04 混合像元分解截取
- 格式:pptx
- 大小:4.43 MB
- 文档页数:46
envi混合像元分解步骤
哎呀,envi 混合像元分解呀,这可真是个有意思的事儿呢!咱就一步步来瞧瞧。
首先呢,你得准备好你的数据呀,就像厨师要准备好食材一样。
这些数据就是你的宝贝,要好好对待它们哟!
然后呀,要选择合适的算法,这就好比是选择做菜的方法,不同的算法就像是不同的烹饪技巧,能做出不同风味的成果呢!
接下来,就是开始分解啦!这就好像是把一个大拼图一点点拆开,找出每一块的位置。
在这个过程中呀,你得细心再细心,可不能马虎哟!
分解的时候呢,要注意观察各种特征呀,就像观察菜肴的颜色、形状、味道一样。
每一个细节都可能影响最终的结果呢。
这中间可能会遇到一些小麻烦,就像做菜时不小心盐放多了或者火大了。
但别着急,咱慢慢调整,总能找到最合适的方法。
分解完了之后呢,还得检查检查,看看是不是都分解对了。
这就好比是尝尝菜做的好不好吃,要是味道不对,就得重新调整呀。
你想想看,这 envi 混合像元分解不就像是一场奇妙的冒险嘛!每一步都充满了挑战和惊喜。
咱得有耐心,有毅力,才能把这个任务完成得漂漂亮亮的呀!
在这个过程中,可别嫌麻烦,就跟学骑自行车似的,一开始可能会摔倒,但多练习几次就会啦!而且等你掌握了这个技能,那感觉可太棒啦!就好像你学会了做一道超级美味的菜,能在别人面前好好炫耀一番呢!
总之呀,envi 混合像元分解虽然有点复杂,但只要咱一步一个脚印地去做,就一定能成功的。
加油吧!让我们在这个奇妙的世界里探索出更多的精彩!。
端元就相当于一个像素里的亚像元,只包含一种地物的光谱信息,根据多光谱或高光谱的高光谱分辨率可以提取出来。
端元只包含一种地物信息,一般的像元都为混合像元,包括多种地物,在进行混合像元分解的时候,可以对一个像元中包括的几种端元进行定量描述,求得每个像元中几种端元在这个像元中的面积百分比,即端元的丰度。
混合像元分解(2011-06-10 14:46:57)转载▼分类:ENVI/IDL学习标签:杂谈混合像元是指在一个像元内存在有不同类型的地物,主要出现在地类的边界处。
混合像元的存在是影响识别分类精度的主要因素之一,特别是对线状地类和细小地物的分类识别影响较为突出,在土地利用遥感动态监测工作中,经常遇到混合像元的难题,解决这一问题的关键在于通过一定方法找出组成混合像元的各种典型地物的比例。
线性混合像元分解由于线性模型是应用最广泛,也是研究最多的算法,下面重点介绍基于线性模型的混合像元分解算法。
一般而言,混合像元分解算法包括数据降维、端元选取和反演三个步骤。
1.数据降维尽管数据降维不是混合像元分解算法的一个必需步骤,但由于大多数算法都将其作为一个流程,我们也将其当作一个步骤。
常用的降维算法有主成分分析(Principle Component Analysis,PCA)、最大噪声比变换(Maximum Noise Fraction,MNF)和奇异值分解(Singular Value Decomposition,SVD)。
(1) 主成分分析:遥感图像各波段之间经常是高度相关的,因此所有的波段参加分析是不必要的。
PCA就是一种去除波段之间相关性的变换。
PCA通过对原数据进行线性变换,获得新的一组变量,即主成分。
其中前几个主成分包含了原数据主要方差,同时各个主成分之间是不相关的。
(2) 最大噪声比变换:最大噪声比变换(Maximum Noise Fraction,MNF)[24]由Green等(1989)提出,该变换通过引入噪声协方差矩阵以实现对噪声比率的估计。
python 混合像元分解方法-回复什么是混合像元分解方法?混合像元分解方法(Mixture Pixel Decomposition)是一种用于解析遥感图像中复杂地物的探测和提取的技术。
遥感图像包含了不同地物的混合像元,即一个像素内存在多种地物的信号。
混合像元分解方法可以将混合像元分离为不同的地物成分,从而获得每个地物的光谱信息,进一步实现对地物进行分类和定量分析。
