有关函数通性的试题选讲
- 格式:doc
- 大小:141.51 KB
- 文档页数:9
不等式题型选讲1、 有关不等式的解法:解不等式是通过变形转化为简单不等式从而得到解集,如分式不等式转化为整式不等式但要注意是同解变形,每一步变形既充分又必要,例如解分式不等式不要随便去分母,而是先移项,等价转化为f (x )>0或f (x )<0的形式,再分析讨论。
一些含绝对值符号的不等式,含有参数的不等式必须进行讨论。
例1、(1)设集合A ={x ∣x 2-1>0},B ={x ∣log 2x >0},则A ∩B 等于( )A 、{x ∣x >1}B 、{x ∣x >0}C 、{x ∣x <-1}D 、{x ∣x <-1或x>1}(2)不等式(1+x )(1-∣x ∣)>0的解集为( )A 、{x ∣0≤x <1}B 、{x ∣x <0且x ≠-1}C 、{x ∣-1<x <1}D 、{x ∣x <1或x ≠-1}(3)设f (x )是奇函数且在(-∞,0)内是减函数,f (-2)=0,则x f (x )<0的解集为( )A 、(-1,0)∪(2,+∞)B 、(-∞,-2)∪(0,2)C 、(-∞,-2)∪(2,+∞)D 、(-2,0)∪(0,2)(4)(2003新教材高考试题)设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,若f (x )>1,则x 0的取值范围是( )A 、(-1,1)B 、(-1,+∞)C 、(-∞,-2)∪(0,+∞)D 、(-∞,-1)∪(1,+∞)选择题具有自身独特的特点,从而决定了它的解法具有灵活机动的优势。
解题者选择不同的解法,从一个侧面反映出他们数学水平的不同“层次”。
例2、(1)不等式1)20(lg cos 2>x (x ∈(0,π)的解集为(2)不等式x x x <-24的解集是-----------------。
不等式选件高考题1.已知函数 3f x x a x .(1)当1a 时,求不等式 6f x 的解集;(2)若 f x a ,求a 的取值范围.2.已知函数()2,()2321f x x g x x x .(1)画出 y f x 和 y g x 的图像;(2)若 f x a g x ,求a 的取值范围.3.已知函数()|31|2|1|f x x x .(1)画出()y f x 的图像;(2)求不等式()(1)f x f x 的解集.4.设函数 211f x x x .(1)画出 y f x 的图像;(2)当 0x ∈,, f x ax b ,求a b 的最小值.5.(2016高考新课标Ⅰ,理24)选修4-5:不等式选讲已知函数 123f x x x .(Ⅰ)画出 y f x 的图象;(Ⅱ)求不等式 1f x 的解集.6.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式 4f x 的解集;(2)若 4f x ,求a 的取值范围.7.已知()|||2|().f x x a x x x a (1)当1a 时,求不等式()0f x 的解集;(2)若(,1)x 时,()0f x ,求a 的取值范围.8.已知 11f x x ax .(1)当=1a 时,求不等式 1f x 的解集;(2)若 0,1x 时不等式 f x x 成立,求a 的取值范围.9.设函数()52f x x a x .(1)当1a 时,求不等式()0f x 的解集;(2)若()1f x 恒成立,求a 的取值范围.10.已知函数()f x =│x +1│–│x –2│.(1)求不等式()f x ≥1的解集;(2)若不等式()f x ≥x 2–x +m 的解集非空,求实数m 的取值范围.11.已知函数2()4f x x ax ,()|1||1|g x x x .(1)当1a 时,求不等式()()f x g x 的解集;(2)若不等式()()f x g x 的解集包含[–1,1],求a 的取值范围.12.选修4-5:不等式选讲已知函数11()22f x x x,M 为不等式()2f x 的解集.(Ⅰ)求M ;(Ⅱ)证明:当a ,b M 时,1a b ab .13.已知函数()|2|f x x a a .(1)当a=2时,求不等式()6f x 的解集;(2)设函数()|21|g x x .当x R 时,()()3f x g x ,求a 的取值范围.14.已知a ,b ,c 为正数,且满足abc =1.证明:(1)222111a b c a b c;(2)333()()()24a b b c c a .15.已知a ,b ,c 均为正数,且22243a b c ,证明:(1)23a b c ;(2)若2b c ,则113a c.16.已知a ,b ,c 都是正数,且3332221a b c ,证明:(1)19abc;(2)a b c b c a c a b ;17.设a ,b ,c R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c参考答案:1.(1) ,42, .(2)3,2.【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简 f x a ,由此求得a 的取值范围.【详解】(1)[方法一]:绝对值的几何意义法当1a 时, 13f x x x ,13x x 表示数轴上的点到1和3 的距离之和,则 6f x 表示数轴上的点到1和3 的距离之和不小于6,当4x 或2x 时所对应的数轴上的点到13 ,所对应的点距离之和等于6,∴数轴上到13 ,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x 或2x ,所以 6f x 的解集为 ,42, .[方法二]【最优解】:零点分段求解法当1a 时,()|1||3|f x x x .当3x 时,(1)(3)6 x x ,解得4x ;当31x 时,(1)(3)6 x x ,无解;当1x 时,(1)(3)6 x x ,解得2x .综上,|1||3|6 x x 的解集为(,4][2,) .(2)[方法一]:绝对值不等式的性质法求最小值依题意 f x a ,即3a x a x 恒成立,333x a x x a a x ,当且仅当 30a x x 时取等号,3min f x a ,故3a a ,所以3a a 或3a a ,解得32a .所以a 的取值范围是3,2.[方法二]【最优解】:绝对值的几何意义法求最小值由||x a 是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a ,故|3|a a ,下同解法一.[方法三]:分类讨论+分段函数法当3a 时,23,,()3,3,23,3,x a x a f x a a x x a x则min [()]3 f x a ,此时3 a a ,无解.当3a 时,23,3,()3,3,23,,x a x f x a x a x a x a则min [()]3 f x a ,此时,由3a a 得,32a .综上,a 的取值范围为32a .[方法四]:函数图象法解不等式由方法一求得 min 3f x a 后,构造两个函数|3| y a 和y a ,即3,3,3,3a a y a a和y a ,如图,两个函数的图像有且仅有一个交点33,22M ,由图易知|3|a a ,则32a .【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得 3min f x a ,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得 f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求 f x 最小值,要注意函数 f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数 f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.2.(1)图像见解析;(2)112a 【分析】(1)分段去绝对值即可画出图像;(2)根据函数图像数形结和可得需将 y f x 向左平移可满足同角,求得 y f x a 过1,42A时a 的值可求.【详解】(1)可得2,2()22,2x x f x x x x ,画出图像如下:34,231()232142,2214,2x g x x x x x x,画出函数图像如下:(2)()|2|f x a x a ,如图,在同一个坐标系里画出 ,f x g x 图像, y f x a 是 y f x 平移了a 个单位得到,则要使()()f x a g x ,需将 y f x 向左平移,即0a ,当 y f x a 过1,42A 时,1|2|42a ,解得112a 或52 (舍去),则数形结合可得需至少将 y f x 向左平移112个单位,112a .【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解.3.(1)详解解析;(2)7,6.【分析】(1)根据分段讨论法,即可写出函数 f x 的解析式,作出图象;(2)作出函数 1f x 的图象,根据图象即可解出.【详解】(1)因为 3,1151,1313,3x x f x x x x x,作出图象,如图所示:(2)将函数 f x 的图象向左平移1个单位,可得函数 1f x 的图象,如图所示:由 3511x x ,解得76x .所以不等式()(1)f x f x 的解集为7,6.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.4.(1)见解析(2)5【详解】分析:(1)将函数写成分段函数,再画出在各自定义域的图像即可.(2)结合(1)问可得a ,b 范围,进而得到a+b 的最小值详解:(1) 13,,212,1,23, 1.x x f x x x x xy f x 的图像如图所示.(2)由(1)知, y f x 的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a 且2b 时, f x ax b 在 0, 成立,因此a b 的最小值为5.点睛:本题主要考查函数图像的画法,考查由不等式求参数的范围,属于中档题.5.(1)见解析(2)11353x x x x或或【详解】试题分析:(Ⅰ)化为分段函数作图;(Ⅱ)用零点分区间法求解.试题解析:(Ⅰ)的图像如图所示.(Ⅱ)由的表达式及图像,当时,可得或;当时,可得或,故的解集为;的解集为,所以的解集为.【考点】分段函数的图像,绝对值不等式的解法【名师点睛】不等式选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写成集合的形式.6.(1)32x x 或112x ;(2) ,13, .【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x 或112x .(2) 22222121211f x x a x a x a x a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.7.(1)(,1) ;(2)[1,)【分析】(1)根据1a ,将原不等式化为|1||2|(1)0x x x x ,分别讨论1x ,12x ,2x 三种情况,即可求出结果;(2)分别讨论1a 和1a 两种情况,即可得出结果.