎥⎣⎦,计算5A β的值.。
数学人教B版教材目录(必修选修)人教B版-----------------------------------必修1-----------------------------------第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图形(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(Ⅰ)2.4函数与方程2.4.1函数的零点求函数零点2.4.2近似解的一种方法----二分法第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)-----------------------------------必修2-----------------------------------第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥、棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面真角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式-----------------------------------必修3-----------------------------------第一章算法初步1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入、输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关第三章概率3.1随机现象3.1.1随机事件3.1.2时间与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用-----------------------------------必修4-----------------------------------第一章基本初等函(Ⅱ)1.1任意角的概念与弧度制1.1.1角的概念推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件与向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线的条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在集合中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积-----------------------------------必修5-----------------------------------第一章解直角三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划-----------------------------------选修1-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线及其标准方程2.3.2抛物线的几何性质第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何含义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用-----------------------------------选修1-2-----------------------------------第一章统计案例1.1独立性检验1.2回归分析第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法与除法第四章框图,4.1流程图4.2结构图-----------------------------------选修2-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程,由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常用函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法-----------------------------------选修2-3-----------------------------------第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数学特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行切割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定第二章圆锥、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义-----------------------------------选修4-2-----------------------------------第一章二阶矩阵与平面图形的变换1.1二阶矩阵1.2二阶矩阵与平面向量的乘法1.2.1二阶矩阵与平面向量的乘法1.2.2矩阵变换1.2.3几类特殊的矩阵变换1.3二阶方阵的乘法1.3.1二阶方阵的乘法1.3.2矩阵乘法的运算律第二章逆矩阵及其应用2.1逆矩阵2.1.1逆矩阵的定义2.1.2逆矩阵的性质2.1.3用二阶行列式求逆矩阵2.2二元一次方程组的矩阵解法2.2.1二元一次方程组解的含义2.2.2二元一次方程组的矩阵解法2.2.3解的存在性与唯一性第三章变换的不变量3.1平面变换的不变量3.1.1特征值与特征向量3.1.2特征值与特征向量的求法3.1.3特征值的不变性n3.2A?的简单表示-----------------------------------选修4-4-----------------------------------第一章坐标系1.1直角坐标系,平面上的伸缩变换1.1.1直角坐标系1.1.2平面的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆a,?1.4.2圆心在点?2?处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线和圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2抛物线的参数方程2.3.3双曲线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程-----------------------------------选修4-5-----------------------------------第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.1.1不等式的基本性质1.1.2一元一次不等式和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.3.1,a某?b,≤c,,a某?b,≥c型不等式的解法1.3.2,某?a,+,某?b,≤c,,某?a,+,某?b,≥c型不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法1.5.1比较法1.5.2综合法和分析法1.5.3反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.1.1平面上的柯西不等式的代数和向量形式2.1.2柯西不等式的一般形式及其参数配方法的证明2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.1.1数学归纳法原理3.1.2数学归纳法应用举例3.2用数学归纳法证明不等式,贝努利不等式3.2.1用数学归纳法证明不等式3.2.2用数学归纳法证明内努利不等式。
