2011-2019年新课标全国卷2理科数学试题分类汇编——8.三角函数与解三角形
- 格式:doc
- 大小:953.50 KB
- 文档页数:9
2011年—2019年全国卷(Ⅰ、Ⅱ、Ⅲ卷)理科数学试题分类汇编9.三角函数与解三角形一、选择题(2019·全国卷Ⅰ,理11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是( ) A .①②④B .②④C .①④D .①③(2019·全国卷Ⅱ,理9)下列函数中,以2π为周期且在区间(4π,2π)单调递增的是( )A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │(2019·全国卷Ⅱ,理10)已知(0)2πα∈,,2sin 2cos21αα=+,则sin α=( )A .15B C D (2019·全国卷Ⅲ,理12)设函数()sin(0)f x x ωω=+>,已知f (x )在[0,2π]有且仅有5个零点,下述四个结论:①f (x )在(0,2π)有且仅有3个极大值点;②f (x )在(0,2π)有且仅有2个极小值点;③f (x )在(0,)10π单调递增;④ω的取值范围是1229[,)510.其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④(2018·新课标Ⅱ,6)在ABC △中,cos2C =1BC =,5AC =,则AB =( )A .BCD .(2018·新课标Ⅲ,理4)若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-(2018·新课标Ⅲ,理9)ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( )A .2π B .3π C .4π D .6π(2017·新课标Ⅰ,9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2(2017·新课标Ⅲ,6)设函数()πcos 3f x x ⎛⎫=+⎪⎝⎭,则下列结论错误的是( ). A .()f x 的一个周期为2-πB .()y f x =的图像关于直线83x π=对称 C .()f x +π的一个零点为6x π=D .()f x 在π,2⎛⎫π⎪⎝⎭单调递减 (2016·新课标Ⅰ,12)已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5(2016·新课标Ⅱ,7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( ) A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈(2016·新课标Ⅱ,9)若3cos()45πα-=,则sin 2α =( ) A .725B .15C .15-D .725-(2016·新课标Ⅲ,5)若3tan 4α=,则2cos 2sin 2αα+=( ) A.6425 B. 4825 C. 1 D. 1625(2016·新课标Ⅲ,8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( )A.31010 B. 1010 C.1010- D. 31010- (2015·新课标Ⅰ,2)sin 20cos10cos160sin10-=( )A .32-B .32C .12-D .12(2015·新课标Ⅰ,8)函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z B .13(2,2),44k k k ππ-+∈Z C .13(,),44k k k -+∈Z D .13(2,2),44k k k -+∈Z(2014·新课标Ⅰ,6)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )(2014·新课标Ⅰ,8)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=(2014·新课标Ⅱ,4)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5B .5C .2D .1(2012·新课标Ⅰ,9)已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2](2011·新课标Ⅰ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )A .45-B .35-C .35D .45(2011·新课标Ⅰ,11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增二、填空题(2019·全国卷Ⅱ,理15)ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.(2018·新课标Ⅰ,理16)已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是 .(2018·新课标Ⅲ,理15)函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. (2018·新课标Ⅱ,理15)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.(2017·新课标Ⅱ,14)函数()23sin 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 . (2016·新课标Ⅱ,13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 45A =,1cos 53C =,a = 1,则b = .(2016·新课标Ⅲ,14)函数sin y x x =-的图像可由函数sin y x x =的图像至少向右平移______个单位长度得到.(2015·新课标Ⅰ,16)在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .(2014·新课标Ⅰ,16)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 . (2014·新课标Ⅱ,14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________.(2013·新课标Ⅰ,15)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.(2013·新课标Ⅱ,15)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_________.(2011·新课标Ⅰ,16)在ABC 中,60,B AC ==2AB BC +的最大值为 .三、解答题(2019·全国卷Ⅰ,理17)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .(2019·全国卷Ⅲ,理18)△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,已知sin =sin 2A Ca b A +. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.(2018·新课标Ⅰ,理17)在平面四边形ABCD 中,o ADC 90=∠,oA 45=∠,2=AB ,5=BD .(1)求ADB ∠cos ;(2)若22=DC ,求BC .(2017·新课标Ⅰ,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长(2017·新课标Ⅱ,17)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2BA C +=. (1)求cosB ;(2)若6a c += , ABC ∆面积为2,求.b .(2017·新课标Ⅲ,17)ABC △的内角,,A B C 的对边分别为,,a b c ,已知sin 0A A +=,a =2b =.(1)求c ;(2)设D 为BC 边上一点,且 AD AC ⊥,求ABD △的面积.