混合像元分解方法的原理混合像元分解方法通过数学模型对混合像元进行分解,其中最常用的数学模型是线性模型。
假设一个像元包含K 个地物成分,那么混合像元可以表示为K 个地物的线性组合。
即:I = ∑( f * ρ)其中,I 是观测到的混合像元,f 是混合像元中每个地物的系数,表示该地物在混合像元中的比例,ρ是对应地物的光谱响应曲线。
通过对I 进行解析,可以求解出每个地物的成分系数f。
常见的混合像元分解方法1. N-FINDR:N-FINDR 法(Normalized Maximum Likelihood Feature Discrimination)是一种经典的混合像元分解方法。
它通过最大似然估计寻找最优的像元组合,将混合像元分解为基础地物。
N-FINDR 法常用于无监督的遥感图像分类。
2. SISMA:SISMA 法(Spectral Information Subtraction Maximum Likelihood Algorithm)是一种监督的混合像元分解方法。
它引入了监督样本,通过最大似然估计计算每个地物的成分系数。
SISMA 法可以有效地提高分类精度和抑制混合像元效应。
3. VCA:VCA 法(Vertex Component Analysis)是一种基于顶点的混合像元分解方法。
它通过在N 混合像元图中选择顶点,进行解析,找到与顶点最接近的纯地物光谱,从而实现混合像元的分解。
VCA 法适用于对大尺度遥感图像进行定量分析。
混合像元分解方法的应用混合像元分解方法广泛应用于遥感图像解析、地物分类、环境监测等领域。
混合像元分解提取植被
混合像元分解是一种常用的遥感图像处理方法,它可以将遥感图像中的每个像元分解为不同的成分,从而提取出图像中的各种信息。
其中,植被是遥感图像中常见的一种成分,因此混合像元分解可以被用来提取植被信息。
混合像元分解的基本原理是将遥感图像中的每个像元分解为不同的成分,这些成分包括植被、土壤、水体等。
其中,植被成分可以通过NDVI指数来计算得到。
NDVI指数是一种反映植被覆盖度的指数,它的计算公式为:
NDVI = (NIR - RED) / (NIR + RED)
其中,NIR代表近红外波段的反射率,RED代表红色波段的反射率。
通过计算NDVI指数,可以得到遥感图像中每个像元的植被覆盖度。
除了NDVI指数,混合像元分解还可以使用其他的方法来提取植被信息。
例如,基于像元的分类方法可以将遥感图像中的每个像元分为不同的类别,其中包括植被、土壤、水体等。
通过对每个类别进行统计分析,可以得到遥感图像中植被的分布情况。
混合像元分解可以被广泛应用于植被监测、土地利用、环境保护等领域。
例如,在植被监测中,可以通过混合像元分解来提取植被信息,从而得到植被的分布情况、生长状态等信息。
在土地利用中,可以通过混合像元分解来分析土地利用类型的分布情况,从而为土
地规划和管理提供参考。
在环境保护中,可以通过混合像元分解来监测水体和土壤的污染情况,从而及时采取措施进行治理。
混合像元分解是一种非常有用的遥感图像处理方法,可以被用来提取植被信息以及其他各种信息。
在实际应用中,需要根据具体的需求选择合适的方法和参数,以得到准确的结果。
一、农田作物的光谱特征与天然植被有所不同(后者的叶片含水量及绿度均不及农田作物),故在选择纯净端元时会出现混淆,故希望先将农田掩去。
首先要先将农田的界限提取出来。
提取农田边界的方法:
1、对两期影像均提取NDVI图,再将两张NDVI图进行最大化合成。
再将合成后的NDVI
图与任一原图进行链接,调出CUSORLOCA TION 对话框,移动鼠标,观察对话框中NDVI图的数值变化,确定农田区的边界,注意图中某些高植被覆盖区的NDVI值也和农田区的数值一样高,这样做会把高值区也确定为农田区。
但没有关系,这些高值的天然植被区应为水库附近,其含水量等表象与农田作物相似,而与一般旱生植被有异。
正好一并掩去。