2.1 二阶矩阵与平面向量学习目标:1.矩阵的相关知识,如行、列、元素,零矩阵的意义和表示;2.握二阶矩阵与平面列向量的乘法法则;3.理解矩阵对应着向量集合到向量集合的映射。
学习过程:一、课前预习1. 矩阵的概念我们把形如24⎡⎤⎢⎥⎣⎦,80906085⎡⎤⎢⎥⎣⎦,23324m -⎡⎤⎢⎥⎣⎦这样的 (或 )阵列称为矩阵. 用大写黑体拉丁字母 或者 来表示矩阵,其中,i j 分别表示 所在的 与 . 同一横排中按原来次序排列的一行数(或字母)叫做 ;同一竖排中按原来次序排列的一列数(或字母)叫做 ;而组成矩阵的每一个数(或字母)称为 .2. 与矩阵有关的概念(1)零矩阵: ,记为 .(2)行矩阵: .(3)列矩阵: ,通常用 来表示.(4)n 阶矩阵n 阶矩阵.形如a b c d ⎡⎤⎢⎥⎣⎦的数表称为二阶矩阵. 3. 矩阵相等: ,记作 .4. 矩阵与平面向量的关系平面上向量(,)a x y =的坐标和平面上的点(,)P x y 都可以看成是行矩阵[,]x y ,也可以看成是x y ⎡⎤⎢⎥⎣⎦.因此,常把[,]x y 称为行向量,把x y ⎡⎤⎢⎥⎣⎦称为列向量.习惯上,把平面向量(,)x y 的坐标写成列向量x y ⎡⎤⎢⎥⎣⎦的形式.因此,x y ⎡⎤⎢⎥⎣⎦既可以表示点(,)x y ,也可以表示(,)OP x y =,在不引起混淆的情况下,不加以区别.5.行矩阵[]1112a a 与列矩阵1121b b ⎡⎤⎢⎥⎣⎦的乘法规则为: 。
6.二阶矩阵11122122a a a a ⎡⎤⎢⎥⎣⎦与列向量00x y ⎡⎤⎢⎥⎣⎦的乘法规则: 。
7.矩阵的变换一般地,对于平面上的任意一个点(向量)(,)x y ,按照对应法则T ,总能对应唯一的一个平面点(向量)(,)x y '',则称T 为一个 ,简记为: 或 由矩阵M 确定的变换T ,通常记作 .二、典型例题例1.(1)设矩阵A 为二阶矩阵,且规定其元素2,1,2;1,2ij a i j i j =+==,则A= 。
§2.1.2二阶矩阵与平面列向量的乘法教学目标:1、知识与技能:⑴通过具体的例子,理解并掌握二阶方阵左乘二维列向量的运算;理解二阶方阵左乘二维列向量就是把该向量变成另外一个向量.⑵理解矩阵对应着向量集合到向量集合的映射2、过程与方法:通过校运动会总分的计算,来归纳法则,进一步利用法则进行计算3、情感态度与价值观:以已有知识为平台,结合实例,创设良好情境,调动学生学习的积极性,发挥学生的主动性.重点难点:1、教学重点:掌握二阶方阵左乘二维列向量的运算及其变换作用。
2、教学难点:二阶方阵左乘二维列向量的变换作用。
教学方法:自主合作探究教具准备:多媒体设备教学过程:问题探究、引入概念【情境】下表是本次校运会高二年级部分班级获得名次的统计(单位:人次)。
⑴你能计算出各班团体总分吗?(第一到第六名的分值依次为7、5、4、3、2、1)⑵你能将以上的表格及运算过程用矩形的数表来表达吗? ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡142323214232325541143113=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡58536948⑶你能分别算出高二(3)、(4)班第一名、第二名共为本班得多少分吗? ⎥⎦⎤⎢⎣⎡2332⎥⎦⎤⎢⎣⎡57=⎥⎦⎤⎢⎣⎡3129 ⑷如果已知高二(3)、(4)班第一名、第二名的人次,即⎥⎦⎤⎢⎣⎡2332,为本班得分⎥⎦⎤⎢⎣⎡2322,你能算出第一、二名分别记分多少吗?设第一、二名的得分分别为x 、y ,则⎩⎨⎧=+=+23232232y x y x (*),得⎩⎨⎧==45y x 。
这个过程可以表示为:⎥⎦⎤⎢⎣⎡2332⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡2322 ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡123457合作学习、形成概念一般地,我们规定行矩阵[]1211a a 与列矩阵⎥⎦⎤⎢⎣⎡1211b b 的乘法法则为 [][]2112111121111211b a b a b b a a ⨯+⨯=⎥⎦⎤⎢⎣⎡二阶矩阵⎥⎦⎤⎢⎣⎡22211211a a a a 与列向量⎥⎦⎤⎢⎣⎡00y x 的乘法法则为 ⎥⎦⎤⎢⎣⎡⨯+⨯⨯+⨯=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡0220210120110022211211y a x a y a x a y x a a a a 。
一、二阶矩阵与平面图形的变换
(1)二阶矩阵的定义:由4个数a,b,c,d排成的正方形数表
称为二阶矩阵;
(2)几种特殊线性变换:主要有旋转变换、反射变换、伸压变换、投影变换、切变变换这几种。
求经矩阵变换后的解析式常采用数形结合的方法,先观察是属于哪一种变换,然后利用解析几何中的相关点法(转移代入法)来解。
二、矩阵的定义:
由m×n个数排成的m行n列的表
称为m行n列矩阵(matrix),简称m×n矩阵。
特殊形式矩阵:
(1)n阶方阵:在矩阵中,当m=n时,A称为n阶方阵;
(2)行矩阵:只有一行的矩阵叫做行矩阵;
列矩阵:只有一列的矩阵,叫做列矩阵;
(3)零矩阵:元素都是零的矩阵称作零矩阵。
三、矩阵的运算律:
(1)矩阵的和(差):当两个矩阵A、B的维数相同时,将它们各位置上的元素加(减)所得到的矩阵称为矩阵A、B的和(差),记作:。
运算律:加法运算律:;
加法结合律:。
(2)数乘矩阵:矩阵与实数的积:设为任意实数,把矩阵A的所有元素与相乘得到的矩阵叫做矩阵A与实数的乘积矩阵,记作:A。
运算律:()
分配律:;
结合律:。
(3)矩阵的乘积:一般地,设A是m×k阶矩阵,B是k×n阶矩阵,设C为m×n矩阵,如果矩阵C中第i行第j列元素是矩阵A第i个行向量与矩阵B的第j个列向量的数量积,那么矩阵C叫做A与B的乘积,记作:C=AB。
运算律:
分配律:;;
结合律:;。
注:(1)交换律不成立,即:AB≠BA;(2)只有当矩阵A的列数与矩阵B的行数相等时,矩阵之积才有意义。
选修4-2 ⎪⎪⎪矩阵与变换第一节平面变换、变换的复合与矩阵的乘法1.二阶矩阵与平面向量 (1)矩阵的概念在数学中,把形如⎣⎢⎡⎦⎥⎤13,⎣⎢⎡⎦⎥⎤2 315,⎣⎢⎡⎦⎥⎤1 3 42 0 -1这样的矩形数字(或字母)阵列称为矩阵,其中,同一横排中按原来次序排列的一行数(或字母)叫做矩阵的行,同一竖排中按原来次序排列的一列数(或字母)叫做矩阵的列,而组成矩阵的每一个数(或字母)称为矩阵的元素.(2)二阶矩阵与平面列向量的乘法①[a 11 a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11×b 11+a 12×b 21]; ②⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 2.几种常见的平面变换(1)当M =⎣⎢⎡⎦⎥⎤1 00 1时,则对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k001或M =⎣⎢⎡⎦⎥⎤100 k (k >0)确定的变换T M 称为(垂直)伸压变换.(3)反射变换是轴对称变换、中心对称变换的总称.(4)当M =⎣⎢⎡⎦⎥⎤cos θ -sin θsin θ cos θ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换. (6) 由矩阵M =⎣⎢⎡⎦⎥⎤1 k 0 1或M =⎣⎢⎡⎦⎥⎤1 0k 1确定的变换称为切变变换.3.矩阵的乘法一般地,对于矩阵M =⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22,N =⎣⎢⎡⎦⎥⎤b 11 b 12b 21 b 22,规定乘法法则如下:MN =⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤b 11 b 12b 21 b 22=⎣⎢⎡⎦⎥⎤a 11b 11+a 12b 21 a 11b 12+a 12b 22a 21b 11+a 22b 21 a 21b 12+a 22b 22. 