(2016·新课标Ⅰ,17)ABC ∆内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2. (Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆周长.(2015·新课标Ⅱ,17)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin B C ∠∠;(Ⅱ) 若AD =1,DC ,求BD 和AC 的长.(2013·新课标Ⅰ,17)如图,在△ABC 中,∠ABC =90°,AB BC =1,P 为△ABC 内一点,∠BPC=90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .(2013·新课标Ⅱ,17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.(2012·新课标Ⅰ,17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos sin 0a C C b c --=.(1)求A ;(2)若2a =,△ABC b ,c .2011年—2019年全国卷(Ⅰ、Ⅱ、Ⅲ卷)理科数学试题分类汇编9.三角函数与解三角形(逐题解析版)一、选择题(2019·全国卷Ⅰ,理11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是( ) A .①②④B .②④C .①④D .①③【答案】C 解析:因为()sin sin()sin sin ()f x x x x x f x -=-+-=+=,所以()f x 是偶函数,①正确;因为52,(,)632ππππ∈,而52()()63f f ππ<,所以②错误, 画出函数()f x 在[],ππ-上的图像,很容易知道()f x 有3零点,所以③错误, 结合函数图像,可知()f x 的最大值为2,④正确,故答案选C. (2019·全国卷Ⅱ,理9)下列函数中,以2π为周期且在区间(4π,2π)单调递增的是( )A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=c os│x │D .f (x )= sin │x │【答案】A 解析:f (x )=sin|x |不是周期函数,可排除D 选项; f (x )=cos|x |的周期为2π,可排除C 选项;f (x )=|sin2x |在处取得最大值,不可能在区间(,)单调递增,可排除B .方法2:对于A ,如图,以()1cos4cos22x f x x +==12T π=,且在区间,42ππ⎛⎫⎪⎝⎭单调递增;A 对.对于B ,如图,以()1cos4sin 22x f x x -==12T π=,且在区间,42ππ⎛⎫⎪⎝⎭单调递减;B 错. 对于C ,()cos cos f x x x ==,2T π=,C 错对于D ,()()()sin 0sin sin 0x x f x x x x ≥⎧⎪==⎨-≤⎪⎩,如图,不是周期函数, D 错;故选A.(2019·全国卷Ⅱ,理10)已知(0)2πα∈,,2sin 2cos21αα=+,则sin α=( )A .15B .5 C .3 D .25【答案】B 解析:24sin cos 2cos ααα=()cos 2sin cos 0ααα⇒-= ,0,2πα⎛⎫∈ ⎪⎝⎭,1tan 2α∴=,5sin α=.(2019·全国卷Ⅲ,理12)设函数()sin()(0)5f x x πωω=+>,已知f (x )在[0,2π]有且仅有5个零点,下述四个结论:①f (x )在(0,2π)有且仅有3个极大值点;②f (x )在(0,2π)有且仅有2个极小值点;③f (x )在(0,)10π单调递增;④ω的取值范围是1229[,)510.其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④【答案】D【基本解法】令05wx π+=,得05x wπ=-<,令52wx ππ+=,得3010x wπ=>, 设()f x 的正零点从小到大一次为()i x i Z +∈由图可知(1)正确; 极小值个数 可能是2个或3个,故(2)错误令555wx ππ+=,解得5245x πω=令665wx ππ+=,解得6295x πω=,解不等式562x x π≤<,得1229510ω≤<,(4)正确 010x π<<时,(,)55105w wx ππππ+∈+29(,)(0,)5101052ππππ⊆⨯+⊆故()f x 在(0,)10π单调递增 ,故(3)正确。
2011-2019新课标三角函数分类汇编一、选择题【2011新课标】5. 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( B ) (A )45-(B )35- (C )35 (D )45【2011新课标】11. 设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( A ) (A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 【2011新课标】12. 函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于( D )(A )2 (B) 4 (C) 6 (D)8【2012新课标】9. 已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
则ω的取值范围是( A )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2]【解析】592()[,]444x πππωω=⇒+∈ 不合题意 排除()D 351()[,]444x πππωω=⇒+∈ 合题意 排除()()B C【2013新课标1】12、设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,…若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n2,则( B )A 、{S n }为递减数列B 、{S n }为递增数列12C 、{S 2n -1}为递增数列,{S 2n }为递减数列D 、{S 2n -1}为递减数列,{S 2n }为递增数列【答案】1111111111202b a c c a c c a c =->>∴->∴>且b111111111120b a a c a a c b a c ∴-=--=->∴>>11111111111222a b c a a c c a c a c -<∴--<∴>∴>又111111112(2)22n n n n n n n n b c c a b c a b c a ++++++=+∴+-=+-由题意,b 1120222n n n n n n n n b c a b c a a b c a ∴+-=∴+==∴+=11111112(2)22n n n n n n n n nc b a b bb c b a b a b ++++----=∴--==-又由题意, 111111111()()()22n n n n b a a b b a b a -+∴-=-∴-=-- 11111111111()(),2()()22n n n n n b a b a c a b a b a --∴=+--=-=---21111111111111333311()()()()()222222n n n a a a a S a a b a a b a --⎡⎤⎡⎤∴=------+--⎢⎥⎢⎥⎣⎦⎣⎦ 222122*********()()()0)4444n a a a b a b a -⎡⎤⎡⎤=---->⎢⎥⎢⎥⎣⎦⎣⎦单调递增(可证当n=1时【2014新课标1】8.设α∈(0,),β∈(0,),且tanα=,则( C ) A. 3α﹣β=B. 3α+β=C. 2α﹣β=D. 2α+β=【答案】由tanα=,得:,即sinαcosβ=cosαsinβ+cosα, sin (α﹣β)=cosα.由等式右边为单角α,左边为角α与β的差,可知β与2α有关.排除选项A ,B 后验证C , 当时,sin (α﹣β)=sin ()=cosα成立。