做NDVI图:
做最大化合成:
观察两幅图,确定阈值:
量图,此时即可得到农田的范围,然后可用该农田范围做掩膜。
在决策树上输入表达式:注意,阈值不一定是0.3,要自己确定。
给B1赋予NDVI波段
执行分类:
输出为矢量图:
二、应用掩膜,对某一期原始图像做MNF变换和主成分变换,选择前两个波段信息量最大的一种变换,选择其前两个波段,在ENVI5.1中做二维散点图,用最小法提取出纯净端元的光谱曲线。
三、对主成分图进行混合像元分解、分类。
,得到植被分量、分类图。
一基于PPI的端元提取借助纯净像元指数(PPI)和n维可视化工具用于端元波谱收集。
第一步、获取纯净像元这个步骤是在MNF变换的结果上计算纯净像元指数(PPI),之后选择阈值范围从PPI图像上获得感兴趣区,感兴趣区包含的像元就是比较纯净的像元。
(1)打开高光谱数据。
(2)在ENVI主菜单中,选择Spectral ->MNF Rotation- > Forward MNF -> Estimate Noise Statistics From Dat a。
在标准ENVI文件选择对话框中,选择高光谱图像文件。
(3)打开Forward MNF Transform Parameters面板,选择MNF输出路径及文件名,单击OK执行MNF变换。
(4)在波段列表中输出MNF影像及特征曲线值。
从图中可以看出,大约20个波段以后的MNF的特征值很小(5)MNF变换后,在ENVI主菜单中,选择 Spectral-> Pixel Purity Index->[FAST] New Output Band。
在打开的Pixel Purity Index Input File对话框中,选择MNF变换结果,单击Spectral Subset按钮,选择前面10个波段(MNF后面波段基本为噪声),单击OK。
(6)在Display窗口中显示PPI结果。
选择Overlay->Region of Interest,在ROI Tool 面板中,选择Options->Band Threshold to ROI,选择PPI图像作为输入波段,单击OK,打开Band Threshold to ROI 面板(图14.19)。
Min Thresh Value:10,Max Thresh Value:空(PPI图像最大值),其他默认设置,单击OK计算感兴趣区,得到的感兴趣区显示在Display窗口中。
第二步、构建n维可视化窗口(1)在ENVI主菜单中,选择Spectral ->n-Dimensional Visualizer,在n-D Visualizer Input File 对话框中选择MNF变换结果,单击OK。
端元就相当于一个像素里的亚像元,只包含一种地物的光谱信息,根据多光谱或高光谱的高光谱分辨率可以提取出来。
端元只包含一种地物信息,一般的像元都为混合像元,包括多种地物,在进行混合像元分解的时候,可以对一个像元中包括的几种端元进行定量描述,求得每个像元中几种端元在这个像元中的面积百分比,即端元的丰度。
混合像元分解(2011-06-10 14:46:57)转载▼分类:ENVI/IDL学习标签:杂谈混合像元是指在一个像元内存在有不同类型的地物,主要出现在地类的边界处。
混合像元的存在是影响识别分类精度的主要因素之一,特别是对线状地类和细小地物的分类识别影响较为突出,在土地利用遥感动态监测工作中,经常遇到混合像元的难题,解决这一问题的关键在于通过一定方法找出组成混合像元的各种典型地物的比例。
线性混合像元分解由于线性模型是应用最广泛,也是研究最多的算法,下面重点介绍基于线性模型的混合像元分解算法。
一般而言,混合像元分解算法包括数据降维、端元选取和反演三个步骤。
1.数据降维尽管数据降维不是混合像元分解算法的一个必需步骤,但由于大多数算法都将其作为一个流程,我们也将其当作一个步骤。