【详解】(1)当1a 时,原不等式可化为|1||2|(1)0x x x x ;当1x 时,原不等式可化为(1)(2)(1)0x x x x ,即2(1)0x ,显然成立,此时解集为(,1) ;当12x 时,原不等式可化为(1)(2)(1)0x x x x ,解得1x ,此时解集为空集;当2x 时,原不等式可化为(1)(2)(1)0x x x x ,即2(10)x ,显然不成立;此时解集为空集;综上,原不等式的解集为(,1) ;(2)当1a 时,因为(,1)x ,所以由()0f x 可得()(2)()0a x x x x a ,即()(1)0x a x ,显然恒成立;所以1a 满足题意;当1a 时,2(),1()2()(1),x a a x f x x a x x a,因为1a x 时,()0f x 显然不能成立,所以1a 不满足题意;综上,a 的取值范围是[1,) .【点睛】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型.8.(1)1>2x x;(2) 0,2.【分析】(1)方法一:将=1a 代入函数解析式,求得 11f x x x ,利用零点分段法将解析式化为 2,1,=2,1<<1,2, 1.x f x x x x,分类讨论即可求得不等式的解集;(2)方法一:根据题中所给的 0,1x ,其中一个绝对值符号可以去掉,不等式 f x x 可以化为 0,1x 时11ax ,分情况讨论即可求得结果.【详解】(1)[方法一]:【通性通法】零点分段法当=1a 时, 11f x x x ,即 2,1=2,1<<12,1x f x x x x,所以不等式 1f x 等价于12>1x或1<<12>1x x 或12>1x ,解得:12x .故不等式 1f x 的解集为1>2x x.[方法二]:【最优解】数形结合法如图,当=1a 时,不等式()1f x 即为|1||1|1x x.由绝对值的几何意义可知,|1||1|x x 表示x 轴上的点到1 对应的点的距离减去到1应点的距离.结合数轴可知,当1=2x 时,|1||1|1x x ,当12x 时,|1||1|1x x .故不等式()1f x 的解集为1,2.(2)[方法一]:【通性通法】分类讨论当 0,1x 时,11x ax x 成立等价于当 0,1x 时,11ax 成立.若0a ,则当 0,1x 时,111ax ax ;若0a ,由11ax 得,111ax ,解得:20x a ,所以21a,故02a .综上,a 的取值范围为 0,2.[方法二]:平方法当(0,1)x 时,不等式|1||1|x ax x 成立,等价于(0,1)x 时,11ax 成立,即2211ax 成立,整理得(2)0ax ax .当=0a 时,不等式不成立;当0a 时,(2)0ax ax ,不等式解集为空集;当0a 时,原不等式等价于220a x x a,解得20x a .由>021a a,解得02a .故a 的取值范围为(0,2].[方法三]:【最优解】分离参数法当(0,1)x 时,不等式|1||1|x ax x 成立,等价于(0,1)x 时,|1|1ax 成立,即111ax ,解得:20a x,而22x ,所以02a .故a 的取值范围为(0,2].【整体点评】(1)方法一:利用零点分段法是解决含有两个以及以上绝对值不等式的常用解法,是通性通法;方法二:利用绝对值的几何意义解决特殊类型的绝对值不等式,直观简洁,是该题的最优解.(2)方法一:分类讨论解出绝对值不等式,利用 0,1是不等式解集的子集求出,是通性通法;方法二:本题将绝对值不等式平方,转化为解含参的不等式,利用 0,1是不等式解集的子集求出,虽可解出,但是增加了题目的难度;方法三:利用分离参数,将不等式问题转化为恒成立最值问题,思想简单常见,是该题的最优解.9.(1)[2,3] ;(2) ,62, .【详解】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为|||2|4x a x ,再根据绝对值三角不等式得|||2|x a x 最小值,最后解不等式|2|4a 得a 的取值范围.详解:(1)当1a 时,24,1,2,12,26, 2.x x f x x x x可得 0f x 的解集为{|23}x x .(2) 1f x ≤等价于24x a x .而22x a x a ,且当2x 时等号成立.故 1f x ≤等价于24a .由24a 可得6a 或2a ,所以a 的取值范围是 ,62, .点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.10.(1) 1, ;(2)5,4.【分析】(1)由于f(x)=|x+1|﹣|x﹣2|31211232xx xx,<,,>,解不等式f(x)≥1可分﹣1≤x≤2与x>2两类讨论即可解得不等式f(x)≥1的解集;(2)依题意可得m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三类讨论,可求得g(x)max54,从而可得m的取值范围.【详解】解:(1)∵f(x)=|x+1|﹣|x﹣2|31211232xx xx,<,,>,f(x)≥1,∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2;当x>2时,3≥1恒成立,故x>2;综上,不等式f(x)≥1的解集为{x|x≥1}.(2)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立,即m≤[f(x)﹣x2+x]max,设g(x)=f(x)﹣x2+x.由(1)知,g(x)22231311232x x xx x xx x x,,<<,,当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x121,∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x<2时,g(x)=﹣x2+3x﹣1,其开口向下,对称轴方程为x32∈(﹣1,2),∴g(x)≤g(32)9942154;当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x12<2,∴g(x)≤g(2)=﹣4+2+3=1;综上,g(x)max5 4 ,∴m的取值范围为(﹣∞,54 ].【点睛】本题考查绝对值不等式的解法,去掉绝对值符号是解决问题的关键,突出考查分类讨论思想与等价转化思想、函数与方程思想的综合运用,属于难题.11.(1){|1x x;(2)[1,1].【详解】试题分析:(1)分1x ,11x ,1x 三种情况解不等式()()f x g x ;(2)()()f x g x 的解集包含[1,1] ,等价于当[1,1]x 时()2f x ,所以(1)2f 且(1)2f ,从而可得11a .试题解析:(1)当1a 时,不等式 f x g x 等价于21140x x x x .①当1x 时,①式化为2340x x ,无解;当11x 时,①式化为220x x ,从而11x ;当1x 时,①式化为240x x,从而112x .所以 f x g x 的解集为1{|1}2x x .(2)当 1,1x 时, 2g x .所以 f x g x 的解集包含 1,1 ,等价于当 1,1x 时 2f x .又 f x 在 1,1 的最小值必为 1f 与 1f 之一,所以 12f 且 12f ,得11a .所以a 的取值范围为 1,1 .点睛:形如||||x a x b c (或c )型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a ,(,]a b ,(,)b (此处设a b )三个部分,将每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)图像法:作出函数1||||y x a x b 和2y c 的图像,结合图像求解.12.(Ⅰ){|11}M x x ;(Ⅱ)详见解析.【详解】试题分析:(I )先去掉绝对值,再分12x ,1122x 和12x 三种情况解不等式,即可得 ;(II )采用平方作差法,再进行因式分解,进而可证当a ,b 时,1a b ab .试题解析:(I )12,,211(){1,,2212,.2x x f x x x x 当12x 时,由()2f x 得22,x 解得1x ;当1122x 时,()2f x ;当12x 时,由()2f x 得22,x 解得1x .所以()2f x 的解集{|11}M x x .(Ⅱ)由(Ⅰ)知,当,a b M 时,11,11a b ,从而22222222()(1)1(1)(1)0a b ab a b a b a b ,因此1.a b ab 【考点】绝对值不等式,不等式的证明.【名师点睛】形如x a x b c (或c )型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应的方程的根,将数轴分为(,]a ,(,]a b ,(,)b (此处设a b )三个部分,在每个部分去掉绝对值号并分别列出对应的不等式进行求解,然后取各个不等式解集的并集.(2)图象法:作出函数1y x a x b 和2y c 的图象,结合图象求解.13.(1){|13}x x ;(2)[2,) .【详解】试题分析:(1)当2a 时 ()|22|2f x x |22|26x 13x ;(2)由()()|2||12|f x g x x a a x |212|x a x a |1|a a ()()3f x g x 等价于|1|3a a ,解之得2a .试题解析:(1)当2a 时,()|22|2f x x .解不等式|22|26x ,得13x .因此,()6f x 的解集为.(2)当x R 时,()()|2||12|f x g x x a a x |212|x a x a |1|a a ,当12x 时等号成立,所以当x R 时,()()3f x g x 等价于|1|3a a .①当1a 时,①等价于13a a ,无解.当1a 时,①等价于13a a ,解得2a .所以a 的取值范围是[2,) .考点:不等式选讲.14.(1)见解析;(2)见解析【分析】(1)利用1abc 将所证不等式可变为证明:222a b c bc ac ab ,利用基本不等式可证得 2222222a b c ab bc ac ,从而得到结论;(2)利用基本不等式可得3333a b b c c a a b b c c a ,再次利用基本不等式可将式转化为333a b b c c a .【详解】(1)1abc 111111abc bc ac ab a b c a b c2222222222222a b c a b b c c a ab bc ac当且仅当a b c 时取等号22211122a b c a b c,即:222111a b c a b c≥(2) 3333a b b c c a a b b c c a ,当且仅当a b c 时取等号又a b b c a c a b c 时等号同时成立)3333a b b c c a 又1abc 33324a b b c c a 【点睛】本题考查利用基本不等式进行不等式的证明问题,考查学生对于基本不等式的变形和应用能力,需要注意的是在利用基本不等式时需注意取等条件能否成立.15.(1)见解析(2)见解析【分析】(1)方法一:根据 22222242a b c a b c ,利用柯西不等式即可得证;(2)由(1)结合已知可得043a c ,即可得到1143a c ,再根据权方和不等式即可得证.