2019年普通高等学校招生全国统一考试(全国卷II )(数学理)【教师简评】按照“保持整体稳定,推动改革创新,立足基础考查,突出能力立意”命题指导思想,本套试卷的总体印象是:题目以常规题为主,难度较前两年困难,得高分需要扎扎实实的数学功底.1.纵观试题,小题起步较低,难度缓缓上升,除了选择题11、12、16题有一定的难度之外,其他题目难度都比较平和.2.解答题中三角函数题较去年容易,立体几何难度和去年持平,数列题的难度较去年有所提升,由去年常见的递推数列题型转变为今年的数列求极限、数列不等式的证明,不易拿满分,概率题由去年背景是“人员调配”问题,转变为今年的与物理相关的电路问题,更体现了学科之间的联系.两道压轴题以解析几何和导数知识命制,和去年比较更有利于分步得分.3.要求考生有比较强的计算能力,例如立体几何问题,题目不难,但需要一定的计算技巧和能力.不管题目难度如何变化,“夯实双基(基础知识、基本方法)”,对大多数考生来说,是以不变应万变的硬道理.(1)复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i +【答案】A【命题意图】本试题主要考查复数的运算. 【解析】231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. (2).函数1ln(1)(1)2x y x +-=>的反函数是 (A ) 211(0)x y ex +=-> (B )211(0)x y e x +=+> (C )211(R)x y ex +=-∈ (D )211(R)x y e x +=+∈【答案】D【命题意图】本试题主要考察反函数的求法及指数函数与对数函数的互化。
【解析】由原函数解得,即,又;∴在反函数中,故选D. (3).若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A )1 (B )2 (C )3 (D )4【答案】C【命题意图】本试题主要考查简单的线性规划问题.【解析】可行域是由A(1,1),B(1,4),C(1,1)---构成的三角形,可知目标函数过C 时最大,最大值为3,故选C.(4).如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++=(A )14 (B )21 (C )28 (D )35【答案】C【命题意图】本试题主要考查等差数列的基本公式和性质. 【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++=== (5)不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<<(C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C (6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像 (A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位 【答案】B【命题意图】本试题主要考查三角函数图像的平移.【解析】s i n (2)6y x π=+=sin 2()12x π+,sin(2)3y x π=-=sin 2()6x π=-,所以将s i n (2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3y x π=-的图像,故选B. (8)ABC V 中,点D 在AB 上,CD 平方ACB ∠.若C B a =u u r ,CA b =uu r ,1a =,2b =,则CD =uu u r(A )1233a b + (B )2133a b + (C )3455a b + (D )4355a b + 【答案】B【命题意图】本试题主要考查向量的基本运算,考查角平分线定理.【解析】因为CD 平分ACB ∠,由角平分线定理得AD CA 2=DB CB 1=,所以D 为AB 的三等分点,且22AD AB (CB CA)33==-,所以2121CD CA+AD CB CA a b 3333==+=+,故选B.(9)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积, 设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C. (10)若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =(A )64 (B )32 (C )16 (D )8【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力.. 【解析】332211',22y x k a --=-∴=-,切线方程是13221()2y a a x a ---=--,令0x =,1232y a -=,令0y =,3x a =,∴三角形的面积是121331822s a a -=⋅⋅=,解得64a =.故选A.(11)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个(C )有且只有3个 (D )有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.(12)已知椭圆2222:1(0)x y C a b a b+=>>F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B (C (D )2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B. 第Ⅱ卷注意事项:1.用0.5毫米的黑色字迹签字笔在答题卡上作答。
2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—8.三角函数、解三角形2011年—2018年新课标全国卷Ⅰ文科数学分类汇编7.三角函数、解三角形一、选择题2018年新课标Ⅰ文8题:已知函数$f(x)=2\cos x-\sin x+2$,则$f(x)$的最小正周期为$\pi$,最大值为3.2018年新课标Ⅰ文11题:已知角$\alpha$的顶点为坐标原点,始边与$x$轴的非负半轴重合,终边上有两点$A(1,0)$,$B(2,b)$,且$\cos2\alpha=\frac{1}{5}$,则$a-b=\frac{1}{5}$。
2018年新课标Ⅱ文7题:在$\triangle ABC$中,$\cos C=\frac{5}{\sqrt{26}}$,$BC=1$,$AC=5$,则$AB=5\sqrt{2}$。
2018年新课标Ⅱ文10题:若$f(x)=\cos x-\sin x$在$[0,a]$是减函数,则$a$的最大值是$\frac{3\pi}{4}$。
2018年新课标Ⅲ文4题:若$\sin \alpha=\frac{1}{\sqrt{8}}$,则$\cos 2\alpha=-\frac{7}{8}$。
2018年新课标Ⅲ文6题:函数$f(x)=\frac{\tan x}{1+\tan^2 x}$的最小正周期为$\pi$。
2018年新课标Ⅲ文11题:triangle ABC$的内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$。
若$\triangle ABC$的面积为$4$,则$\cosC=\frac{3}{4}$。
2017年新课标Ⅰ文11题:triangle ABC$的内角$A$、$B$、$C$的对边分别为$a$、$b$、$c$。
已知$\sin B+\sin A(\sin C-\cos C)=\frac{3}{2}$,$a=2$,$c=2$,则$C=\frac{\pi}{3}$。