4.矩阵乘法的几何意义(1)变换的复合:在数学中,一一对应的平面几何变换常可以看做是伸压、反射、旋转、切变变换的一次或多次复合,而伸压、反射、切变等变换通常叫做初等变换;对应的矩阵叫做初等变换矩阵.(2)矩阵乘法MN 的几何意义为:对向量α=⎣⎢⎡⎦⎥⎤x y 连续实施的两次几何变换(先T N 后T M )的复合变换.(3)当连续对向量实施n ·(n >1且n ∈N *)次变换T M 时,对应地我们记M n =M ·M ·…·M . 5.矩阵乘法的运算性质 (1)矩阵乘法不满足交换律对于二阶矩阵A ,B 来说,尽管AB ,BA 均有意义,但可能AB ≠BA . (2)矩阵乘法满足结合律设A ,B ,C 为二阶矩阵,则一定有(AB )C =A (BC ). (3)矩阵乘法不满足消去律.设A ,B ,C 为二阶矩阵,当AB =AC 时,可能B ≠C . [小题体验]1.已知矩阵A =⎣⎢⎡⎦⎥⎤1 82 3,矩阵B =⎣⎢⎡⎦⎥⎤1x y 3.若A =B ,则x +y =________.解析:因为A =B ,则⎩⎪⎨⎪⎧x =8,y =2,所以x +y =10.答案:102.已知变换⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤2x +3y x +y ,则它所对应的变换矩阵为________.解析:将它写成矩阵的乘法形式⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤2 31 1⎣⎢⎡⎦⎥⎤x y ,所以它所对应的变换矩阵为⎣⎢⎡⎦⎥⎤2 31 1. 答案:⎣⎢⎡⎦⎥⎤2 3111.矩阵的乘法对应着变换的复合,而两个变换的复合仍是一个变换,且两个变换的复合过程是有序的,易颠倒.2.矩阵乘法不满足交换律和消去律,但满足结合律. [小题纠偏]1.设A =⎣⎢⎡⎦⎥⎤1 23 4,B =⎣⎢⎡⎦⎥⎤4 2k 7,若AB =BA ,则实数k 的值为________.解析:AB =⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤4 2k 7=⎣⎢⎢⎡⎦⎥⎥⎤ 4+2k 1612+4k 34, BA =⎣⎢⎡⎦⎥⎤4 2k 7⎣⎢⎡⎦⎥⎤1 23 4=⎣⎢⎡⎦⎥⎤ 10 16k +21 2k +28,因为AB =BA ,故k =3. 答案:3 2.已知A =⎣⎢⎡⎦⎥⎤1 000,B =⎣⎢⎡⎦⎥⎤-1 0 01,C =⎣⎢⎡⎦⎥⎤-1 0 0 -1,计算AB ,AC . 解:AB =⎣⎢⎡⎦⎥⎤1 00 0⎣⎢⎡⎦⎥⎤-1 0 0 1=⎣⎢⎡⎦⎥⎤-1 0 0 0,AC =⎣⎢⎡⎦⎥⎤1 00 0⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 -1=⎣⎢⎡⎦⎥⎤-1 0 0 0.考点一 二阶矩阵的运算(基础送分型考点——自主练透)[题组练透]1.已知A =⎣⎢⎡⎦⎥⎤12 1212 12,B =⎣⎢⎡⎦⎥⎤1 1-1 -1,计算A 2,B 2.解:A 2=⎣⎢⎡⎦⎥⎤12 1212 12⎣⎢⎡⎦⎥⎤12 1212 12=⎣⎢⎡⎦⎥⎤12 1212 12.B 2=⎣⎢⎡⎦⎥⎤ 1 1-1 -1⎣⎢⎡⎦⎥⎤ 1 1-1 -1=⎣⎢⎡⎦⎥⎤0 00 0.2.(2014·江苏高考)已知矩阵A =⎣⎢⎡⎦⎥⎤-121 x,B =⎣⎢⎡⎦⎥⎤1 12 -1,向量α=⎣⎢⎡⎦⎥⎤2y ,x ,y 为实数.若Aα=Bα,求x +y 的值.解:由已知,得Aα=⎣⎢⎡⎦⎥⎤-1 21 x ⎣⎢⎡⎦⎥⎤2y =⎣⎢⎢⎡⎦⎥⎥⎤-2+2y 2+xy ,Bα=⎣⎢⎡⎦⎥⎤1 12 -1⎣⎢⎡⎦⎥⎤2y =⎣⎢⎢⎡⎦⎥⎥⎤2+y 4-y .因为Aα=Bα,所以⎣⎢⎢⎡⎦⎥⎥⎤-2+2y 2+xy =⎣⎢⎢⎡⎦⎥⎥⎤2+y 4-y , 故⎩⎪⎨⎪⎧-2+2y =2+y ,2+xy =4-y .解得⎩⎪⎨⎪⎧x =-12,y =4.所以x +y =72.3.已知矩阵A =⎣⎢⎡⎦⎥⎤1 012,B =⎣⎢⎡⎦⎥⎤-4 3 4 -2且α=⎣⎢⎡⎦⎥⎤34,试判断(AB )α与A (Bα)的关系.解:因为AB =⎣⎢⎡⎦⎥⎤1 01 2⎣⎢⎢⎡⎦⎥⎥⎤-4 3 4 -2=⎣⎢⎢⎡⎦⎥⎥⎤-4 3 4 -1, 所以(AB )α=⎣⎢⎢⎡⎦⎥⎥⎤-4 3 4 -1⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤08,因为Bα=⎣⎢⎢⎡⎦⎥⎥⎤-4 3 4 -2⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤04, A (Bα)=⎣⎢⎡⎦⎥⎤1 01 2⎣⎢⎡⎦⎥⎤04=⎣⎢⎡⎦⎥⎤08. 所以(AB )α=A (Bα).[谨记通法]1.矩阵的乘法规则两矩阵M ,N 的乘积C =MN 是这样一个矩阵; (1)C 的行数与M 的相同,列数与N 的相同;(2)C 的第i 行第j 列的元素C ij 由M 的第i 行与N 的第j 列元素对应相乘求和得到. [提醒] 只有M 的行数与N 的列数相同时,才可以求MN ,否则无意义. 2.矩阵的运算律 (1)结合律(AB )C =A (BC );(2)分配律A (B ±C )=AB ±AC ,(B ±C )A =BA ±CA ; (3)λ(AB )=(λA )B =A (λB ).考点二 平面变换的应用(重点保分型考点——师生共研)[典例引领]已知曲线C :xy =1,若矩阵M =⎣⎢⎡⎦⎥⎤22 -22 22 22对应的变换将曲线C 变为曲线C ′,求曲线C ′的方程.解:设曲线C 上一点(x ′,y ′)对应于曲线C ′上一点(x ,y ),所以⎣⎢⎡⎦⎥⎤22 -222222⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x y , 所以22x ′-22y ′=x ,22x ′+22y ′=y .所以x ′=x +y 2,y ′=y -x 2,所以x ′y ′=x +y 2×y -x 2=1, 所以曲线C ′的方程为y 2-x 2=2.[由题悟法]利用平面变换解决问题的类型及方法:(1)已知曲线C 与变换矩阵,求曲线C 在变换矩阵对应的变换作用下得到的曲线C ′的表达式,常先转化为点的对应变换再用代入法(相关点法)求解.(2)已知曲线C ′是曲线C 在平面变换作用下得到的,求与平面变换对应的变换矩阵,常根据变换前后曲线方程的特点设出变换矩阵,构建方程(组)求解.[即时应用]已知圆C :x 2+y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a 00b (a >0,b >0)对应的变换作用下变为椭圆x 29+y 24=1,求a ,b 的值.解:设P (x ,y )为圆C 上的任意一点,在矩阵A 对应的变换下变为另一个点P ′(x ′,y ′),则⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 00b ⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧x ′=ax ,y ′=by .又因为点P ′(x ′,y ′)在椭圆x 29+y 24=1上,所以a 2x 29+b 2y 24=1.由已知条件可知,x 2+y 2=1,所以a 2=9,b 2=4. 因为a >0,b >0,所以a =3,b =2.考点三 变换的复合与矩阵的乘法(重点保分型考点——师生共研)[典例引领]在平面直角坐标系xOy 中,已知点A (0,0),B (-2,0),C (-2,1).设k 为非零实数,矩阵M =⎣⎢⎡⎦⎥⎤k 001,N =⎣⎢⎡⎦⎥⎤011 0,点A ,B ,C 在矩阵MN 对应的变换下得到点分别为A 1,B 1,C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求k 的值.