【详解】(1)[方法一]:【最优解】柯西不等式由柯西不等式有 222222221112a b c a b c,所以23a b c ,当且仅当21a b c 时,取等号,所以23a b c .[方法二]:基本不等式由222a b ab ,2244b c bc ,2244a c ac ,222222224244349a b c a b c ab bc ac a b c ,当且仅当21a b c 时,取等号,所以23a b c .(2)证明:因为2b c ,0a ,0b ,0c ,由(1)得243a b c a c ,即043a c ,所以1143a c ,由权方和不等式知 22212111293444a c a c a c a c,当且仅当124a c,即1a ,12c 时取等号,所以113a c.【点睛】(1)方法一:利用柯西不等式证明,简洁高效,是该题的最优解;方法二:对于柯西不等式不作为必须掌握内容的地区同学,采用基本不等式累加,也是不错的方法.16.(1)证明见解析(2)证明见解析【分析】(1)利用三元均值不等式即可证明;(2)利用基本不等式及不等式的性质证明即可.【详解】(1)证明:因为0a ,0b ,0c ,则320a ,320b ,320c ,所以3332223a b c ,即 1213abc,所以19abc ,当且仅当333222a b c ,即a b c (2)证明:因为0a ,0b ,0c ,所以b c a c ,a b ,所以32a b c 32b ac 32c c a b333333222222a b c a b c a b c b c a c a b 当且仅当a b c 时取等号.17.(1)证明见解析(2)证明见解析.【分析】(1)方法一:由 22222220a b c a b c ab ac bc 结合不等式的性质,即可得出证明;(2)方法一:不妨设 max ,,a b c a ,因为0,1a b c abc ,所以0,a 0,b 0,ca b c34,a a 【详解】(1)[方法一]【最优解】:通性通法 22222220a b c a b c ab ac bc ,22212ab bc ca a b c.1,,,abc a b c 均不为0,则2220a b c , 222120ab bc ca a b c.[方法二]:消元法由0a b c 得 b a c ,则ab bc ca b a c ca 2a c ac22a ac c223024c a c,当且仅当0a b c 时取等号,又1abc ,所以0ab bc ca .[方法三]:放缩法方式1:由题意知0,a 0,a b c ,a c b 222224a c b c b cb bc ,又ab bc ca a b c bc 2a bc 224a a 2304a ,故结论得证.方式2:因为0a b c ,所以 22220222a b c a b c ab bc ca22222212222a b b c c a ab bc ca122222232ab bc ca ab bc ca ab bc ca.即0ab bc ca ,当且仅当0a b c 时取等号,又1abc ,所以0ab bc ca .[方法四]:因为0,1a b c abc ,所以a ,b ,c 必有两个负数和一个正数,不妨设0,a b c 则 ,a b c 20ab bc ca bc a c b bc a .[方法五]:利用函数的性质方式1: 6b a c ,令 22f c ab bc ca c ac a ,二次函数对应的图像开口向下,又1abc ,所以0a ,判别式222Δ430a a a ,无根,所以 0f c ,即0ab bc ca .方式2:设 31f x x a x b x c x ab bc ca x ,则 f x 有a ,b ,c 三个零点,若0ab bc ca ,则 f x 为R 上的增函数,不可能有三个零点,所以0ab bc ca .(2)[方法一]【最优解】:通性通法不妨设 max ,,a b c a ,因为0,1a b c abc ,所以0,a 0,b 0,ca b c则34,a a .故原不等式成立.[方法二]:不妨设 max ,,a b c a ,因为0,1a b c abc ,所以0a ,且,1,b c a bc a则关于x 的方程210x ax a有两根,其判别式24Δ0a a,即a 故原不等式成立.[方法三]:不妨设 max ,,a b c a ,则0,a ,b a c 1,abc 1,a c ac 2210ac a c ,关于c的方程有解,判别式 22Δ40a a ,则34,a a .故原不等式成立.[方法四]:反证法假设 max ,,a b c 0a b1ab ca b c ,又1132a bmax ,,a b c 证.【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出.(2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。
高三数学不等式选讲试题1.设函数(m>0)(1)证明:f(x)≥4;(2)若f(2)>5,求m的取值范围.【答案】(1)见解析;(2)(0,1)∪(,+∞)【解析】(1)利用绝对值基本性质:|x-a|+|x-b|≥|a-b|及基本不等式可得;(2)分类写出f(2)关于m的解析式,解相关分式不等式即可试题解析:(Ⅰ)由m>0,有f(x)=|x-|+|x+m|≥|-(x-)+x+m|=+m≥4,当且仅当=m,即m=2时取“=”.所以f(x)≥4. 4分(Ⅱ)f(2)=|2-|+|2+m|.当<2,即m>2时,f(2)=m-+4,由f(2)>5,得m>.当≥2,即0<m≤2时,f(2)=+m,由f(2)>5,0<m<1.综上,m的取值范围是(0,1)∪(,+∞). 10分考点:绝对值不等式2.设,且满足:,,求证:.【答案】详见解析【解析】根据题中所给条件:,,结合柯西不等式可得出:,由此可推出:,即可得出三者的关系:,问题即可求解.,,,又,,. 10分【考点】不等式的证明3.已知关于x的不等式(其中),若不等式有解,则实数a的取值范围是()A.B.C.D.【答案】C【解析】∵设故,即的最小值为,所以有解,则解得,即的取值范围是,选C.4.对一切实数x,不等式x2+a|x|+1≥0恒成立,则实数a的取值范围是()A.[-2,+∞)B.(-∞,-2)C.[-2,2]D.[0,+∞)【答案】A【解析】由题意a|x|≥-x2-1,∴a≥=(x≠0).∵≤-2,∴a≥-2.当x=0时,a∈R,综上,a≥-2,选A5.设函数,其中。
(1)当时,求不等式的解集;(2)若不等式的解集为,求a的值。
【答案】(1)或(2)【解析】(1)当时,可化为。
由此可得或。
故不等式的解集为或。
(2)由得此不等式化为不等式组或即或因为,所以不等式组的解集为由题设可得= ,故6.不等式x2﹣4x+a<0存在小于1的实数解,则实数a的取值范围是()A.(﹣∞,4)B.(﹣∞,4]C.(﹣∞,3)D.(﹣∞,3]【答案】C【解析】不等式x2﹣4x+a<0可化为:x2﹣4x<﹣a,设y=x2﹣4x,y=﹣a,分别画出这两个函数的图象,如图,由图可知,不等式x2﹣4x+a<0存在小于1的实数解,则有:﹣a>﹣3.故a<3.故选C.7.已知,,,.求证.【答案】详见解析【解析】利用分析法或作差法证明不等式. 即,而显然成立,【证明】因为,,所以,所以要证,即证.即证, 5分即证,而显然成立,故. 10分【考点】不等式相关知识8.若不等式的解集为,则的取值范围为________;【答案】【解析】令,则;若不等式的解集为,则的取值范围为.【考点】绝对值不等式的解法、恒成立问题.9.已知,且,求的最小值.【答案】1.【解析】观察已知条件与所求式子,考虑到柯西不等式,可先将条件化为,此时,由柯西不等式得,即,当且仅当,即,或时,等号成立,从而可得的最小值为1.试题解析:, ,,,当且仅当,或时的最小值是1.【考点】柯西不等式.10.若a,b,c∈R,a>b,则下列不等式成立的是(填上正确的序号).①<;②a2>b2;③>;④a|c|>b|c|.【答案】③【解析】①,当a是正数,b是负数时,不等式<不成立,②当a=-1,b=-2时,a>b成立,a2>b2不成立;当a=1,b=-2时,a>b成立,a2>b2也不成立,当a,b是负数时,不等式a2>b2不成立.③在a>b两边同时除以c2+1,不等号的方向不变,故③正确,④当c=0时,不等式a|c|>b|c|不成立.综上可知③正确.11.已知-1<a+b<3,且2<a-b<4,求2a+3b的取值范围.【答案】-<2a+3b<【解析】设2a+3b=x(a+b)+y(a-b)=(x+y)a+(x-y)b.则解得所以2a+3b=(a+b)-(a-b).因为-1<a+b<3,2<a-b<4,所以-<(a+b)<,-2<-(a-b)<-1.所以--2<2a+3b<-1,即-<2a+3b<.12.设x,y∈R,且x+y=5,则3x+3y的最小值为()A.10B.6C.4D.18【答案】D【解析】选D.3x+3y≥2=2=2=18,当且仅当x=y=2.5时,等号成立.13.已知等比数列{an}的各项均为正数,公比q≠1,设P=,Q=,则P与Q的大小关系是()A.P>Q B.P<QC.P=Q D.无法确定【答案】A【解析】选A.由等比知识,得Q==,而P=,且a3>0,a9>0,q≠1,a 3≠a9,所以>,即P>Q.14.若a,b,c为正数,且a+b+c=1,则++的最小值为()A.9B.8C.3D.【答案】A【解析】选A.因为a,b,c为正数,且a+b+c=1,所以a+b+c≥3,所以0<abc≤,≥27,所以++≥3≥3=9.当且仅当a=b=c=时等号成立.15.已知x+2y+3z=6,则2x+4y+8z的最小值为()A.3B.2C.12D.12【答案】C【解析】选C.因为2x>0,4y>0,8z>0,所以2x+4y+8z=2x+22y+23z≥3=3=3×4=12.当且仅当2x=22y=23z,即x=2y=3z,即x=2,y=1,z=时取等号.16.当0≤x≤时,函数y=x2(1-5x)的最大值为()A.B.C.D.无最大值【答案】C【解析】选C.y=x2(1-5x)=x2=x·x·.因为0≤x≤,所以-2x≥0,所以y≤=,=.当且仅当x=-2x,即x=时,ymax17.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是()A.|a+b|+|a-b|>2B.|a+b|+|a-b|<2C.|a+b|+|a-b|=2D.不能比较大小【答案】B【解析】选B.当(a+b)(a-b)≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2,当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.18.若关于x的不等式|x-2|+|x+3|<a的解集为,则实数a的取值范围为()A.(-∞,1]B.(-∞,1)C.(-∞,5]D.(-∞,5)【答案】C【解析】选C.因为|x-2|+|x+3|≥|x-2-x-3|=5,又关于x的不等式|x-2|+|x+3|<a的解集为,所以a≤5.19.已知函数f(x)=x2-x+13,|x-a|<1.求证:|f(x)-f(a)|<2(|a|+1).