绝密★启用前2019年普通高等学校招生全国统一考试(全国2卷)理科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A ={x|x 2﹣5x+6>0},B ={x|x ﹣1<0},则A ∩B =()A .(﹣∞,1)B .(﹣2,1)C .(﹣3,﹣1)D .(3,+∞)2.(5分)设z =﹣3+2i ,则在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)已知=(2,3),=(3,t ),||=1,则?=()A .﹣3B .﹣2C .2D .34.(5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:+=(R +r ).设α=.由于α的值很小,因此在近似计算中≈3α3,则r 的近似值为()A .RB .RC .R D .R5.(5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A .中位数B .平均数C .方差D .极差6.(5分)若a >b ,则()A .ln (a ﹣b )>0B .3a<3bC .a 3﹣b 3>0D .|a|>|b|7.(5分)设α,β为两个平面,则α∥β的充要条件是()A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.(5分)若抛物线y 2=2px (p >0)的焦点是椭圆+=1的一个焦点,则p =()A .2B .3C .4D .89.(5分)下列函数中,以为周期且在区间(,)单调递增的是()A .f (x )=|cos2x|B .f (x )=|sin2x|C .f (x )=cos|x |D .f (x )=sin|x|10.(5分)已知α∈(0,),2sin2α=cos2α+1,则sin α=()A .B .C .D .11.(5分)设F 为双曲线C :﹣=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ|=|OF |,则C 的离心率为()A .B .C .2D .12.(5分)设函数f (x )的定义域为R ,满足f (x+1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x ﹣1).若对任意x ∈(﹣∞,m],都有f (x )≥﹣,则m 的取值范围是()A .(﹣∞,]B .(﹣∞,]C .(﹣∞,]D .(﹣∞,]二、填空题:本题共4小题,每小题5分,共20分。
2019年高考全国Ⅱ卷理数试题和答案2019年高考全国Ⅱ卷理数试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.( )A. B. C. D.2.设集合,.若,则( )A. B. C. D.3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A.1盏B.3盏C.5盏D.9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A. B. C. D.5.设,满足约束条件,则的最小值是( )A. B. C. D.6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的,则输出的( )A.2B.3C.4D.59.若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为( )A.2B.C.D.10.已知直三棱柱中,,,,则异面直线与所成角的余弦值为( )A. B. C. D.11.若是函数的极值点,则的极小值为( )A. B. C. D.112.已知是边长为2的等边三角形,P为平面ABC内一点,则的最小值是( )A. BmC. D.二、填空题:本题共4小题,每小题5分,共20分。
2011年—2019年全国卷(Ⅰ、Ⅱ、Ⅲ卷)理科数学试题分类汇编8.函数与导数一、填空题(2019·全国卷Ⅰ,理3)已知0.20.32log 0.220.2a b c ===,,,则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<(2019·全国卷Ⅰ,理5)函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为( ) A .B .C .D .(2019·全国卷Ⅱ,理6)若a b >,则( )A .ln()0a b ->B .33a b <C .330a b ->D .a b >(2019·全国卷Ⅱ,理12)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦ B .7,3⎛⎤-∞ ⎥⎝⎦ C .5,2⎛⎤-∞ ⎥⎝⎦ D .8,3⎛⎤-∞ ⎥⎝⎦(2019·全国卷Ⅲ,理6)已知曲线ln xy ae x x =+在(1,)ae 处的切线方程为y =2x +b ,则( )A .,1a e b ==-B .,1a e b ==C .1,1a e b -==D .1,1a e b -==-2019·全国卷Ⅲ,理7) 函数3222x xx y -=+在[6,6]-的图像大致为( )A .B .C .D . (2019·全国卷Ⅲ,理11)设f (x )是定义域为R 的偶函数,且在(0,+∞)单调递减,则( )A .233231(log )(2)(2)4f f f -->> B .233231(log )(2)(2)4f f f -->>C .233231(2)(2)(log )4f f f -->>D .233231(2)(2)(log )4f f f -->>(2018·新课标Ⅰ,理5)设函数()32(1)f x x a x ax =+-+,若()x f 为奇函数,则曲线()x f y =在点()0,0处的切线方程为( )A .x y 2-= B. x y -= C. x y 2= D.x y =(2018·新课标Ⅰ,理9)已知函数()0ln 0x e x f x x x ⎧=⎨>⎩,≤,,()()g x f x x a =++,若()g x 存在2个零点,则a 的取值范围是( ) A .[)10-,B .[)0+∞,C .[)1-+∞,D .[)1+∞,(2018·新课标Ⅱ,3)函数()2x xe ef x x --=的图象大致是( )(2018·新课标Ⅱ,10)若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .2πB .2π C .34π D .π(2018·新课标Ⅱ,11)已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( ) A .50-B .0C .2D .50(2018·新课标Ⅲ,理7)函数422y x x =-++的图像大致为( )(2018·新课标Ⅲ,理12)设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+(2017·新课标Ⅰ,5)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是( ) A .[2,2]- B . [1,1]-C . [0,4]D . [1,3](2017·新课标Ⅰ,11)设,,x y z 为正数,且235x y z ==,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z (2017·新课标Ⅱ,11)若2x =-是函数21`()(1)x f x x ax e-=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1 (2017·新课标Ⅲ,11)已知函数()()2112ee x xf x x x a --+=-++有唯一零点,则a =( )A .12-B .13C .12D .1(2016·新课标Ⅰ,7)函数xe x y -=22在]2,2[-的图像大致为( )C .D . (2016·新课标Ⅰ,8)若1>>b a ,10<<c ,则( )A .c c b a <B .c c ba ab <C .c b c a a b log log <D .c c b a log log <(2016·新课标Ⅱ,12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1()mi i i x y =+=∑ ( )A .0B .mC .2mD .4m(2016·新课标Ⅲ,6)已知4213332,3,25a b c ===,则( )A. b a c <<B. a b c <<C. b c a <<D. c a b <<(2015·新课标Ⅰ,12)设函数()f x =(21)xe x ax a --+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,2e 4⎡⎫-⎪⎢⎣⎭ C .33,2e 4⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭(2015·新课标Ⅱ,5)设函数211log (2)(1)()2(1)x x x f x x -+-<⎧=⎨≥⎩,则2(2)(l og 12)f f -+=( )A.3 B.6 C.9 D.12(2015·新课标Ⅱ,10)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x. 