解:由题设得MN =⎣⎢⎡⎦⎥⎤k 00 1⎣⎢⎡⎦⎥⎤0 11 0=⎣⎢⎡⎦⎥⎤0 k 1 0, 由⎣⎢⎡⎦⎥⎤0 k 1 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0 k 1 0⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤ 0-2, ⎣⎢⎡⎦⎥⎤0 k 1 0⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ k-2,可知A 1(0,0),B 1(0,-2),C 1(k ,-2). 计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k |, 则由题设知:|k |=2×1=2. 所以k 的值为2或-2.[由题悟法]矩阵的乘法对应着变换的复合,而两个变换的复合仍是一个变换,且两个变换的复合过程是有序的,不能颠倒.二阶矩阵的运算关键是记熟运算法则.[即时应用]已知圆C :x 2+y 2=1,先将圆C 作关于矩阵P =⎣⎢⎡⎦⎥⎤1 002的伸压变换,再将所得图形绕原点逆时针旋转90°,求所得曲线的方程.解:绕原点逆时针旋转90°的变换矩阵Q =⎣⎢⎡⎦⎥⎤0 -11 0,则M =QP =⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤0 -21 0.设A (x 0,y 0)为圆C 上的任意一点,在T M 变换下变为另一点A ′(x 0′,y 0′),则⎣⎢⎡⎦⎥⎤x 0′y 0′=⎣⎢⎡⎦⎥⎤0 -21 0⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x 0′=-2y 0,y 0′=x 0, 所以⎩⎪⎨⎪⎧x 0=y 0′,y 0=-x 0′2.又因为点A (x 0,y 0)在曲线x 2+y 2=1上,所以(y 0′)2+⎝⎛⎫-x 0′22=1. 故所得曲线的方程为x 24+y 2=1.1.设M =⎣⎢⎡⎦⎥⎤110,N =⎣⎢⎢⎡⎦⎥⎥⎤1 0 0 12,求MN .解:MN =⎣⎢⎡⎦⎥⎤0 11 0⎣⎢⎢⎡⎦⎥⎥⎤1 0 012=⎣⎢⎢⎡⎦⎥⎥⎤0 12 1 0.2.(2016·南京三模)已知曲线C :x 2+2xy +2y 2=1,矩阵A =⎣⎢⎡⎦⎥⎤1210所对应的变换T 把曲线C 变成曲线C 1,求曲线C 1的方程.解:设曲线C 上的任意一点P (x ,y ),P 在矩阵A =⎣⎢⎡⎦⎥⎤1 21 0对应的变换下得到点Q (x ′,y ′).则⎣⎢⎡⎦⎥⎤1 21 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, 即⎩⎪⎨⎪⎧x +2y =x ′,x =y ′, 所以x =y ′,y =x ′-y ′2.代入x 2+2xy +2y 2=1,得y ′2+2y ′·x ′-y ′2+2⎝ ⎛⎭⎪⎫x ′-y ′22=1,即x ′2+y ′2=2, 所以曲线C 1的方程为x 2+y 2=2.3.(2016·南通、扬州、泰州、淮安三调)在平面直角坐标系xOy 中,直线x +y -2=0在矩阵A =⎣⎢⎡⎦⎥⎤1 a 12对应的变换作用下得到直线x +y -b =0(a ,b ∈R),求a +b 的值.解:设P (x ,y )是直线x +y -2=0上任意一点,由⎣⎢⎡⎦⎥⎤1 a 1 2⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +ay x +2y ,得(x +ay )+(x +2y )-b =0,即x +a +22y -b 2=0. 由条件得⎩⎪⎨⎪⎧a +22=1,-b 2=-2,解得⎩⎪⎨⎪⎧a =0,b =4,所以a +b =4.4.已知M =⎣⎢⎡⎦⎥⎤1 -22 3,W =⎣⎢⎡⎦⎥⎤ 2 -1-3 1,试求满足MZ =W 的二阶矩阵Z .解:设Z =⎣⎢⎡⎦⎥⎤a b c d , 则MZ =⎣⎢⎡⎦⎥⎤1 -22 3⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎢⎡⎦⎥⎥⎤a -2c b -2d 2a +3c 2b +3d . 又因为MZ =W ,且W =⎣⎢⎢⎡⎦⎥⎥⎤2 -1-3 1, 所以⎣⎢⎢⎡⎦⎥⎥⎤a -2c b -2d 2a +3c 2b +3d =⎣⎢⎢⎡⎦⎥⎥⎤ 2 -1-3 1, 所以⎩⎪⎨⎪⎧ a -2c =2,b -2d =-1,2a +3c =-3,2b +3d =1.解得⎩⎪⎨⎪⎧a =0,b =-17,c =-1,d =37.故Z =⎣⎢⎡⎦⎥⎤0 -17-137. 5.(2016·苏锡常镇一调)设矩阵M =⎣⎢⎡⎦⎥⎤1002,N =⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 1,试求曲线y =sin x 在矩阵MN 变换下得到的曲线方程.解:由题意得MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 1=⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 2. 设曲线y =sin x 上任意一点P (x ,y )在矩阵MN 变换下得到点P ′(x ′,y ′), 则⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 2⎣⎢⎡⎦⎥⎤x y , 即⎩⎪⎨⎪⎧ x ′=12x ,y ′=2y ,得⎩⎪⎨⎪⎧x =2x ′,y =12y ′.因为y =sin x ,所以12y ′=sin 2x ′,即y ′=2sin 2x ′.因此所求的曲线方程为y =2sin 2x .6.(2017·苏锡常镇调研)已知变换T 把平面上的点(3,-4),(5,0)分别变换成(2,-1),(-1,2),试求变换T 对应的矩阵M .解:设M =⎣⎢⎡⎦⎥⎤a b c d ,由题意,得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 3-4=⎣⎢⎡⎦⎥⎤ 2-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤50=⎣⎢⎡⎦⎥⎤-1 2,所以⎩⎪⎨⎪⎧3a -4b =2,3c -4d =-1,5a =-1,5c =2.解得⎩⎪⎨⎪⎧a =-15,b =-1320,c =25,d =1120.即M =⎣⎢⎡⎦⎥⎤-15 -1320251120. 7.(2016·南通、扬州、淮安、宿迁、泰州二调)在平面直角坐标系xOy 中,设点A (-1,2)在矩阵M =⎣⎢⎡⎦⎥⎤-1 0 01对应的变换作用下得到点A ′,将点B (3,4)绕点A ′逆时针旋转90°得到点B ′,求点B ′的坐标.解:设B ′(x ,y ),依题意,由⎣⎢⎡⎦⎥⎤-1 0 0 1⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤12,得A ′(1,2).则A ′B ―→=(2,2),A ′B ―→=(x -1,y -2).记旋转矩阵N =⎣⎢⎡⎦⎥⎤0 -11 0,则⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤22=⎣⎢⎢⎡⎦⎥⎥⎤x -1y -2,即⎣⎢⎡⎦⎥⎤-2 2=⎣⎢⎢⎡⎦⎥⎥⎤x -1y -2, 解得⎩⎪⎨⎪⎧x =-1,y =4,所以点B ′的坐标为(-1,4). 8.已知M =⎣⎢⎡⎦⎥⎤1 002,N =⎣⎢⎡⎦⎥⎤ 1 0-1 1,求曲线2x 2-2xy +1=0在矩阵MN 对应的变换作用下得到的曲线方程.解:MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤ 1 0-1 1=⎣⎢⎡⎦⎥⎤ 1 0-2 2, 设P (x ′,y ′)是曲线2x 2-2xy +1=0上任意一点,点P 在矩阵MN 对应的变换下变为点P ′(x ,y ),则有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ 1 0-2 2⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤ x ′-2x ′+2y ′,即⎩⎪⎨⎪⎧x =x ′,y =-2x ′+2y ′, 于是⎩⎪⎨⎪⎧x ′=x ,y ′=x +y 2.