【答案】见解析【解析】证明:|f(x)-f(a)|=|x2-x+13-(a2-a+13)|=|x2-a2-x+a|=|(x-a)(x+a-1)|=|x-a||x+a-1|<|x+a-1|=|x-a+2a-1|≤|x-a|+|2a-1|<1+|2a|+1=2(|a|+1),所以|f(x)-f(a)|<2(|a|+1).20.若关于实数x的不等式|x-5|+|x+3|<a无解,求实数a的取值范围.【答案】(-∞,8]【解析】因为不等式|x-5|+|x+3|的最小值为8,所以要使不等式|x-5|+|x+3|<a无解,则a≤8,即实数a的取值范围是(-∞,8].21.已知x,y,z∈R+,且x+y+z=1(1)若2x2+3y2+6z2=1,求x,y,z的值.(2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.【答案】(1)x=,y=,z=(2)t≥6【解析】(1)∵(2x2+3y2+6z2)()≥(x+y+z)2=1,当且仅当时取“=”.∴2x=3y=6z,又∵x+y+z=1,∴x=,y=,z=.=.(2)∵(2x2+3y2+tz2)≥(x+y+z)2=1,∴(2x2+3y2+tz2)min∵2x2+3y2+tz2≥1恒成立,∴≥1.∴t≥6.22.若关于x的不等式的解集为(-1,4),则实数a的值为_________.【答案】【解析】由已知得,,,当时,不等式解集为,故,无解;当时,不等式解集为,故,解得.【考点】绝对值不等式解法.23.设a,b,c均为正数,证明:++≥a+b+c.【答案】见解析【解析】证明:方法一:+++a+b+c=(+b)+(+c)+(+a)≥2a+2b+2c,当且仅当a=b=c时等号成立.即得++≥a+b+c.方法二:利用柯西不等式的一般形式得|a1b1+a2b2+a3b3|≤.取a1=,a2=,a3=,b1=,b2=,b3=代入即证.24.已知正数x,y,z满足5x+4y+3z=10.(1)求证:++≥5.(2)求+的最小值.【答案】(1)见解析 (2) 18【解析】(1)根据柯西不等式,得[(4y+3z)+(3z+5x)+(5x+4y)](++)≥(5x+4y+3z)2,当且仅当==,即x=,y=,z=时取等号.因为5x+4y+3z=10,所以++≥=5.(2)根据平均值不等式,得+≥2=2·,当且仅当x2=y2+z2时,等号成立.根据柯西不等式,得(x2+y2+z2)(52+42+32)≥(5x+4y+3z)2=100,即x2+y2+z2≥2,当且仅当==时,等号成立.综上,+≥2·32=18.当且仅当x=1,y=,z=时,等号成立.所以+的最小值为18.25.设n∈N*,求证:++…+<.【答案】见解析【解析】证明:由=<=(-)可知<(1-),<(-),…,<(-),从而得++…+<(1-)<.26.设0< a,b,c <1,求证:(1-a)b,(1-b)c,(1-c)a,不可能同时大于.【答案】见解析【解析】证明:假设(1-a)b >,(1-b)c >,(1-c)a>,则三式相乘:(1-a)b·(1-b)c·(1-c)a>①.又∵0< a,b,c <1,∴0<(1-a)a≤[]2=.同理:(1-b)b≤,(1-c)c≤,以上三式相乘:(1-a)a·(1-b)b·(1-c)c≤,与①矛盾,∴(1-a)b,(1-b)c,(1-c)a不可能同时大于.27.设函数f(x)=|x+1|+|x-a|(a>0).若不等式f(x)≥5的解集为(-∞,-2]∪(3,+∞),则a的值为________.【答案】a=2【解析】由题意知,f(-2)=f(3)=5,即1+|2+a|=4+|3-a|=5,解得a=2.28.已知函数f(x)=|2x-a|+a.若不等式f(x)≤6的解集为{x|-2≤x≤3},则实数a的值为________.【答案】a=1【解析】由|2x-a|+a≤6得,|2x-a|≤6-a,∴a-6≤2x-a≤6-a,即a-3≤x≤3,∴a-3=-2,∴a=1.29.若对任意的a∈R,不等式|x|+|x-1|≥|1+a|-|1-a|恒成立,则实数x的取值范围是________.【答案】x≤-或x≥【解析】由|1+a|-|1-a|≤2得|x|+|x-1|≥2,当x<0时,-x+1-x≥2,x≤-;当0≤x≤1时,x+1-x≥2,无解;当x>1时,x+x-1≥2,x≥.综上,x≤-或x≥30.已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为________.【答案】2【解析】由柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时“=”成立,得(am+bn)(bm+an)≥=mn(a+b)2=2.31.若正数x,y满足x+3y=5xy,则3x+4y的最小值是().A.B.C.5D.6【答案】C【解析】∵x>0,y>0,由x+3y=5xy,得=5.∴5(3x+4y)=(3x+4y) =13+≥13+2=25.因此3x+4y≥5,当且仅当x=2y时等号成立.∴当x=1,y=时,3x+4y的最小值为5.32.(Ⅰ)(坐标系与参数方程)直线与圆相交的弦长为.(Ⅱ)(不等式选讲)设函数>1),且的最小值为,若,则的取值范围【答案】(Ⅱ)【解析】解:将直线2ρcosθ=1化为普通方程为:2x=1.∵ρ=2cosθ,∴ρ2=2ρcosθ,化为普通方程为:x2+y2=2x,即(x-1)2+y2=1.∴直线与圆相交的弦长=解:∵函数f(x)=|x-4|+|x-a|≥|x-4+a-x|=|a-4|,∵f(x)的最小值为3,∴|a-4|=3,∴a=1或7,∵a>1,∴a=7,∴f(x)=|x-4|+|x-7|≤5,①若x≤4,f(x)=4-x+7-x=11-2x≤5,解得x≥3,故3≤x≤4;②若4<x<7,f(x)=x-4+7-x=3,恒成立,故4<x<7;③若x≥7,f(x)=x-4+x-7=2x-11≤5,解得x≤8,故7≤x≤8;综上3≤x≤8,故答案为:3≤x≤8.【考点】坐标系与参数方程,不等式选讲点评:主要是考查了不等式选讲以及坐标系与参数方程的运用,属于基础题。
数学分析题库(1-22章)一.选择题1.函数712arcsin162-+-=x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-.2.函数)1ln(2++=x x x y ()+∞<<∞-x 是( ).(A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定. 3.点0=x 是函数xe y 1=的( ).(A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点.4.当0→x 时,x 2tan 是( ).(A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小; (C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小.5.xx x x 2)1(lim -∞→的值( ).(A )e; (B)e1; (C)2e ;(D)0.6.函数f(x)在x=0x 处的导数)(0'x f 可定义 为( ). (A )0)()(x x x f x f -- ; (B)x x f x x f x x ∆-∆+→)()(lim 0 ;(C) ()()x f x f x ∆-→∆0lim; (D)()()xx x f x x f x ∆∆--∆+→∆2lim 000. 7.若()()2102lim0=-→x f x f x ,则()0f '等于( ).(A )4; (B)2; (C)21; (D)41,8.过曲线xe x y +=的点()1,0处的切线方程为( ).(A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ; (D)x y =-1. 9.若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内是( ).(A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的; (C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的. 10.函数()x x x x f 933123+-=在区间[]4,0上的最大值点为( ). (A )4; (B)0; (C)2; (D)3.11.函数()x f y =由参数方程⎪⎩⎪⎨⎧==-ttey ex 35确定,则=dx dy ( ). (A )te 253; (B)t e 53; (C) t e --53 ; (D) t e 253-. 12设f ,g 为区间),(b a 上的递增函数,则)}(),(max{)(x g x f x =ϕ是),(b a 上的( )(A ) 递增函数 ; ( B ) 递减函数; (C ) 严格递增函数; (D ) 严格递减函数. 13.()n =(A ) 21; (B) 0; (C ) ∞ ; (D ) 1; 14.极限01lim sin x x x→=( )(A ) 0 ; (B) 1 ; (C ) 2 ; (D ) ∞+.15.狄利克雷函数⎩⎨⎧=为无理数为有理数x x x D 01)(的间断点有多少个( )(A )A 没有; (B) 无穷多个; (C ) 1 个; (D )2个. 16.下述命题成立的是( )(A ) 可导的偶函数其导函数是偶函数; (B) 可导的偶函数其导函数是奇函数; (C ) 可导的递增函数其导函数是递增函数; (D ) 可导的递减函数其导函数是递减函数. 17.下述命题不成立的是( ) (A ) 闭区间上的连续函数必可积; (B) 闭区间上的有界函数必可积; (C ) 闭区间上的单调函数必可积; (D ) 闭区间上的逐段连续函数必可积. 18 极限=-→xx x 10)1(lim ( )(A ) e ; (B) 1; (C ) 1-e ; (D ) 2e . 19.0=x 是函数 xxx f sin )(=的( ) (A )可去间断点; (B )跳跃间断点; (C )第二类间断点; (D ) 连续点. 20.若)(x f 二次可导,是奇函数又是周期函数,则下述命题成立的是( ) (A ) )(x f ''是奇函数又是周期函数 ; (B) )(x f ''是奇函数但不是周期函数;(C ) )(x f ''是偶函数且是周期函数 ; (D ) )(x f ''是偶函数但不是周期函数.21.设xx x f 1sin1=⎪⎭⎫ ⎝⎛,则)(x f '等于 ( ) (A )2cos sin x x x x - ; (B)2sin cos x xx x - ;(C )2sin cos x x x x + ; (D ) 2cos sin xxx x +. 22.点(0,0)是曲线3x y =的 ( )(A ) 极大值点; (B)极小值点 ; C .拐点 ; D .使导数不存在的点. 23.设x x f 3)(= ,则ax a f x f ax --→)()(lim等于 ( )(A )3ln 3a; (B )a3 ; (C )3ln ; (D )3ln 3a.24. 一元函数微分学的三个中值定理的结论都有一个共同点,即( )(A ) 它们都给出了ξ点的求法; (B ) 它们都肯定了ξ点一定存在,且给出了求ξ的方法; (C ) 它们都先肯定了ξ点一定存在,而且如果满足定理条件,就都可以用定理给出的公式计算ξ的值 ; (D ) 它们只肯定了ξ的存在,却没有说出ξ的值是什么,也没有给出求ξ的方法 . 