将动点P到A,B两点距离之和表示为x的函数f(x),则f(x)的图像大致为()A.B.C.D.(2015·新课标Ⅱ,12)设函数()f x'是奇函数()()f x x R∈的导函数,(1)0f-=,当x>0时,()()0xf x f x'-<,则使得f (x) >0成立的x的取值范围是()A.(,1)(0,1)-∞-B.(1,0)(1,)-+∞C.(,1)(1,0)-∞--D.(0,1)(1,)+∞(2014·新课标Ⅰ,3)设函数()f x,()g x的定义域都为R,且()f x是奇函数,()g x是偶函数,则下列结论正确的是()A.()f x()g x是偶函数B.|()f x|()g x是奇函数C.()f x|()g x|是奇函数D.|()f x()g x|是奇函数(2014·新课标Ⅰ,11)已知函数()f x=3231ax x-+,若()f x存在唯一的零点x,且x>0,则a的取值范围为()A.(2,+∞)B.(-∞,-2)C.(1,+∞)D.(-∞,-1)(2014·新课标Ⅱ,8)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.3(2014·新课标Ⅱ,12)设函数()3xf xmπ=,若存在()f x的极值点x满足22200[()]x f x m+<,则m 的取值范围是()A.(,6)(6,+)-∞-∞B.(,4)(4,+)-∞-∞C.(,2)(2,+)-∞-∞D.(,1)(4,+)-∞-∞(2013·新课标Ⅰ,11)已知函数f(x)=220ln(1)0.x x xx x⎧-+≤⎨+>⎩,,,若|f(x)|≥ax,则a的取值范围是().A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0](2013·新课标Ⅱ,8)设3log6a=,5log10b=,7log14c=,则()A.c b a>> B.b c a>> C.a c b>> D.a b c>>(2013·新课标Ⅱ,10)已知函数32()f x x ax bx c=+++,下列结论中错误的是()A.00,()0x f x∃∈=RB.函数()y f x =的图像是中心对称图形C.若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D.若0x 是()f x 的极值点,则0()0f x '= (2012·新课标Ⅰ,10)已知函数1()ln(1)f x x=+,则()y f x =的图像大致为( )(2012·新课标Ⅰ、Ⅱ,12)设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为( ) A .1ln2-B ln 2)-C .1ln2+D ln 2)+(2011·新课标Ⅰ、Ⅱ,2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( ) A .3y x = (B) 1y x =+ C .21y x =-+ (D) 2xy -=(2011·新课标Ⅰ、Ⅱ,9)由曲线y =2y x =-及y 轴所围成的图形的面积为( )A .103 B .4 C .163D .6 (2011·新课标Ⅰ、Ⅱ,12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于( )A .2B .4C .6D .8 二、填空题(2019·全国卷Ⅰ,理13)曲线23()e xy x x =+在点(0)0,处的切线方程为____________.(2019·全国卷Ⅱ,理14)已知()f x 是奇函数,且当0x <时,()e a x f x =-.若(ln 2)8f =,则a =__________.(2018·新课标Ⅱ,理13)曲线()2ln 1y x =+在点()00,处的切线方程为__________.(2018·新课标Ⅲ,理14)曲线()1x y ax e =+在点()01,处的切线的斜率为2-,则a =________. (2017·新课标Ⅲ,15)设函数()1020x x x f x x +⎧=⎨>⎩,,,,则满足()112f x f x ⎛⎫+-> ⎪⎝⎭的x 的取值范围是________.(2016·新课标Ⅱ,16)若直线y = kx +b 是曲线y = ln x +2的切线,也是曲线y = ln(x +1)的切线,则b = . (2016·新课标Ⅲ,15)已知f (x )为偶函数,当0x <时,()()ln 3f x x x =-+,则曲线()y f x =在点()1,3-处A .B .D .的切线方程是______(2015·新课标Ⅰ,13)若函数f (x )=x ln (x a =(2014·新课标Ⅱ,15)已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________. (2013·新课标Ⅰ,16)若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值为_____. 三、解答题(2019·全国卷Ⅰ,理20)已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点.(2019·全国卷Ⅱ,理20)已知函数()11ln x f x x x -=-+.(1)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(2)设0x 是()f x 的一个零点,证明曲线ln y x =在点00(,ln )A x x 处的切线也是曲线e xy =的切线.(2019·全国卷Ⅲ,理20)已知函数32()2f x x ax b =-+.(1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为-1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.(2018·新课标I ,理21)已知函数()1ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:()()12122f x f x a x x -<--.(2018·新课标Ⅱ,理21)已知函数()2x f x e ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在()0+∞,只有一个零点,求a .(2018·新课标Ⅲ,理21)已知函数()()()22ln 12f x x ax x x =+++-.(1)0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若0x =是()f x 的极大值点,求a .(2017·新课标Ⅰ,21)已知函数()()22xx f x aea e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(2017·新课标Ⅱ,21)已知函数2()ln ,f x ax ax x x =--且()0f x ≥.(1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220()2e f x --<<.(2017·新课标Ⅲ,)21.已知函数()1ln f x x a x =--. (1)若()0f x ,求a 的值;(2)设m 为整数,且对于任意正整数n ,21111+1++222n m ⎛⎫⎛⎫⎛⎫< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭1,求m 最小值.(2016·新课标Ⅰ,12)已知函数2)1()2()(-+-=x a e x x f x 有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x .