常用的降维算法有主成分分析(Principle Component Analysis,PCA)、最大噪声比变换(Maximum Noise Fraction,MNF)和奇异值分解(Singular Value Decomposition,SVD)。
(1) 主成分分析:遥感图像各波段之间经常是高度相关的,因此所有的波段参加分析是不必要的。
PCA就是一种去除波段之间相关性的变换。
PCA通过对原数据进行线性变换,获得新的一组变量,即主成分。
其中前几个主成分包含了原数据主要方差,同时各个主成分之间是不相关的。
(2) 最大噪声比变换:最大噪声比变换(Maximum Noise Fraction,MNF)[24]由Green等(1989)提出,该变换通过引入噪声协方差矩阵以实现对噪声比率的估计。
注:由于计算量较大,所以将图像分成三块进行处理,另外此步骤在ENVI Classic里面完成一:纯像元提取(PPI)1、MNF变换选择Spectral→MNF Rotation→Forward MNF→Estimate Noise Statistics from Data在弹出的窗口中选择13-4-26a.img文件,点击ok在弹出的窗口中设定保存路径,文件命名为13-4-26amnf,点击ok2、PPI计算选择Spectral→Pixel Purity Index→[FAST]New Output Band在弹出的窗口中选择13-4-26amnf文件,点击ok在弹出的窗口中设置输出文件,13-4-26appi,点击ok,这一步要等很久。
将获取的纯像元变为ROI:Basic Tools→Region of Interest→Band Threshold to ROI,选择13-4-26appi文件,点击ok弹出的窗口中:3、构建n维窗口,选择端元波谱选择Spectral→n-Dimensional Visualizer→Visualize with New Data在弹出窗口中选择13-4-26amnf文件,点击ok,选中1-5波段(1)在n-D Controls面板中,设置适当的速度(Speed),单击Start按钮,在n-D Visualizer 窗口中的点云随机旋转,当在n-D Visualizer窗口中的点云有部分聚集在一块时,单击Stop 按钮。
借助<-,->,New按钮可以一帧帧从不同视角浏览以辅助删除分散点。
(2)在n-D Controls面板中,选择Class->Items 1:20->red,可选择标志颜色(3)在n-D Visualizer窗口中,用鼠标左键勾画“白点”集中区域,右键结束4、输出端元波谱在n-D Controls面板中,选择Options->Mean All,在Input File Associated with n-D Scatter Plot 对话框中选择原图像13-4-26a,单击OK(2)获取的平均波谱曲线绘制在n_D Mean绘图窗口中。
常见混合像元分解方法(2011-04-20 20:35:42)转载▼标签:分类:遥感技术混合像元亚像元分解方法线性波谱分离教育常见的混合像元分解方法,主要包括线性波谱分离(Liner Spectrl Unmixing )、匹配滤波(MF )、混合调谐匹配滤波(MTMF)、最小能量约束(CEM)、自适应一致估计(CE)、正交子空间投影(OSP)等。
0000下面分别对几种分类方法原理一一说明。
0000(1)线性波段预测(Liner Bnd Prediction)0000线性波段预测法(LS-Fit)使用一个最小方框(lest squres)拟合技术来进行线性波段预测,它可以用于在数据集中找出异常波谱响应区。
LS-Fit先计算出输入数据的协方差,用它对所选的波段进行预测模拟,预测值作为预测波段线性组的一个增加值。
还计算实际波段和模拟波段之间的残差,并输出为一幅图像,残差大的像元(无论正负)表示出现了不可预测的特征(比如一个吸收波段)。
0000(2)线性波谱分离(Liner Spectrl Unmixing )0000Liner Spectrl Unmixing可以根据物质的波谱特征,获取多光谱或高光谱图像中物质的丰度信息,即混合像元分解过程。