25.若()f x 在(,)a b 可导且()()f a f b =,则( )(A ) 至少存在一点(,)a b ξ∈,使()0f ξ'=; (B ) 一定不存在点(,)a b ξ∈,使()0f ξ'=; (C ) 恰存在一点(,)a b ξ∈,使()0f ξ'=; (D )对任意的(,)a b ξ∈,不一定能使()0f ξ'= .26.已知()f x 在[,]a b 可导,且方程f(x)=0在(,)a b 有两个不同的根α与β,那么在(,)a b 内() ()0f x '=. (A ) 必有; (B ) 可能有; (C ) 没有; (D )无法确定.27.如果()f x 在[,]a b 连续,在(,)a b 可导,c 为介于 ,a b 之间的任一点,那么在(,)a b内()找到两点21,x x ,使2121()()()()f x f x x x f c '-=-成立.(A )必能; (B )可能;(C )不能; (D )无法确定能 .28.若()f x 在[,]a b 上连续,在(,)a b 内可导,且(,)x a b ∈ 时,()0f x '>,又()0f a <,则( ). (A ) ()f x 在[,]a b 上单调增加,且()0f b >; (B ) ()f x 在[,]a b 上单调增加,且()0f b <; (C ) ()f x 在[,]a b 上单调减少,且()0f b <;(D ) ()f x 在[,]a b 上单调增加,但()f b 的 正负号无法确定. 29.0()0f x '=是可导函数()f x 在0x 点处有极值的( ). (A ) 充分条件; (B ) 必要条件 (C ) 充要条件; (D ) 既非必要又非充 分 条件.30.若连续函数在闭区间上有唯一的极大值和极小值,则( ). (A )极大值一定是最大值,且极小值一定是最小值; (B )极大值一定是最大值,或极小值一定是最小值; (C )极大值不一定是最大值,极小值也不一定是最小值; (D )极大值必大于极小值 .31.若在(,)a b 内,函数()f x 的一阶导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在此区间内( ).(A ) 单调减少,曲线是凹的; (B ) 单调减少,曲线是凸的; (C ) 单调增加,曲线是凹的; (D ) 单调增加,曲线是凸的.32.设lim ()lim ()0x ax af x F x →→==,且在点a 的某邻域中(点a 可除外),()f x 及()F x 都存在,且()0F x ≠,则()lim ()x a f x F x →存在是''()lim ()x a f x F x →存在的( ).(A )充分条件; (B )必要条件;(C )充分必要条件;(D )既非充分也非必要条件 . 33.0cosh 1lim1cos x x x→-=-().(A )0; (B )12-; (C )1; (D )12. 34.设a x n n =∞→||lim ,则 ( )(A) 数列}{n x 收敛; (B) a x n n =∞→lim ;(C) a x n n -=∞→lim ; (D) 数列}{n x 可能收敛,也可能发散。
高三数学不等式选讲试题1.设a、b、c为正数,a+b+9c2=1,则的最大值是,此时a+b+c= .【答案】【解析】由柯西不等式得,所以,当且仅当且,即,所以的最大值是,此时.【考点】柯西不等式.2.已知函数.(1)解不等式:;(2)当时,不等式恒成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由函数,及解不等式,通过将x的区间分为3类可解得结论.(2)由当时,不等式恒成立,令函数.所以原题等价于,由.通过绝对值不等式的公式即可得到函数的最大值,再通过解绝对值不等式可得结论.(1)原不等式等价于:当时,,即.当时,,即当时,,即.综上所述,原不等式的解集为. 4分(2)当时,=所以 7分【考点】1.绝对值不等式.2.恒成立问题.3.分类的数学思想.3.若对任意正实数,不等式恒成立,则实数的最小值为.【答案】【解析】因为对任意正实数,不等式恒成立,所以,因此【考点】不等式恒成立4.设,则的最小值为。
【答案】9【解析】由柯西不等式可知。
5.设a,b,c均为正数,且a+b+c=1,证明:(1)ab+bc+ca≤(2).【答案】(1)见解析;(2)见解析.【解析】(1)由得.由题设得,即.所以3(ab+bc+ca)≤1,即.(2)因为+b≥2a,+c≥2b,+a≥2c,故+(a+b+c)≥2(a+b+c),即≥a+b+c,所以.6.已知函数f(x)=|x-a|,其中a>1.(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.【答案】(1){x|x≤1或x≥5}.(2)3【解析】(1)当a=2时, f(x)+|x-4|=当x≤2时,由f(x)≥4-|x-4|得-2x+6≥4,解得x≤1;当2<x<4时, f(x)≥4-|x-4|无解;当x≥4时,由f(x)≥4-|x-4|得2x-6≥4,解得x≥5;所以f(x)≥4-|x-4|的解集为{x|x≤1或x≥5}.(2)记h(x)=f(2x+a)-2f(x),则h(x)=由|h(x)|≤2,解得≤x≤又已知|h(x)|≤2的解集为{x|1≤x≤2}.所以=1且=2于是a=3.7.满足不等式的的取值范围是________.【答案】{或}【解析】不等式等价于,即,故的取值范围是.【考点】解不等式.8.不等式2x2﹣x﹣1>0的解集是()A.B.(1,+∞)C.(﹣∞,1)∪(2,+∞)D.∪(1,+∞)【答案】D【解析】原不等式同解于(2x+1)(x﹣1)>0∴x>1或x<故选:D9.如图,有一块锐角三角形的玻璃余料,欲加工成一个面积不小于cm2的内接矩形玻璃(阴影部分),则其边长(单位:cm)的取值范围是()A.B.C.D.【答案】D【解析】设矩形的另一边长为,由图,三角形相似可知,,解得,则矩形面积,解得,故选D.【考点】1.一元二次不等式的求解.10.下列不等式成立的是()A.log32<log25<log23B.log32<log23<log25C.log23<log32<log25D.log23<log25<log32【答案】B【解析】选B.因为log32<log33=1,log23>log22=1,所以log32<log23,又因为log23<log25,所以log32<log23<log25.11.设a,b∈R,若a-|b|>0,则下列不等式正确的是()A.b-a>0B.a3+b3<0C.a2-b2<0D.b+a>0【答案】D【解析】选D.因为a-|b|>0,所以a>|b|≥0.所以不论b正或b负均有a+b>0.12.已知a,b,c为三角形的三边长,则a2与ab+ac的大小关系是.【答案】a2<ab+ac【解析】因为a,b,c为三角形的三边长,所以a<b+c,又因为a>0,所以a2<a(b+c),即a2<ab+ac.13.实数x,y,z满足x2-2x+y=z-1且x+y2+1=0,试比较x,y,z的大小.【答案】z≥y>x【解析】x2-2x+y=z-1⇒z-y=(x-1)2≥0⇒z≥y;x+y2+1=0⇒y-x=y2+y+1=+>0⇒y>x,故z≥y>x.14.若正数a,b满足ab=a+b+3,则ab的取值范围是.【答案】[9,+∞)【解析】令=t(t>0),由ab=a+b+3≥2+3,则t2≥2t+3,所以t≥3或t≤-1(舍去),所以≥3,ab≥9,当a=b=3时取等号.15.若a,b,c为正数,且a+b+c=1,则++的最小值为()A.9B.8C.3D.【答案】A【解析】选A.因为a,b,c为正数,且a+b+c=1,所以a+b+c≥3,所以0<abc≤,≥27,所以++≥3≥3=9.当且仅当a=b=c=时等号成立.16.已知x+2y+3z=6,则2x+4y+8z的最小值为()A.3B.2C.12D.12【答案】C【解析】选C.因为2x>0,4y>0,8z>0,所以2x+4y+8z=2x+22y+23z≥3=3=3×4=12.当且仅当2x=22y=23z,即x=2y=3z,即x=2,y=1,z=时取等号.17.若记号“*”表示求两个实数a与b的算术平均的运算,即a*b=,则两边均含有运算“*”和“+”,且对任意3个实数a,b,c都能成立的一个等式可以是.【答案】a+(b*c)=(a+b)*(a+c)【解析】由题意知a+(b*c)=a+=,(a+b)*(a+c)==,所以a+(b*c)=(a+b)*(a+c).18.已知x,y均为正数,且x>y,求证:2x+≥2y+3.【答案】见解析【解析】【证明】因为x>0,y>0,x-y>0,2x+-2y=2(x-y)+=(x-y)+(x-y)+≥3=3,所以2x+≥2y+3.19.已知函数f(x)=|x-3|-2,g(x)=-|x+1|+4.若函数f(x)-g(x)≥m+1的解集为R,求m的取值范围.【答案】(-∞,-3]【解析】【解题指南】本题关键是转化题中的条件为求f(x)-g(x)的最小值,求解时结合绝对值三角不等式.f(x)-g(x)=|x-3|+|x+1|-6,解:因为x∈R,由绝对值三角不等式得f(x)-g(x)=|x-3|+|x+1|-6=|3-x|+|x+1|-6≥|(3-x)+(x+1)|-6=4-6=-2,于是有m+1≤-2,得m≤-3,即m的取值范围是(-∞,-3].20.已知函数f(x)=|x-a|.(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.【答案】(1)a=2(2){m|m≤5}【解析】(1)由f(x)≤3得|x-a|≤3,解得a-3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以解得a=2.(2)当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+5),于是g(x)=|x-2|+|x+3|≥|(2-x)+(x+3)|=5,当且仅当(2-x)(x+3)≥0即当-3≤x≤2时等号成立.所以实数m的取值范围是{m|m≤5}.21.设a、b∈R+,试比较与的大小.【答案】≥【解析】∵()2-=≥0,∴≥22.若a、b、c∈R+,且a+b+c=1,求++的最大值.【答案】【解析】(1·+1·+1·)2≤(12+12+12)(a+b+c)=3,即++的最大值为23.若a、b∈R+,且a≠b,M=+,N=+,求M与N的大小关系.【答案】M>N【解析】∵a≠b,∴+>2,+>2,∴+++>2+2,即+>+,即M>N.24.已知a>0,求证:-≥a+-2.【答案】见解析【解析】要证-≥a+-2,只需证+2≥a++,只需证a2++4+4≥a2++2+2+2,即证2≥,只需证4≥2,即证a2+≥2,此式显然成立.∴原不等式成立.25.已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1].(1)求m的值;(2)若a,b,c∈R,且=m,求证:a+2b+3c≥9.【答案】(1)m=1(2)见解析【解析】(1)∵f(x+2)=m-|x|≥0,∴|x|≤m,∴m≥0,-m≤x≤m,∴f(x+2)≥0的解集是[-1,1],故m=1.(2)由(1)知=1,a、b、c∈R,由柯西不等式得a+2b+3c=(a+2b+3c)≥(·+·+·)2=9.26.