(2016·新课标Ⅱ,21)(Ⅰ)讨论函数2()2x x f x e x -=+ 的单调性,并证明当x >0时,(2)20xx e x -++>;(Ⅱ)证明:当[0,1)a ∈时,函数2()=(0)x e ax ag x x x -->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.(2015·新课标Ⅰ,12)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min{,}m n 表示,m n 中的最小值,设函数min{),()(}()h x f x g x =(0x >),讨论()h x 零点的个数.(2016·新课标Ⅲ,21)设函数()()()cos 21cos 1f x a x a x =+-+,其中0a >,记()f x 的最大值为A .(1)求()'f x ;(2)求A ;(3)证明:()'2f x A ≤.(Ⅰ)证明:f (x)在(-∞,0)单调递减,在(0,+∞)单调递增;(Ⅱ)若对于任意x1,,x2∈[-1,1],都有|f (x1)- f (x2)|≤ e-1,求m的取值范围.(2014·新课标Ⅰ,21)设函数1(0lnxxbef x ae xx-=+,曲线()y f x=在点(1,(1)f处的切线为(1)2y e x=-+.(Ⅰ)求,a b;(Ⅱ)证明:()1f x>.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).(2013·新课标Ⅰ,理21)设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2.(1)求a ,b ,c ,d 的值;(2)若x ≥-2时,f (x )≤kg (x ),求k 的取值范围.(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.(2012·新课标Ⅰ、Ⅱ,21)已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-. (1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值.(2011·新课标Ⅰ、Ⅱ,21)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围.2011年—2018年新课标全国卷理科数学试题分类汇编8.函数与导数(解析版)一、填空题(2019·全国卷Ⅰ,理3)已知0.20.32log 0.220.2a b c ===,,,则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<【答案】B 解析:2log 0.20a =<;0.221b =>,0.300.21c <=<,得a c b <<. (2019·全国卷Ⅰ,理5)函数f (x )=2sin cos ++x xx x在[,]-ππ的图像大致为( ) A .B .C .D .【答案】D 解析:因为()2(sin )()cos x x f x f x x x -+-==-+故函数为奇函数,排除A ;又2()01f πππ=>-,排除B ,C 。
2019年普通高等学校招生全国统一考试理科数学全国Ⅱ卷注意事项:1.答卷前,考生务必将自己的姓名、生生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12个题,每小题5分,共60分。
在每个题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合A={x|x2-5x+6>0},B={x|x-1<0},则A ∩B=( )A. (-∞, 1)B. (-2, 1)C. (-3, -1)D. (3, +∞)2. 设Z=-3+2i ,则复平面内z r对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知AB u u u r =(2, 3),AC u u u r =(3, t),||BC uuu r =1,则AB u u u r ·BC uuu r =( )A. -3B. -2C. 2D. 34. 2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:.设,由于α的值很小,因此在近似计算中,则r 的近似值为 A.B.C.D5. 演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A .中位数B .平均数C .方差D .极差 6. 若a >b ,则( )A.ln a-b ()>0 B. 3a<3bC. a 3-b 3>0 D. |a|>|b| 7. 设α,β为两个平面,则α|| β的充要条件是( )A. α内有无数条直线与β平行B. α内有两条相交直线与β平行C. α,β平行于同一条直线D. α,β垂直于同一平面8. 若抛物线y 2=2px(p >0)的焦点是椭圆22x y +=13p p的一个焦点,则p=( ) A. 2 B. 3 C. 4 D. 8 9. 下列函数中,以2π为周期,且在区间(4π, 2π)上单调递增的是( ) A. f(x)=|cos2x| B. f(x)=|sin2x| C. f(x)=cos|x| D. f(x)=sin|x| 10. 已知α∈(0,2π),2sin2α=cos2α+1则sin α=( )A.1511. 设F 为双曲线2222x y -=1a b(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点,若|PQ|=|OF|,则C 的离心率为( )12. 设函数f(x)的定义域为R ,满足f(x+1)=2f(x),且当x ∈(0, 1]时,f(x)=x(x-1),若对任意m ∈(-∞, m ],都有f(x)≥-98,则m 的取值范围为( ) A. (-∞, 94] B. (-∞, 73] C. (-∞, 52] D. (-∞, 83]二、填空题:本题共4小题,每小题5分,共20分。
2011年—2019年新课标全国卷Ⅱ理科数学试题分类汇编10.三角函数一、选择题(2019·9)下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A .f (x )=│cos2x │B .f (x )=│sin2x │C .f (x )=cos│x │D .f (x )=sin │x │ (2019·10)已知α∈(0,2π),2sin2α=cos2α+1,则sin α=A .15 B .5 C .3 D .5(2018·6)在ABC △中,cos2C =1BC =,5AC =,则AB =A .BCD .(2018·10)若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π(2016·7)若将函数y=2sin2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为 A .()Z k k x ∈-=62ππ B .()Z k k x ∈+=62ππ B .()Z k k x ∈-=122ππ D .()Z k k x ∈+=122ππ (2016·9)若cos(απ-4)=53,则sin α2= ( ) A .257 B .51 C .51- D .257- (2014·4)钝角三角形ABC 的面积是21,AB=1,BC=2,则AC = ( ) A .5 B. 5 C. 2 D. 1(2012·7)已知α为第二象限角,33cos sin =+αα,则α2cos = ( ) A .35- B .95- C .95 D .35-(2012·9)已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=( ) A .π4 B .π3 C .π2D .3π4 (2011·7)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y = 2x 上,则cos2θ =( )A .45-B .35-C .35D .45(2011·11)设函数()sin(2)cos(2)44f x x x ππ=+++,则( ) A .y = f (x )在(0)2,π单调递增,其图像关于直线4x π=对称 B .y = f (x )在(0)2,π单调递增,其图像关于直线2x π=对称 C .y = f (x )在(0)2,π单调递减,其图像关于直线4x π=对称 D .y = f (x )在(0)2,π单调递减,其图像关于直线2x π=对称 二、填空题(2019·15)ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b a c B ===,则ABC △的面积为_________.