假设图像中每个像元的反射率为像元中每种物质的反射率或者端元波谱的线性组合。
例如:像元中的25%为物质,25%为物质B,50%为物质C,则该像元的波谱就是三种物质波谱的一个加权平均值,等于0.25+0.25B+0.5C,线性波谱分离解决了像元中每个端元波谱的权重问题。
0000线性波谱分离结果是一系列端元波谱的灰度图像(丰度图像),图像的像元值表示端元波谱在这个像元波谱中占的比重。
比如端元波谱的丰度图像中一个像元值为0.45,则表示这个像元中端元波谱占了45%。
丰度图像中也可能出现负值和大于1的值,这可能是选择的端元波谱没有明显的特征,或者在分析中缺少一种或者多种端元波谱。
常见混合像元分解方法混合像元分解方法是一种将多源遥感数据中的混合像元拆解成纯净的地物或覆盖类型的方法。
这种方法在遥感影像解译、土地利用/覆盖分类、环境遥感监测等领域具有广泛的应用。
下面将介绍一些常见的混合像元分解方法。
1. 直接解混模型(Direct Unmixing Model):这是最简单的混合像元分解方法,基于像元的混合像元可以表示为纯净地物的线性组合。
通过线性代数的方法,可以求解出混合比例和纯净地物的光谱特征。
然而,这种方法假设地物的光谱特征是线性可加性的,忽略了光谱混合、非线性效应等因素。
2. 混合参数遥感解译(Mixed Pixel Based Classification):这种方法是通过将混合像元分解成不同地物类型的纯净像元,然后利用单纯像元的光谱特征进行分类。
常见的做法是选择一个纯净地物的光谱特征作为模板,并利用相似性度量方法(如最小二乘法)将混合像元分解成若干训练样本,然后使用分类算法进行分类。
这种方法适用于光谱混合较小、类别纯度较高的情况。
3. 物理模型解混(Physical Model Based Unmixing):这是一种基于物质反射特性的混合像元分解方法。
它基于物理模型,将混合像元的反射率建模为纯净地物的反射率和大气效应的线性组合。
通过迭代求解,可以得到混合像元的反射率、大气效应和混合比例。
这种方法能够处理光谱混合、非线性效应等问题,但对数据的大气校正要求较高。
4. 线性光谱混合分析(Linear Spectral Mixture Analysis):这种方法是在直接解混模型基础上引入非负约束,使得混合比例和纯净地物光谱反射率均呈非负值。
通过最小二乘法等方法,可以求解出混合像元的混合比例和纯净地物光谱反射率。
线性光谱混合分析方法在处理光谱混合问题上比较稳健,但对光谱反射率的非负性要求较高。
5. 稀疏解混分析(Sparse Unmixing Analysis):这种方法假设混合像元是由少量纯净地物组成的,并通过稀疏表示方法来实现解混。
混合像元分解算法的比较和改进
混合像元分解是一种用于图像压缩和图像分割的算法。
在传统图像压缩中,利用DCT或者小波变换对图像进行变换,然后采用量化和编码的方式进行压缩处理。
然而,这些方法不能得到图像的结构信息,从而导致图像压缩的效果较差。
混合像元分解算法(HMRF)结合了有监督和无监督方法,能够有效地提取图像的结构信息,从而得到更好的图像压缩效果。
HMRF的基本思想是将图像分割为多个区域,并且每个区域采用不同的编码方式进行压缩。
具体来说,HMRF算法包含以下几个步骤:
3.编码:将每个区域内的像素点进行压缩编码,可以选择传统的DCT 或者小波变换等方法进行编码。
4.重构:将压缩后的编码数据进行解码和重构,得到压缩后的图像。
与传统的图像压缩方法相比,HMRF算法的优势主要体现在以下几个方面:
1.结构信息提取:HMRF能够有效地提取图像的结构信息,从而得到更好的图像压缩效果。
传统的压缩方法只能对像素点进行变换和量化,而无法提取图像的结构信息。
然而,HMRF算法也存在一些问题,需要改进:
综上所述,混合像元分解算法是一种有效的图像压缩和分割方法,能够提取图像的结构信息,得到更好的压缩效果。