代入2x 2-2xy +1=0得xy =1,所以曲线2x 2-2xy +1=0在MN 对应的变换作用下得到的曲线方程为xy =1.第二节逆变换与逆矩阵、矩阵的特征值与特征向量1.逆变换与逆矩阵(1)对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵. (2)若二阶矩阵A ,B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.(3)利用行列式解二元一次方程组. 2.逆矩阵的求法一般地,对于二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,当ad -bc ≠0时,矩阵A 可逆,且它的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤ d ad -bc -b ad -bc -c ad -bc a ad -bc .3.特征值与特征向量的定义设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.4.特征多项式的定义设A =⎣⎢⎡⎦⎥⎤ab cd 是一个二阶矩阵,λ∈R ,我们把行列式f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc 称为A 的特征多项式.5.特征值与特征向量的计算设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征值,α为λ的特征向量,求λ与α的步骤为:第一步:令矩阵A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc =0,求出λ的值.第二步:将λ的值代入二元一次方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0,得到一组非零解⎣⎢⎡⎦⎥⎤x 0y 0,于是非零向量⎣⎢⎡⎦⎥⎤x 0y 0即为矩阵A 的属于特征值λ的一个特征向量.6.A n α(n ∈N *)的简单表示 (1)设二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,α是矩阵A 的属于特征值λ的任意一个特征向量,则A n α=λn α(n ∈N *).(2)设λ1,λ2是二阶矩阵A 的两个不同特征值,α,β是矩阵A 的分别属于特征值λ1,λ2的特征向量,对于平面上任意一个非零向量γ,设γ=t 1α+t 2β(其中t 1,t 2为实数),则A n γ=t 1λn 1α+t 2λn 2β(n ∈N *).[小题体验]1.矩阵M =⎣⎢⎡⎦⎥⎤1 6-2 -6 的特征值为__________.解析:矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -6 2 λ+6=(λ+2)(λ+3),令f (λ)=0,得M 的特征值为λ1=-2,λ2=-3.答案:-2或-3 2.设⎣⎢⎡⎦⎥⎤23是矩阵M =⎣⎢⎡⎦⎥⎤a 23 2的一个特征向量,则实数a 的值为________.解析:设⎣⎢⎡⎦⎥⎤23是矩阵M 属于特征值λ的一个特征向量,则⎣⎢⎡⎦⎥⎤a 23 2⎣⎢⎡⎦⎥⎤23=λ⎣⎢⎡⎦⎥⎤23,故⎩⎪⎨⎪⎧ 2a +6=2λ,12=3λ解得⎩⎪⎨⎪⎧λ=4,a =1.答案:11.不是每个二阶矩阵都可逆,只有当⎣⎢⎡⎦⎥⎤a b cd 中ad -bc ≠0时,才可逆,如当A =⎣⎢⎡⎦⎥⎤1 00 0,因为1×0-0×0=0,找不到二阶矩阵B ,使得BA =AB =E 成立,故A =⎣⎢⎡⎦⎥⎤1 00 0不可逆. 2.如果向量α是属于λ的特征向量,将它乘非零实数t 后所得的新向量tα与向量α共线,故tα也是属于λ的特征向量,因此,一个特征值对应多个特征向量,显然,只要有了特征值的一个特征向量,就可以表示出属于这个特征值的共线的所有特征向量了.[小题纠偏] 1.矩阵A =⎣⎢⎡⎦⎥⎤2 356的逆矩阵为____________. 解析:法一:设矩阵A 的逆矩阵A -1=⎣⎢⎡⎦⎥⎤x y z w ,则⎣⎢⎡⎦⎥⎤2 35 6⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤1 00 1, 即⎣⎢⎢⎡⎦⎥⎥⎤2x +3z 2y +3w 5x +6z 5y +6w =⎣⎢⎡⎦⎥⎤1 00 1, 所以⎩⎪⎨⎪⎧ 2x +3z =1,2y +3w =0,5x +6z =0,5y +6w =1,解得⎩⎪⎨⎪⎧x =-2,y =1,z =53,w =-23.故所求的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤-2153-23. 法二:注意到2×6-3×5=-3≠0, 故A 存在逆矩阵A -1,且A -1=⎣⎢⎢⎡⎦⎥⎥⎤6-3 -3-3-5-32-3=⎣⎢⎢⎡⎦⎥⎥⎤-2 1 53 -23.答案:⎣⎢⎢⎡⎦⎥⎥⎤-2 1 53-23 2.已知矩阵A =⎣⎢⎡⎦⎥⎤1 2a -4的一个特征值为λ,向量α=⎣⎢⎡⎦⎥⎤2-3是矩阵A 的属于λ的一个特征向量,则a +λ=_____.解析:因为Aα=λα,所以⎣⎢⎡⎦⎥⎤1 2a -4⎣⎢⎡⎦⎥⎤ 2-3=λ⎣⎢⎡⎦⎥⎤2-3,即⎩⎪⎨⎪⎧ 2-6=2λ,2a +12=-3λ,解得⎩⎪⎨⎪⎧a =-3,λ=-2,所以a +λ=-3-2=-5. 答案:-5考点一 求逆矩阵与逆变换(重点保分型考点——师生共研)[典例引领]已知矩阵A =⎣⎢⎡⎦⎥⎤-1 0 0 2,B =⎣⎢⎡⎦⎥⎤1 20 6,求矩阵A -1B . 解:设矩阵A 的逆矩阵为 ⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤-1 0 0 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 00 1,故a =-1,b =0,c =0,d =12.所以矩阵A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12. 所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -2 0 3.[由题悟法]求一个矩阵A 的逆矩阵或证明一个矩阵不可逆时,常用两种解法.法一:待定矩阵法:先设出其逆矩阵,根据逆矩阵的定义AB =BA =E ,应用矩阵相等的定义列方程组求解,若方程组有解,即可求出其逆矩阵,若方程组无解,则说明此矩阵不可逆,此种方法称为待定矩阵法.法二:利用逆矩阵公式,对矩阵A =⎣⎢⎡⎦⎥⎤ab cd :①若ad -bc =0,则A 的逆矩阵不存在.②若ad -bc ≠0,则A-1=⎣⎢⎢⎡⎦⎥⎥⎤ d ad -bc -b ad -bc -c ad -bc a ad -bc .[即时应用]已知A =⎣⎢⎢⎡⎦⎥⎥⎤1 0012,B =⎣⎢⎡⎦⎥⎤1 10 1,求矩阵AB 的逆矩阵.解:法一:因为A =⎣⎢⎢⎡⎦⎥⎥⎤1 0012,且1×12-0=12≠0,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤ 1212 -012-012 112=⎣⎢⎡⎦⎥⎤1 00 2, 同理B -1=⎣⎢⎡⎦⎥⎤1 -10 1. 因此(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤1 -10 1⎣⎢⎡⎦⎥⎤1 00 2=⎣⎢⎡⎦⎥⎤1 -20 2.法二:因为A =⎣⎢⎢⎡⎦⎥⎥⎤1 00 12,B =⎣⎢⎡⎦⎥⎤1 10 1,所以AB =⎣⎢⎢⎡⎦⎥⎥⎤1 00 12⎣⎢⎡⎦⎥⎤1 10 1=⎣⎢⎢⎡⎦⎥⎥⎤1 10 12,且1×12-0×1=12≠0,所以(AB )-1=⎣⎢⎢⎡⎦⎥⎥⎤1212 -112012 112=⎣⎢⎡⎦⎥⎤1 -20 2.