已知x,y,z∈R+,且x+y+z=1(1)若2x2+3y2+6z2=1,求x,y,z的值.(2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.【答案】(1)x=,y=,z=(2)t≥6【解析】(1)∵(2x2+3y2+6z2)()≥(x+y+z)2=1,当且仅当时取“=”.∴2x=3y=6z,又∵x+y+z=1,∴x=,y=,z=.(2)∵(2x2+3y2+tz2)≥(x+y+z)2=1,∴(2x2+3y2+tz2)min=.∵2x2+3y2+tz2≥1恒成立,∴≥1.∴t≥6.27.设a,b,c均为正数,证明:++≥a+b+c.【答案】见解析【解析】证明:方法一:+++a+b+c=(+b)+(+c)+(+a)≥2a+2b+2c,当且仅当a=b=c时等号成立.即得++≥a+b+c.方法二:利用柯西不等式的一般形式得|a1b1+a2b2+a3b3|≤.取a1=,a2=,a3=,b1=,b2=,b3=代入即证.28.已知a,b,c∈(1,2),求证:++≥6.【答案】见解析【解析】证明:∵≥=,≥=,≥=.∴y=++≥++.又由柯西不等式可得[(a-b+1)+(b-c+1)+(c-a+1)](++)≥18,即++≥=6.∴y=6,当且仅当a=b=c=时取到最小值,min原不等式得证.29.“a<4”是“对任意的实数x,|2x-1|+|2x+3|≥a成立”的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件【答案】B【解析】因为|2x-1|+|2x+3|≥a,所以,根据不等式的几何意义可知,在数轴上点x到点和-的距离之和≥2,所以当a<4时,有<2,所以不等式成立,此时为充分条件要使|2x-1|+|2x+3|≥a恒成立,即恒成立,则有≤2,即a≤4综上,“a<4”是“|2x-1|+|2x+3|≥a成立”的充分不必要条件,故选B.30.已知函数f(x)=|2x-a|+a.若不等式f(x)≤6的解集为{x|-2≤x≤3},则实数a的值为________.【答案】a=1【解析】由|2x-a|+a≤6得,|2x-a|≤6-a,∴a-6≤2x-a≤6-a,即a-3≤x≤3,∴a-3=-2,∴a=1.31.已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)·(bm+an)的最小值为________.【答案】2.【解析】∵a,b,m,n∈R+,且a+b=1,mn=2,∴(am+bn)( bm+an)=abm2+a2mn+b2mn+abn2=ab(m2+n2)+2(a2+b2)≥2ab·mn+2(a2+b2) =4ab+2(a2+b2)=2(a2+b2+2ab)=2(a+b)2=2,当且仅当m=n=时,取“=”.∴所求最小值为2.32.设函数f(x)=|x-1|+|x-2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a-b|≥|a|f(x)( a≠0,a,b∈R)恒成立,求实数x的取值范围.【答案】(1)(2)≤x≤【解析】(1)f(x)=图象如图.(2)由|a+b|+|a-b|≥|a|f(x)得≥f(x).又因为≥=2.则有2≥f(x).解不等式2≥|x-1|+|x-2|得≤x≤. 即x的取值范围为≤x≤33. (1)设x≥1,y≥1,证明x+y+≤++xy;(2)1<a≤b≤c,证明loga b+logbc+logca≤logba+logcb+logac.【答案】(1)见解析(2)见解析【解析】(1)由于x≥1,y≥1,要证x+y+≤++xy,只需证xy(x+y)+1≤y+x+(xy)2.因为[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).由条件x≥1,y≥1,得(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设loga b=x,logbc=y,由对数的换底公式得logca=,logba=,logcb=,logac=xy.于是,所要证明的不等式即为x+y+≤++xy.其中x=loga b≥1,y=logbc≥1.故由(1)可知所要证明的不等式成立.34.若对任意的a∈R,不等式|x|+|x-1|≥|1+a|-|1-a|恒成立,则实数x的取值范围是________.【答案】x≤-或x≥【解析】由|1+a|-|1-a|≤2得|x|+|x-1|≥2,当x<0时,-x+1-x≥2,x≤-;当0≤x≤1时,x+1-x≥2,无解;当x>1时,x+x-1≥2,x≥.综上,x≤-或x≥35.在R上定义运算,若关于的不等式的解集是的子集,则实数a的取值范围是()A.B.C.或D.【答案】D【解析】,设A为关于的不等式的解集,当A为时,则即;当即时,,则即,所以;当即时,,则即,所以;综上可知.【考点】新定义、含参数不等式的解法.36.设实数均不小于1,且,则的最小值是.(是指四个数中最大的一个)【答案】9【解析】设,则,当时上式两等号都能取到,所以的最小值为9.【考点】多元函数最值的求法.37.[选修4 - 5:不等式选讲](本小题满分10分)设,实数满足,求证:.【答案】.【解析】,,又. 10分【考点】本题主要考查绝对值不等式的证明,绝对值不等式的性质。
专题16 选修4-5不等式选讲【2021年】1.(2021年全国高考乙卷数学(文)试题)已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.2.(2021年全国高考甲卷数学(理)试题)已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像;(2)若()()f x a g x +≥,求a 的取值范围.3.(2021年全国新高考Ⅰ卷数学试题)已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知函数()|31|2|1|f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.2.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.3.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .4.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知a ,b ,c 为正数,且满足abc =1.证明:(1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.5.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.6.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 7.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知()11f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围.8.(2018年全国普通高等学校招生统一考试理数(全国卷II ))设函数()52f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤恒成立,求a 的取值范围.9.(2018年全国卷Ⅰ理数高考试题)设函数()211f x x x =++-.(1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b ≤+,求+a b 的最小值.10.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.11.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.12.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))已知函数()f x =│x +1│–│x –2│. (1)求不等式()f x ≥1的解集;(2)若不等式()f x ≥x 2–x +m 的解集非空,求实数m 的取值范围.13.(2016年全国普通高等学校招生统一考试文科数学(新课标1卷))(2016高考新课标Ⅰ,理24)选修4-5:不等式选讲已知函数f (x )=|x +1|−|2x −3|.(Ⅰ)画出y =f (x )的图象;(Ⅰ)求不等式|f (x )|>1的解集.14.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷))选修4-5:不等式选讲已知函数11()22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ; (Ⅰ)证明:当a ,b M ∈时,1a b ab +<+.15.(2016年全国普通高等学校招生统一考试)已知函数()|2|f x x a a =-+.(1)当a=2时,求不等式()6f x ≤的解集;(2)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a 的取值范围.16.(2015年全国普通高等学校招生统一考试理科数学(新课标))已知函数()|1|2||,0f x x x a a =+-->.(1)当1a =时,求不等式()1f x >的解集;(2)若()f x 的图象与x 轴围成的三角形面积大于6,求a 的取值范围.17.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))选修4-5不等式选讲设a b c d ,,,均为正数,且a b c d +=+,证明:(Ⅰ)若ab cd >>;(Ⅰ>是a b c d -<-的充要条件.18.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))若且 (I )求的最小值; (II )是否存在,使得?并说明理由.19.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅰ卷))设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.20.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷))选修4—5:不等式选讲 已知函数f (x )=|2x -1|+|2x +a|,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当xⅠ1,22a ⎛⎫-⎪⎝⎭时,f (x )≤g (x ),求a 的取值范围.21.(2013年全国普通高等学校招生统一考试文科数学(新课标2卷))设a ,b ,c 均为正数,且a+b+c=1,证明:(Ⅰ)ab+bc+ac ≤13; (Ⅰ)2221a b c b c a++≥.22.(2012年全国普通高等学校招生统一考试文科数学(课标卷))已知函数()f x =2x a x ++-. (Ⅰ)当3a =-时,求不等式()f x ≥3的解集;(Ⅰ) 若()f x ≤4x -的解集包含[1,2],求a 的取值范围.(命题意图)本题主要考查含绝对值不等式的解法,是简单题.。