(2018·15)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.(2016·13)ABC ∆的内角C B A ,,的对边分别为c b a ,,.若54cos =A ,135cos =C ,1=a ,则=b _________.(2014·14)函数()()()ϕϕϕ+-+=x x x f cos sin 22sin 的最大值为_________.(2012·14)当函数()π20cos 3sin ≤≤-=x x x y 取得最大值时,=x ___________. (2011·15)在△ABC 中B=120°,AC=7,AB=5,则△ABC 的面积为_________.三、解答题(2015·17)在ΔABC 中,D 是BC 上的点,AD 平分△BAC ,BD=2DC. (Ⅰ)求sin sin BC ∠∠;(Ⅱ)若△BAC=60°,求△B.(2014·17)四边形ABCD 的内角A 与C 互补,AB=1,BC=3,CD=DA=2.(△)求C 和BD ;(△)求四边形ABCD 的面积.(2012·17)ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知()1cos cos =+-B C A ,c a 2=,求C .。
2011年—2019年新课标全国卷Ⅱ理科数学试题分类汇编(逐题解析版)8.三角函数与解三角形一、选择题(2019·全国卷Ⅱ,理9)下列函数中,以2π为周期且在区间(4π,2π)单调递增的是( )A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │(2019·全国卷Ⅱ,理10)已知(0)2πα∈,,2sin 2cos21αα=+,则sin α=( )A .15B C D(2018·6)在ABC △中,cos 2C =,1BC =,5AC =,则AB =( )A .BCD .(2016·7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( ) A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈(2016·9)若3cos()45πα-=,则sin 2α =( ) A .725B .15C .15-D .725-(2014·4)钝角三角形ABC 的面积是12,AB =1,BC ,则AC =( )A .5BC .2D .1(2012·9)已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是() A. 15[,]24B. 13[,]24C. 1(0,]2D. (0,2](2011·5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( )A .45-B .35-C .35D .45(2011·11)设函数()sin()cos()(0,||)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增 二、填空题(2019·全国卷Ⅱ,理15)ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.(2018·15)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.(2017·14)函数()23sin 4f x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 . (2016·13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c o s 45A =,1cos 53C =,a = 1,则b = .(2014·14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________.(2013·15)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_________.(2011·16)在△ABC 中,60,B AC ==2AB BC +的最大值为 . 三、解答题(2017·17)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2B AC +=. (1)求cos B ;(2)若6a c += , ABC ∆面积为2,求.b .(2015·17)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin BC∠∠;(Ⅱ) 若AD =1,DC =2 ,求BD 和AC 的长.(2013·17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.(2012·17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,0sin 3cos =--+c b C a C a . (Ⅰ)求A ;(Ⅱ)若a =2,△ABC 的面积为3,求b ,c .2011年—2018年新课标全国卷Ⅱ理科数学试题分类汇编8.三角函数与解三角形(逐题解析版)一、选择题(2019·全国卷Ⅱ,理9)下列函数中,以2π为周期且在区间(4π,2π)单调递增的是( )A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │【答案】A 解析:f (x )=sin|x |不是周期函数,可排除D 选项; f (x )=cos|x |的周期为2π,可排除C 选项;f (x )=|sin2x |在处取得最大值,不可能在区间(,)单调递增,可排除B .方法2:对于A ,如图,以()cos2f x x ==12T π=,且在区间,42ππ⎛⎫⎪⎝⎭单调递增;A 对.对于B ,如图,以()sin 2f x x ==12T π=,且在区间,42ππ⎛⎫⎪⎝⎭单调递减;B 错. 对于C ,()cos cos f x x x ==,2T π=,C 错对于D ,()()()sin 0sin sin 0x x f x x x x ≥⎧⎪==⎨-≤⎪⎩,如图,不是周期函数, D 错;故选A.(2019·全国卷Ⅱ,理10)已知(0)2πα∈,,2sin 2cos21αα=+,则sin α=( )A .15B C D 【答案】B 解析:24sin cos 2cos ααα=()cos 2sin cos 0ααα⇒-= ,0,2πα⎛⎫∈ ⎪⎝⎭,1tan 2α∴=,sin α=.(2018·新课标Ⅱ,6)在ABC △中,cos2C =,1BC =,5AC =,则AB =( )A .BCD .【答案】A 解析:因为2cos 2cos 12CC =-,所以 23cos 215C =-=-⎝⎭, 由余弦定理可知:2222cos AB AC BC AC BC C =+-⋅,222351251325AB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,故,AB =(2016·7)B 解析:平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈,故选B .(2016·9)D 解析:∵3cos()45πα-=,2ππ7sin 2cos(2)cos[2()]2cos ()124425παααα=-=-=--=,故选D .(2014·4)B 解析:∵1||||sin 2ABC S AB BC B ∆=⋅⋅,即:111sin 22B =⋅,∴sin 2B =,即45B =或135. 又∵222||||||2||||cos AC AB BC AB BC B =+-⋅⋅,∴2||1AC =或5,又∵ABC ∆为钝角三角形,∴2||5AC =,即:||AC =(2012·9)A 解析:由322,22442k k k ππππππωπωπ+≤+<+≤+∈Z 得,1542,24k k k ω+≤≤+∈Z ,15024∵,∴ωω>≤≤.