考点二 特征值与特征向量的计算及应用(重点保分型考点——师生共研)[典例引领]已知矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a ∈R ,若点P (1,-2)在矩阵M 的变换下得到点P ′(-4,0). (1)求实数a 的值;(2)求矩阵M 的特征值及其对应的特征向量. 解:(1)由⎣⎢⎡⎦⎥⎤2 a 2 1⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0,得2-2a =-4⇒a =3.(2)由(1)知M =⎣⎢⎡⎦⎥⎤2 32 1,则矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2 -3 -2 λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f (λ)=0,得矩阵M 的特征值为-1与4.把λ=-1代入二元一次方程组⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0,得x +y =0,所以矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;把λ=4代入二元一次方程组⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0,得2x -3y =0.所以矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.[由题悟法](1)求矩阵A 的特征值与特征向量的一般思路为:先确定其特征多项式f (λ),再由f (λ)=0求出该矩阵的特征值,然后把特征值代入矩阵A 所确定的二元一次方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0,即可求出特征向量. (2)根据矩阵A 的特征值与特征向量求矩阵A 的一般思路:设A =⎣⎢⎡⎦⎥⎤a b c d ,根据Aα=λα构建a ,b ,c ,d 的方程求解.[即时应用]1.(2015·江苏高考)已知x ,y ∈R ,向量a =⎣⎢⎡⎦⎥⎤ 1-1是矩阵A =⎣⎢⎡⎦⎥⎤x1y 0的属于特征值 -2的一个特征向量,求矩阵A 以及它的另一个特征值.解:由已知,得Aa =-2a , 即⎣⎢⎡⎦⎥⎤x 1y 0⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤x -1 y =⎣⎢⎡⎦⎥⎤-2 2,则⎩⎪⎨⎪⎧ x -1=-2,y =2,即⎩⎪⎨⎪⎧x =-1,y =2, 所以矩阵A =⎣⎢⎡⎦⎥⎤-1 1 2 0.从而矩阵A 的特征多项式f (λ)=(λ+2)(λ-1), 所以矩阵A 的另一个特征值为1.2.已知二阶矩阵M 有特征值λ=3及对应的一个特征向量α1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(9,15),求矩阵M .解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=3⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤33,故⎩⎪⎨⎪⎧a +b =3,c +d =3. 又⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤ 915,故⎩⎪⎨⎪⎧-a +2b =9,-c +2d =15.联立以上两方程组解得a =-1,b =4,c =-3,d =6,故M =⎣⎢⎢⎡⎦⎥⎥⎤-1 4-3 6. 考点三 根据A ,α计算A n α(n ∈N *)(重点保分型考点——师生共研)[典例引领]给定的矩阵A =⎣⎢⎡⎦⎥⎤12-14,B =⎣⎢⎡⎦⎥⎤32.(1)求A 的特征值λ1,λ2及对应的特征向量α1,α2;(2)求A 4B .解:(1)设A 的一个特征值为λ,由题意知:⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -21 λ-4=0,即(λ-2)(λ-3)=0,所以λ1=2,λ2=3.当λ1=2时,由⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值2的特征向量α1=⎣⎢⎡⎦⎥⎤21;当λ2=3时,由⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤x y =3⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值3的特征向量α2=⎣⎢⎡⎦⎥⎤11. (2)由于B =⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤21+⎣⎢⎡⎦⎥⎤11=α1+α2,故A 4B =A 4(α1+α2)=24α1+34α2=16α1+81α2=⎣⎢⎡⎦⎥⎤3216+⎣⎢⎡⎦⎥⎤8181=⎣⎢⎡⎦⎥⎤113 97. [由题悟法]已知矩阵A 和向量α,求A n α(n ∈N *),其步骤为: (1)求出矩阵A 的特征值λ1,λ2和对应的特征向量α1,α2. (2)把α用特征向量的组合来表示:α=sα1+tα2.(3)应用A n α=sλn 1α1+tλn2α2表示A n α.[即时应用]已知M =⎣⎢⎡⎦⎥⎤1221,β=⎣⎢⎡⎦⎥⎤17,计算M 5β.解:矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -2-2 λ-1=λ2-2λ-3. 令f (λ)=0,解得λ1=3,λ2=-1,令⎣⎢⎡⎦⎥⎤1 22 1⎣⎢⎡⎦⎥⎤x y =3⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x +2y =3x ,2x +y =3y , 从而求得λ1=3的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,同理得对应λ2=-1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤1-1.令β=mα1+nα2,则m =4,n =-3. M 5β=M 5(4α1-3α2)=4(M 5α1)-3(M5α2)=4(λ51α1)-3(λ52α2)=4×35⎣⎢⎡⎦⎥⎤11-3×(-1)5⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤975969.1.(2016·无锡期末)已知矩阵A =⎣⎢⎡⎦⎥⎤100 2,B =⎣⎢⎡⎦⎥⎤120 1,若矩阵AB -1对应的变换把直线l变为直线l ′:x +y -2=0,求直线l 的方程.解:由题意得B -1=⎣⎢⎡⎦⎥⎤1 -20 1,所以AB -1=⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤1 -20 1=⎣⎢⎡⎦⎥⎤1 -20 2, 设直线l 上任意一点(x ,y )在矩阵AB -1对应的变换下为点(x ′,y ′),则⎣⎢⎡⎦⎥⎤1 -20 2⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,所以⎩⎪⎨⎪⎧x ′=x -2y ,y ′=2y ,将x ′,y ′代入l ′的方程,得(x -2y )+2y -2=0,化简后得l :x =2.2.(2016·江苏高考)已知矩阵A =⎣⎡⎦⎤10 2-2,矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2,求矩阵AB .解:设B =⎣⎡⎦⎤a cb d ,则B -1B =⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2⎣⎡⎦⎤a c bd =⎣⎡⎦⎤10 01, 即错误!=错误!,故⎩⎪⎨⎪⎧a -12c =1,b -12d =0,2c =0,2d =1,解得⎩⎪⎨⎪⎧a =1,b =14,c =0,d =12,所以B =⎣⎢⎡⎦⎥⎤1 1412. 