高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
2016年高考新课标Ⅱ卷文数试题参考解析一、 选择题:本大题共12小题。
每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。
1. 已知集合{123}A =,,,2{|9}B x x =<,则A B =I (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},【答案】D【解析】由29x <得,33x -<<,所以{|33}B x x =-<<,所以{1,2}A B =I ,故选D. 2. 设复数z 满足i 3i z +=-,则z =(A )12i -+ (B )12i - (C )32i + (D )32i - 【答案】C【解析】由3z i i +=-得,32z i =-,故选C. 3. 函数=sin()y A x ωϕ+ 的部分图像如图所示,则(A )2sin(2)6y x π=-(B )2sin(2)3y x π=-(C )2sin(2+)6y x π=(D )2sin(2+)3y x π=【答案】A4. 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A )12π (B )323π (C )8π (D )4π 【答案】A【解析】因为正方体的体积为8,所以正方体的体对角线长为233,所以球面的表面积为243)12ππ⋅=,故选A.5. 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k = (A )12 (B )1 (C )32(D )2【答案】D【解析】(1,0)F ,又因为曲线(0)ky k x=>与C 交于点P ,PF x ⊥轴,所以21k =,所以2k =,选D.6. 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =(A )−43 (B )−34(C )3 (D )2 【答案】A【解析】圆心为(1,4),半径2r =,所以2211a =+,解得43a =-,故选A.7. 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(A )20π (B )24π (C )28π (D )32π 【答案】C【解析】因为原几何体由同底面一个圆柱和一个圆锥构成,所以其表面积为28S π=,故选C.8. 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯 ,则至少需要等待15秒才出现绿灯的概率为 (A )710 (B )58 (C )38 (D )310【答案】B【解析】至少需要等待15秒才出现绿灯的概率为40155408-=,故选B. 9. 中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s = (A )7 (B )12 (C )17 (D )34【答案】C【解析】第一次运算,a=2,s=2,n=2,k=1,不满足k>n; 第二次运算,a=2,s=2226⨯+=,k=2,不满足k>n; 第三次运算,a=5,s=62517⨯+=,k=3,满足k>n , 输出s=17,故选C .10. 下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是 (A )y =x (B )y =lg x (C )y =2x(D )y x=【答案】D 【解析】lg 10xy x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .11. 函数π()cos 26cos()2f x x x =+-的最大值为 (A )4 (B )5(C )6(D )7【答案】B【解析】因为2311()2(sin )22f x x =--+,而sin [1,1]x ∈-,所以当sin 1x =时,取最大值5,选B.12. 已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数 y =|x 2-2x -3| 与 y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑(A)0 (B)m (C) 2m (D) 4m 【答案】B【解析】因为2(),y |23|y f x x x ==--都关于1x =对称,所以它们交点也关于1x =对称,当m 为偶数时,其和为22m m ⨯=,当m 为奇数时,其和为1212m m -⨯+=,因此选B. 二.填空题:共4小题,每小题5分.13. 已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. 【答案】6-【解析】因为a ∥b ,所以2430m --⨯=,解得6m =-.14. 若x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则z =x -2y 的最小值为__________.【答案】5-15. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________. 【答案】2113【解析】因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin(C)sin cos cos sin 65B A AC A C =+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==.16. 有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 【答案】1和3【解析】由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)等差数列{n a }中,34574,6a a a a +=+= (I )求{n a }的通项公式;(II)设nb =[na ],求数列{nb }的前10项和,其中[x]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2【试题分析】(I )先设{}n a 的首项和公差,再利用已知条件可得1a 和d ,进而可得{}n a 的通项公式;(II )根据{}n b 的通项公式的特点,采用分组求和法,即可得数列{}n b 的前10项和.18. (本小题满分12分)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(I )记A 为事件:“一续保人本年度的保费不高于基本保费”。
高三数学不等式选讲试题1.已知函数.(Ⅰ)解不等式: ;(Ⅱ)当时, 不等式恒成立,求实数a的取值范围.【答案】(1);(2).【解析】本题主要考查绝对值不等式的解法、不等式的性质等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由于,可以转化为,所以分3种情况,,进行讨论去掉绝对值符号解不等式;第二问,,所以利用不等式的性质得到最大值代入上式,解不等式,得到a的取值范围.试题解析:(Ⅰ)原不等式等价于:当时, ,即;当时, ,即;当时, ,即.综上所述,原不等式的解集为. (5分)(Ⅱ)当时,=所以(10分)【考点】绝对值不等式的解法、不等式的性质.2.不等式的解集是【答案】【解析】原不等式可化为,解得.考点:绝对值不等式解法3.若不等式|x-a|-|x|<2-a2对x∈R恒成立,则实数a的取值范围是。
【答案】【解析】,所以原式恒成立,即,即,解得【考点】不等式恒成立问题4.对于,当非零实数a,b满足,且使最大时,的最小值为 .【答案】【解析】法一:判别式法:令,则,代入到中,得,即……①因为关于的二次方程①有实根,所以,可得,取最大值时,或,当时,,当时,,综上可知当时,法二:柯西不等式:由可得:,当且仅当时取等号,即时,取等号,这时或当时,,当时,,综上可知当时,【考点】柯西不等式.5.(5分)(2011•陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若不等式|x+1|+|x﹣2|≥a对任意x∈R恒成立,则a的取值范围是.B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE= .C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:p=1上,则|AB|的最小值为.【答案】(﹣∞,3] 2 1【解析】A.首先分析题目已知不等式|x+1|+|x﹣2|≥a恒成立,求a的取值范围,即需要a小于等于|x+1|+|x﹣2|的最小值即可.对于求|x+1|+|x﹣2|的最小值,可以分析它几何意义:在数轴上点x 到点﹣1的距离加上点x到点2的距离.分析得当x在﹣1和2之间的时候,取最小值,即可得到答案;B.先证明Rt△ABE∽Rt△ADC,然后根据相似建立等式关系,求出所求即可;C.先根据ρ2=x2+y2,sin2+cos2θ=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径.解:A.已知不等式|x+1|+|x﹣2|≥a恒成立,即需要a小于等于|x+1|+|x﹣2|的最小值即可.故设函数y=|x+1|+|x﹣2|.设﹣1、2、x在数轴上所对应的点分别是A、B、P.则函数y=|x+1|+|x﹣2|的含义是P到A的距离与P到B的距离的和.可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.即:y=|x+1|+|x﹣2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x﹣2|的最小值为3.即:k≤3.故答案为:(﹣∞,3].B.∵∠B=∠D,AE⊥BC,∠ACD=90°∴Rt△ABE∽Rt△ADC而AB=6,AC=4,AD=12,根据AD•AE=AB•AC解得:AE=2,故答案为:2C.消去参数θ得,(x﹣3)2+y2=1而p=1,则直角坐标方程为x2+y2=1,点A在圆(x﹣3)2+y2=1上,点B在圆x2+y2=1上则|AB|的最小值为1.故答案为:1点评:A题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x﹣a|+|x﹣b|类型的函数可以用分析几何意义的方法求最值.本题还考查了三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题.6.不等式的解集为 .【答案】.【解析】解不等式,得,解得,故不等式的解集为.【考点】绝对值不等式的求解7.已知函数.(1)解不等式:;(2)当时,不等式恒成立,求实数的取值范围.【答案】(1);(2)【解析】(1)由函数,及解不等式,通过将x的区间分为3类可解得结论.(2)由当时,不等式恒成立,令函数.所以原题等价于,由.通过绝对值不等式的公式即可得到函数的最大值,再通过解绝对值不等式可得结论.(1)原不等式等价于:当时,,即.当时,,即当时,,即.综上所述,原不等式的解集为. 4分(2)当时,=所以 7分【考点】1.绝对值不等式.2.恒成立问题.3.分类的数学思想.8.