(2011·5)B 解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,故选B.(2011·11)A 解析:())(0,||)42f x x ππωϕωϕ=++><的最小正周期为π,所以2ω=,又()()f x f x -=,∴ f (x )为偶函数,=+,4k k Z πϕπ∴∈,())2f x x x π∴=+=,故选A.二、填空题(2019·全国卷Ⅱ,理15)ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.【答案】 解析:由余弦定理得:2222cos b a c ac B =+-.又2,6,3a cb B π===.解得c =,a =1sin 2S ac B ==解法2:由正弦定理得:22sin 4sin a c R A R C =⇒=,sin 2sin A C =.又π,3B A B C π=++=,所以2sin 2sin 3A A π⎛⎫=-⎪⎝⎭,cos 0A =,则2A π=.所以6C π=.由正弦定理得sin sin a bA B=,c =1sin 2S bc A ==(2018·新课标Ⅱ,理15)15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.【答案】12-【解析】解法一:2222sin cos 1sin cos 2sin cos 1cos sin 0cos sin 2cos sin 0a αβαβαβαββαβ⎧+=++=⎧⎪−−−−→⎨⎨+=++=⎪⎩⎩两边平方 ()()122sin cos cos sin 1sin 2αβαβαβ−−−−→++=⇒+=-对位相加解法二: sin cos 1cos 1sin cos sin 0sin cos αββααββα+==-⎧⎧⇒⎨⎨+==-⎩⎩① ()()()sin sin cos cos sin sin 1sin cos cos sin 1αβαβαβααααα+=+=-+-=- ② ()()22221sin cos 11sin cos 1sin 2ββααα+=⇒-+-=⇒=综上所述:()1sin 2αβ+=-解法三:特殊值法设1sin cos 2αβ==,则cos α=,sin β=,()1sin sin cos cos sin 2αβαβαβ+=+=-.(2017·14)1【解析】∵ ()23sin 0,42f x x x x π⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭,22sin cos 1x x +=,∴ ()21cos 4f x x x =-+,设cos t x =,[]0,1t ∈,∴ ()214f x t =-++,函数对称轴为[]0,1t =,∴ ()max 1f x =.(2016·13)2113解析:∵4cos 5A =,5cos 13C =,∴3sin 5A =,12sin 13C =,()63sin sin sin cos cos sin 65B A C A C A C =+=+=,由正弦定理得:sin sin b a B A =,解得2113b =.(2014·14)1 解析:∵()sin(2)2sin cos()sin[()]2sin cos()f x x x x x ϕϕϕϕϕϕϕ=+-+=++-+sin cos()cos sin()2sin cos()cos sin()sin cos()sin x x x x x x ϕϕϕϕϕϕϕϕϕϕ=+++-+=+-+=∵x R ∈,∴()f x 的最大值为1.(2013·15)解析:由π1tan 1tan 41tan 2θθθ+⎛⎫+== ⎪-⎝⎭,得tan θ=13-,即sin θ=13-cos θ. 将其代入sin 2θ+cos 2θ=1,得210cos 19θ=. 因为θ为第二象限角,所以cos θ=10-,sin θ=10, sin θ+cos θ=5-. (2011·16)解析:00120120A C C A +=⇒=-,0(0,120)A ∈,22sin sin sin BC ACBC A A B==⇒=,022sin 2sin(120)sin sin sin AB ACAB C A A A C B==⇒==-=+,2AB BC ∴+=5sin ))A A A A ϕϕ+=+=+,故最大值是 .三、解答题(2017·17)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2B AC +=. (1)求cos B ;(2)若6a c += , ABC ∆面积为2,求.b .解析:(Ⅰ)【解法1】由题设及2sin8sin ,2BB C B A ==++π,故sin 4-cosB B =(1), 上式两边平方,整理得 217cos B-32cosB+15=0,解得 15cosB=cosB 171(舍去),=.【解法2】由题设及2sin 8sin ,2B B C B A ==++π,所以2sin 82cos 2sin 22B B B =,又02sin ≠B ,所以412tan =B ,17152tan 12tan 1cos 22=+-=B BB . (Ⅱ)由158cosB sin B 1717==得,故14a sin 217ABC S c B ac ∆==,又17=22ABC S ac ∆=,则,由余弦定理及a 6c +=得22221715b 2cos a 2(1cosB)362(1)4217a c ac B ac =+-=-+=-⨯⨯+=(+c ),所以b=2.(2015·17)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin BC∠∠;(Ⅱ) 若AD =1,DC,求BD 和AC 的长.解析:(Ⅰ)1sin 2ABD S AB AD BAD ∆=⋅∠,1sin 2ADC S AC AD CAD ∆=⋅∠,因为2ABD ADC S S ∆∆=,BAD CAD ∠=∠,所以2AB AC =,由正弦定理可得sin 1sin 2B AC C AB ∠==∠.(Ⅱ)因为::2ABD ADC S S BD DC ∆∆==,DC =BD =ABD ∆和ADC ∆中, 由余弦定理知,2222cos AB AD BD AD BD ADB =+-⋅∠,2222cos AC AD DC AD DC ADC =+-⋅∠, 故222222326AB AC AD BD DC +=++=,由(Ⅰ)知2AB AC =,所以1AC =.(2013·17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.解析:(Ⅰ)由已知及正弦定理得sin A =sin B cos C +sin C sin B ①, 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C ②,由①,②和C ∈(0,π)得sin B =cos B ,又B ∈(0,π),所以4B π=.(Ⅱ)△ABC 的面积1sin 2S ac B ==. 由已知及余弦定理得224=+2cos 4a c ac π-. 又a 2+c 2≥2ac ,故ac ≤a =c 时,等号成立.因此△ABC .(2012·17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,0sin 3cos =--+c b C a C a . (Ⅰ)求A ;(Ⅱ)若a =2,△ABC 的面积为3,求b ,c .解析:(Ⅰ)由cos sin 0a C C b c --=及正弦定理可得sin cos sin A C A C sin sin 0B C --=,sin cos sin sin()sin 0A C A C A C C -+-=,sin cos sin A C A C - sin 0C -=,sin 0C >Q ,cos 10A A --=,2sin()106A π∴--=,1sin()62A π-=,0A π<<Q ,5666A πππ∴-<-<,66A ππ∴-=,3A π∴=.(Ⅱ)ABC S V Q ,1sin 2bc A ∴==,4bc ∴=,2,3a A π==Q ,222222cos 4a b c bc A b c bc ∴=+-=+-=,228b c ∴+=,解得2b c ==.。