因此,AB =⎣⎡⎦⎤102-2⎣⎢⎡⎦⎥⎤1 14012=⎣⎢⎢⎡⎦⎥⎥⎤1540 -1. 3.(2016·南京、盐城、连云港、徐州二模)已知a ,b 是实数,如果矩阵A =⎣⎢⎡⎦⎥⎤3 a b -2所对应的变换T 把点(2,3)变成(3,4).(1)求a ,b 的值;(2)若矩阵A 的逆矩阵为B ,求B 2.解:(1)由题意得⎣⎢⎡⎦⎥⎤3 a b -2⎣⎢⎡⎦⎥⎤23=⎣⎢⎡⎦⎥⎤34,所以6+3a =3,2b -6=4, 所以a =-1,b =5.(2)由(1)得A =⎣⎢⎢⎡⎦⎥⎥⎤3 -15 -2. 由矩阵的逆矩阵公式得B =⎣⎢⎢⎡⎦⎥⎥⎤2 -15 -3. 所以B 2=⎣⎢⎢⎡⎦⎥⎥⎤2 -15 -3⎣⎢⎢⎡⎦⎥⎥⎤2 -15 -3=⎣⎢⎢⎡⎦⎥⎥⎤-1 1-5 4. 4.(2016·常州期末)已知矩阵M =⎣⎢⎡⎦⎥⎤a 24 b 的属于特征值8的一个特征向量是e =⎣⎢⎡⎦⎥⎤11,点P (-1,2)在M 对应的变换作用下得到点Q ,求Q 的坐标.解:由题意知⎣⎢⎡⎦⎥⎤a 24 b ⎣⎢⎡⎦⎥⎤11=8×⎣⎢⎡⎦⎥⎤11,故⎩⎪⎨⎪⎧ a +2=8,4+b =8,解得⎩⎪⎨⎪⎧a =6,b =4,所以⎣⎢⎡⎦⎥⎤6 24 4⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2 4,所以点Q 的坐标为(-2,4). 5.(2016·苏州暑假测试)求矩阵M =⎣⎢⎡⎦⎥⎤-14 26的特征值和特征向量.解:特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ+1 -4 -2 λ-6=(λ+1)(λ-6)-8=λ2-5λ-14=(λ-7)(λ+2), 由f (λ)=0,解得λ1=7,λ2=-2.将λ1=7代入特征方程组,得⎩⎪⎨⎪⎧8x -4y =0,-2x +y =0,即y =2x ,可取⎣⎢⎡⎦⎥⎤12为属于特征值λ1=7的一个特征向量.同理,λ2=-2时,特征方程组是⎩⎪⎨⎪⎧-x -4y =0,-2x -8y =0,即x =-4y ,所以可取⎣⎢⎡⎦⎥⎤4-1为属于特征值λ2=-2的一个特征向量.综上所述,矩阵M =⎣⎢⎡⎦⎥⎤-1 4 2 6有两个特征值λ1=7,λ2=-2.属于λ1=7的一个特征向量为⎣⎢⎡⎦⎥⎤12,属于λ2=-2的一个特征向量为⎣⎢⎡⎦⎥⎤ 4-1.6.矩阵M =⎣⎢⎡⎦⎥⎤3 652有属于特征值λ1=8的一个特征向量e 1=⎣⎢⎡⎦⎥⎤65,及属于特征值λ2=-3的一个特征向量e 2=⎣⎢⎡⎦⎥⎤ 1-1.对向量α=⎣⎢⎡⎦⎥⎤38,计算M 3α.解:令α=me 1+ne 2,将具体数据代入,有m =1,n =-3,所以α=e 1-3e 2.所以M 3α=M 3(e 1-3e 2)=M 3e 1-3M3e 2=λ31e 1-3λ32e 2=83⎣⎢⎡⎦⎥⎤65-3×(-3)3⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤3 1532 479. 7.(2016·泰州期末)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤-1 2 52 x 的一个特征值为-2,求M 2. 解:把λ=-2代入⎪⎪⎪⎪⎪⎪⎪⎪λ+1 -2-52 λ-x =λ2-(x -1)λ-(x +5)=0,得x =3,第 21 页 共 21 页所以矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤-1 2 52 3,所以M 2=⎣⎢⎡⎦⎥⎤6 45 14. 8.已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4). 求:(1) 矩阵M;(2) 矩阵M 的另一个特征值,及对应的一个特征向量e 2的坐标之间的关系;(3) 直线l :x -y +1=0在矩阵M 的作用下的直线l ′的方程.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤88, 故⎩⎪⎨⎪⎧ a +b =8,c +d =8.⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2 4,故⎩⎪⎨⎪⎧-a +2b =-2,-c +2d =4. 联立以上两方程组,解得⎩⎪⎨⎪⎧ a =6,b =2,c =4,d =4,故M =⎣⎢⎡⎦⎥⎤6 24 4. (2) 由(1)知,矩阵M 的特征多项式为f (λ)=(λ-6)(λ-4)-8=λ2-10λ+16,故其另一个特征值为λ=2. 设矩阵M 的另一个特征向量是e 2=⎣⎢⎡⎦⎥⎤x y , 则Me 2=⎣⎢⎢⎡⎦⎥⎥⎤6x +2y 4x +4y =2⎣⎢⎡⎦⎥⎤x y ,解得2x +y =0. (3) 设点(x ,y )是直线l 上的任意一点,其在矩阵M 的变换下对应的点的坐标为(x ′,y ′),则⎣⎢⎡⎦⎥⎤6 24 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即x =14x ′-18y ′,y =-14x ′+38y ′,代入直线l 的方程后并化简,得x ′-y ′+2=0,即x -y +2=0.。
第一讲二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换。
一、二阶矩阵1.矩阵的概念① =OP → →[23][23]初赛复赛甲8090乙8688③概念一:象 的矩形数字(或字母)阵列称为矩[23]80908688⎡⎤⎢⎥⎣⎦23324m ⎡⎤⎢⎥-⎣⎦阵.通常用大写的拉丁字母A 、B 、C…表示, 横排叫做矩阵的行,竖排叫做矩阵的列.名称介绍:①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。
②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。
③行矩阵:[a 11,a 12](仅有一行)④列矩阵:(仅有一列)[a11a21]⑤向量=(x,y ),平面上的点P (x,y )都可以看成行矩阵或a →[,]x y 列矩阵,在本书中规定所有的平面向量均写成列向量的形式。
x y ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦练习1:1.已知,,若A=B ,试求⎥⎦⎤⎢⎣⎡-=243x A ⎥⎦⎤⎢⎣⎡-=21z y B z y x ,,2.设,,若A=B ,求x,y,m,n 的值。
23x A y ⎡⎤=⎢⎥⎣⎦2m n x y B x y m n ++⎡⎤=⎢⎥--⎣⎦概念二:由4个数a,b,c,d 排成的正方形数表称为二阶矩阵。
a,b,c,d a b c d ⎡⎤⎢⎥⎣⎦称为矩阵的元素。
①零矩阵:所有元素均为0,即,记为0。
0000⎡⎤⎢⎥⎣⎦②二阶单位矩阵:,记为E 2.1001⎡⎤⎢⎥⎣⎦二、二阶矩阵与平面向量的乘法定义:规定二阶矩阵A=,与向量的乘积为a b c d ⎡⎤⎢⎥⎣⎦x y α→⎡⎤=⎢⎥⎣⎦23m 3-24—2—3—[80 9086 88]23324x y mz x y z ++=⎧⎨-+=⎩23324m ⎡⎤⎢⎥-⎣⎦,即==ax by A cx dy α→+⎡⎤=⎢⎥+⎣⎦A α→a b c d ⎡⎤⎢⎥⎣⎦x y ⎡⎤⎢⎥⎣⎦ax by cx dy +⎡⎤⎢⎥+⎣⎦练习2:1.(1)=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-131021(2) =⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-3110212.=,求⎥⎦⎤⎢⎣⎡2101⎥⎦⎤⎢⎣⎡y x ⎥⎦⎤⎢⎣⎡-11⎥⎦⎤⎢⎣⎡y x 三、二阶矩阵与线性变换1.旋转变换问题1:P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P在此旋转变换作用下的象。
2.1.2 二阶矩阵与平面列向量的乘法
1.掌握二阶矩阵与平面列向量的乘法规则.