然而,该算法还存在一些问题,需要进一步改进,提高压缩率和迭代的效率。
混合像元分解模型综述吕长春,王忠武,钱少猛(中国科学院遥感应用研究所,北京9718信箱100101)摘要:介绍了五种混合像元分解模型,分别为线性模型、概率模型、几何光学模型、随机几何模型和模糊分析模型,并对其中几种常用模型的优缺点及其适用性进行总结讨论。
并对不同模型之间的相似和差异性进行比较分析。
关键词:遥感;混合像元分解;模型中图分类号:T P751文献标识码:A文章编号:1000-3177(2003)71-0055-041前言遥感影像中像元很少是由单一均匀的地表覆盖类组成的,一般都是几种地物的混合体。
因此影像中像元的光谱特征并不是单一地物的光谱特征,而是几种地物光谱特征的混合反映。
它给遥感解译造成困扰。
混合像元无论直接归属到哪一种典型地物,都是错误的,因为它至少不完全属于这种典型地物。
如果每一混合像元能够被分解而且它的覆盖类型组分(通常称为端元组分)占像元的百分含量(丰度)能够求得的话,分类将更精确,因混合像元的归属而产生的错分、误分问题也就迎刃而解,这一处理过程称之为混合像元分解。
混合像元问题不仅是遥感技术向定量化深入发展的重要障碍,而且也严重影响计算机处理的效果或计算机技术在遥感领域中的应用。
大多数遥感影像分类算法并不考虑这一现象,只是利用像元光谱间的统计特征进行像元分类。
光谱混合分解技术考虑了这一现象,不仅能给出组成像元各地表覆盖类的丰度,而且能给出分类的图像。
2混合像元分解模型分解像元的途径是通过建立光谱的混合模拟模型。
通常,模型是这样建立的:像元的反射率可以表示为端元组分的光谱特征和它们的面积百分比(丰度)的函数;在某些情况下,表示为端元组分的光谱特征和其他的地面参数的函数。
Char les Ichoku(1996)[1]将像元混合模型归结为以下五种类型:线性(linear)模型、概率(probabilistic)模型、几何光学(geo-metric-optical)模型、随机几何(sto chastic geometric)模型和模糊分析(fuzzy)模型。
优化端元提取方法的高光谱混合像元分解高光谱混合像元分解是一种常用的遥感数据分析方法,可以用于提取地物信息和监测环境变化。
在实际应用中,为了提高分解结果的准确性和可靠性,需要进行端元提取的优化。
端元提取是指从高光谱数据中选择代表地物的像元进行分解。
传统的端元提取方法主要基于经验或人工选择,存在以下问题:首先,传统方法需要人工选择代表地物样本进行端元提取,这种方式受主观因素干扰较大,容易引入误差。
为了减少主观因素的干扰,可以使用统计学方法来进行自动化的端元提取。
常用的统计学方法有聚类分析、主成分分析和最大似然分类等。
其次,传统方法在进行端元提取时通常只考虑了光谱信息,而忽略了空间信息。
然而,地物的空间分布特征对端元提取和混合像元分解结果的准确性和可靠性有重要影响。
因此,应该将空间信息考虑进来,可以利用地物边界信息和多源遥感数据进行融合,以提高端元提取的准确性。
此外,高光谱混合像元分解还需要考虑混合像元的数量和选择。
传统方法通常假设混合像元是由两个或三个端元组成的,但实际情况往往更为复杂,混合像元可能由多个端元组成。
因此,可以利用自适应光谱混合方法,对混合像元数量进行估计,并选择最优的混合像元组合来进行分解。
最后,在进行端元提取和混合像元分解时还应考虑光谱响应的非线性和光谱混叠的影响。
非线性效应会导致混合像元分解结果的偏差,光谱混叠则会造成端元提取的困难。
因此,可以利用非线性光谱混合像元分解方法和反混叠技术,来克服这些问题,提高分解结果的准确性。
综上所述,优化端元提取方法的高光谱混合像元分解可以使用统计学方法进行自动化的端元提取,同时考虑空间信息和光谱非线性效应等因素。
通过合理选择混合像元数量和采用反混叠技术,可以提高分解结果的准确性和可靠性,从而更好地应用于地物信息提取和环境监测等领域。