2.理解矩阵对应着向量集合到向量集合的映射.
[基础·初探]
1.行矩阵与列矩阵的乘法规则
=.
2.二阶矩阵与列向量的乘法规则
=.
3.平面向量的变换
一般地,对于平面上的任意一个点(向量)(x,y),按照对应法则T,总能对应惟一的一个平面点(向量)(x 2,y 2),则称T为一个变换,简记为:
T:(x,y)→(x 2,y 2)或T:→.
4.由二阶矩阵与平面列向量的乘积确定的平面向量的变换
一般地,对于平面向量的变换T,如果变换规则为
T:→=,那么根据二阶矩阵与列向量的乘法规则可以改写为T:→=的矩阵形式,反之亦然(a,b,c,d∈R).
由矩阵M确定的变换T,通常记作T M.根据变换的定义,它是平面内点集到其自身的一个映射.当±=表示某个平面图形F上的任意一点时,这些点就组成了图形F,它在T M的作用下,将得到一个新的图形F 2——原象集F的象集F 2.
[思考·探究]
1.二阶矩阵与平面列向量乘法的作用是什么?
【提示】 由二阶矩阵与平面列向量的乘法规则知:二阶矩阵与平面列向量乘法的作用是把向量变成了另一个向量
2.二阶矩阵与平面列向量乘法的几何意义是什么?
【提示】 由本节的知识点知,一个二阶矩阵可以看作一个特定的平面上
的几何变换,它将变换前的列向量表示平面上的点P(x,y),变成另一个列向量
表示的新的点P 2(ax+by,cx+dy).反过来,现有平面上的一个变换T:→,如果
=,即变换后的点的横坐标及纵坐标均可由原向量(点)的坐标表示出来,这时
变换T应为矩阵.
3.矩阵与列向量的乘法的几何意义与函数的概念有何区别?
【提示】 由二阶矩阵与平面列向量的乘法法则可以看出,其几何意义在
于它对应着平面上点与点之间的某种几何变换,这与以前所学的函数的概念有
所区别.函数是建立在数集上的对应,而由矩阵所确定的变换是建立在平面内点
集到其自身的一个映射.
[质疑·手记]
预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:
疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:
二阶矩阵与平面列向量的乘法运算
计算(1);
(2);
(3);
(4).
【精彩点拨】 根据矩阵与向量的乘法规则运算.
【自主解答】 (1)
==.
(2)==.
(3)==.
(4)==.
二阶矩阵与平面列向量的乘法运算,按照其乘法规则=进行.
本例中(1)(2)(3)运算结果所表示的几何意义是什么?
【解】 (1)在矩阵作用下,列向量变成,此时点P(5,7)变成了关于x轴对称的点P 2(5,-7).
(2)在矩阵作用下,列向量保持不变.
(3)在矩阵作用下,列向量变成了向量.
矩阵的变换
(1)已知变换→=,试将它写成坐标变换的形式;
(2)已知变换→=,试将它写成矩阵的乘法形式.
【导学号:30650005】【精彩点拨】 (1)根据矩阵与列向量乘法规则运算即得;
(2)关键找到将2x-3y及y用x,y表示出来的系数a,b,c,d.
【自主解答】 (1)根据矩阵与列向量的乘法规则,得
→=.
(2)由==
=得:→=.
1.将矩阵的乘法形式的变换写成坐标变换的形式,只需根据矩阵与列向量的乘法规则将矩阵的乘法进行运算即可.
2.将坐标变换的形式写成矩阵的乘法形式,关键是找到矩阵,使=.
已知变换→=,试将它写成矩阵的乘法形式.
【解】 由==
=得:→=.
在二阶矩阵对应的变换作用下点的
坐标的确定与应用
已知变换T:平面上的点P(2,-1),Q(-1,2)分别变换成P1(5,-6),Q1(2,0),求变换矩阵A.
【精彩点拨】 由题意可知,变换矩阵A为二阶矩阵,根据二阶矩阵与列向量的乘法可列出方程组,解方程组可求出二阶矩阵中的各元素.
【自主解答】 设所求的变换矩阵A=,
依题意,可得=,
=,
所以解得
故所求的变换矩阵A=.
1.设出所求的变换矩阵,将坐标变换写成矩阵的乘法的形式.
2.根据矩阵的乘法列出方程组求出各元素,即得所求矩阵.
如果矩阵把点A变成点A 2(3,2),求点A的坐标.
【解】 设变换T:
→=,
即
解得所以点A的坐标为(1,1).
[真题链接赏析]
(教材第11页习题第7题)设点P(a,b)(a,b∈R)在矩阵对应的变换作用下得到点P 2,求点P 2的坐标.
已知直线:l:ax+y=1在矩阵A=对应的变换作用下变为直
线l 2:x+by=1.
(1)求实数a,b的值;
(2)若点P(x0,y0)在直线l上,且A=,求点P的坐标.
【命题意图】 考查矩阵与矩阵变换.矩阵变换时,考查运算求解能力及化归与转化思想.
【解】 (1)设直线l:ax+y=1上任意点M(x,y)在矩阵A对应的变换作用下的像是M 2(x 2,y 2).
由==,得
又点M 2(x 2,y 2)在l 2上,所以x 2+by 2=1,
即x+(b+2)y=1.
依题意,得解得
(2)由A=,得解得y0=0.
又点P(x0,y0)在直线l上,所以x0=1.
故点P的坐标为(1,0).
1.设A=,±=,则A ±=________.
【解析】 A ±=
==.
【答案】
2.已知→=,则将它写成坐标变换的形式为:________.
【导学号:30650006】
【解析】 →==.
【答案】 →
3.线性变换写成矩阵与列向量的乘积的形式为________.
【解析】 ==
【答案】 =
4.若矩阵把点A变成点A 2(3,1),则点A的坐标为________.
【解析】 设变换T:→=,
即
解得
所以点A的坐标为(1,-3).
【答案】 (1,-3)
我还有这些不足:
(1)
(2)
我的课下提升方案:
(1)
(2) 。