阅读:已知、,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数、、,,求证:.【答案】(1)9;(2)18;(3)证明见解析.【解析】本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1), 2分而,当且仅当时取到等号,则,即的最小值为. 5分(2), 7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分【考点】阅读材料问题,“1”的代换,基本不等式.9.(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.【答案】【解析】∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为10.已知函数f(x)=|x-a|,其中a>1.(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.【答案】(1){x|x≤1或x≥5}.(2)3【解析】(1)当a=2时, f(x)+|x-4|=当x≤2时,由f(x)≥4-|x-4|得-2x+6≥4,解得x≤1;当2<x<4时, f(x)≥4-|x-4|无解;当x≥4时,由f(x)≥4-|x-4|得2x-6≥4,解得x≥5;所以f(x)≥4-|x-4|的解集为{x|x≤1或x≥5}.(2)记h(x)=f(2x+a)-2f(x),则h(x)=由|h(x)|≤2,解得≤x≤又已知|h(x)|≤2的解集为{x|1≤x≤2}.所以=1且=2于是a=3.11.设a>1>b>-1,则下列不等式中恒成立的是()A.<B.>C.a>b2D.a2>2b【答案】C【解析】选C.令a=2,b=-,验证可得选项A不正确,令a=2,b=,则B不正确,若a=1.1,b=0.9,则D 不正确,对选项C,由-1<b<1得:0≤b2<1,又a>1,故b2<a,故C项正确.12.已知a,b,c为三角形的三边长,则a2与ab+ac的大小关系是.【答案】a2<ab+ac【解析】因为a,b,c为三角形的三边长,所以a<b+c,又因为a>0,所以a2<a(b+c),即a2<ab+ac.13.设x,y∈R,且x+y=5,则3x+3y的最小值为()A.10B.6C.4D.18【答案】D【解析】选D.3x+3y≥2=2=2=18,当且仅当x=y=2.5时,等号成立.14.已知点P(x,y)在经过A(3,0),B(1,1)两点的直线上,那么2x+4y的最小值为()A.2B.4C.16D.不存在【答案】B【解析】选B.过A,B两点的直线方程为y=-(x-3),所以x=3-2y,所以2x+4y=+4y≥4,当且仅当=4y时,等号成立.,x,y为变量,a,b为常数,且a+b=10,+=1,x+y的最小值为18,求a,b.15.已知a,b,x,y∈R+【答案】或【解析】因为x+y=(x+y)=a+b++≥a+b+2=(+)2,=(+)2=18,当且仅当=时取等号.又(x+y)min即a+b+2=18,①又a+b=10,②由①②可得或16.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是.【答案】(-∞,-3]∪[3,+∞)【解析】因为f (x)=|x+1|+|x-2|=所以f(x)≥3,要使|a|≥|x+1|+|x-2|有解,故|a|≥3,即a≤-3或a≥3.17.已知a、b、m、n均为正数,且a+b=1,mn=2,求(am+bn)(bm+an)的最小值.【答案】2【解析】利用柯西不等式求解,(am+bn)(an+bm)≥()2=mn·(a+b)2=2·1=2,且仅当即m=n时取最小值2.18.已知x,y,z∈R+,且x+y+z=1(1)若2x2+3y2+6z2=1,求x,y,z的值.(2)若2x2+3y2+tz2≥1恒成立,求正数t的取值范围.【答案】(1)x=,y=,z=(2)t≥6【解析】(1)∵(2x2+3y2+6z2)()≥(x+y+z)2=1,当且仅当时取“=”.∴2x=3y=6z,又∵x+y+z=1,∴x=,y=,z=.=.(2)∵(2x2+3y2+tz2)≥(x+y+z)2=1,∴(2x2+3y2+tz2)min∵2x2+3y2+tz2≥1恒成立,∴≥1.∴t≥6.19.若对恒成立,则实数的取值范围是___________.【答案】【解析】当为偶数时,,而;当为奇数时,,而.所以的取值范围是.【考点】不等式.20.若关于x的不等式的解集为(-1,4),则实数a的值为_________.【答案】【解析】由已知得,,,当时,不等式解集为,故,无解;当时,不等式解集为,故,解得.【考点】绝对值不等式解法.21.已知函数,m∈R,且的解集为.(1)求的值;(2)若,且,求的最小值.+【答案】(1).(2)的最小值为9.【解析】(1)由已知,得到所以根据的解集是,得到.(2)由(1)知,,由柯西不等式即得所求.试题解析:(1)因为,所以.所以又的解集是,故. 5分(2)由(1)知,,由柯西不等式得∴的最小值为9 10分【考点】绝对值不等式解法,柯西不等式.22.已知a,b,c,d均为正实数,且a+b+c+d=1,求证:+++≥.【答案】见解析【解析】证明:因为[(1+a)+(1+b)+(1+c)+(1+d)]·(+++)≥(·+·+·+·)2=(a+b+c+d)2=1,当且仅当===即a=b=c=d=时取等号.又(1+a)+(1+b)+(1+c)+(1+d)=4+(a+b+c+d)=5,所以5(+++)≥1.所以+++≥.23.设不等式|x-2|<a(a∈N*)的解集为A,且∈A,∉A.(1)求a的值;(2)求函数f(x)=|x+a|+|x-2|的最小值.【答案】(1)a=1(2)3.【解析】(1)因为∈A,且∉A,所以<a,且≥a,解得<a≤.又因为a∈N*,所以a=1.(2)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3,当且仅当(x+1)(x-2)≤0,即-1≤x≤2时取到等号,所以f(x)的最小值为3.24. (1)设x≥1,y≥1,证明x+y+≤++xy;(2)1<a≤b≤c,证明loga b+logbc+logca≤logba+logcb+logac.【答案】(1)见解析(2)见解析【解析】(1)由于x≥1,y≥1,要证x+y+≤++xy,只需证xy(x+y)+1≤y+x+(xy)2.因为[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).由条件x≥1,y≥1,得(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设loga b=x,logbc=y,由对数的换底公式得logca=,logba=,logcb=,logac=xy.于是,所要证明的不等式即为x+y+≤++xy.其中x=loga b≥1,y=logbc≥1.故由(1)可知所要证明的不等式成立.25.已知函数f(x)=|2x-a|+a.若不等式f(x)≤6的解集为{x|-2≤x≤3},则实数a的值为________.【答案】a=1【解析】由|2x-a|+a≤6得,|2x-a|≤6-a,∴a-6≤2x-a≤6-a,即a-3≤x≤3,∴a-3=-2,∴a=1.26.若正数x,y满足x+3y=5xy,则3x+4y的最小值是().A.B.C.5D.6【答案】C【解析】∵x>0,y>0,由x+3y=5xy,得=5.∴5(3x+4y)=(3x+4y) =13+≥13+2=25.因此3x+4y≥5,当且仅当x=2y时等号成立.∴当x=1,y=时,3x+4y的最小值为5.27.设实数均不小于1,且,则的最小值是.(是指四个数中最大的一个)【答案】9【解析】设,则,当时上式两等号都能取到,所以的最小值为9.【考点】多元函数最值的求法.28.已知(x+1)n=a0+a1(x﹣1)+a2(x﹣1)+a3(x﹣1)3+…+an(x﹣1)n,(其中n∈N*)(1)求a及;(2)试比较Sn与(n﹣2)2n+2n2的大小,并说明理由.【答案】(1)Sn=3n﹣2n(2)当n=1时,3n>(n﹣1)2n+2n2;当n=2,3时,3n<(n﹣1)2n+2n2;当n≥4,n∈N*时,3n>(n﹣1)2n+2n2【解析】(1)令x=1,则a=2n,令x=2,则,∴Sn=3n﹣2n;(3分)(2)要比较Sn与(n﹣2)2n+2n2的大小,即比较:3n与(n﹣1)2n+2n2的大小,当n=1时,3n>(n﹣1)2n+2n2;当n=2,3时,3n<(n﹣1)2n+2n2;当n=4,5时,3n>(n﹣1)2n+2n2;(5分)猜想:当n≥4时n≥4时,3n>(n﹣1)2n+2n2,下面用数学归纳法证明:由上述过程可知,n=4n=4时结论成立,假设当n=k(k≥4)n=k,(k≥4)时结论成立,即3n>(n﹣1)2n+2n2,两边同乘以3 得:3k+1>3[(k﹣1)2k+2k2]=k2k+1+2(k+1)2+[(k﹣3)2k+4k2﹣4k﹣2]而(k﹣3)2k+4k2﹣4k﹣2=(k﹣3)2k+4(k2﹣k﹣2)+6=(k﹣2)2k+4(k﹣2)(k+1)+6>0∴3k+1>[(k+1)﹣1]2k+1+2(k+1)2即n=k+1时结论也成立,∴当n≥4时,3n>(n﹣1)2n+2n2成立.综上得,当n=1时,3n>(n﹣1)2n+2n2;当n=2,3时,3n<(n﹣1)2n+2n2;当n≥4,n∈N*时,3n>(n﹣1)2n+2n2﹣﹣(10分)【考点】用数学归纳法证明不等式;数列的求和;二项式定理的应用点评:本题是中档题,考查与n有关的命题,通过赋值法解答固定项,前n项和,以及数学归纳法的应用,考查逻辑推理能力,计算能力,常考题型29.选修4—5:不等式选讲已知函数(1)若不等式的解集为,求实数a,m的值。
专题23 不等式选讲【母题来源】2021年高考乙卷【母题题文】已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭.【试题解析】(1)当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和, 则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥, 所以()6f x ≥的解集为(][),42,-∞-+∞.(2)依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-.所以a的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.【点睛】解绝对值不等式的方法有零点分段法、几何意义法.解含有两个绝对值,且其中的x的系数相等时,可以考虑利用数轴上绝对值的几何意义求解;利用绝对值三角不等式求最值也是常见的问题,注意表述取等号的条件.【命题意图】1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1)a b a b+≤+.(2)a b a c c b-≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ;ax b c ax b c x a x b c+≤+≥-+-≥.2.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.3.主要考查逻辑推理能力、运算求解能力,考查分类讨论、数形结合思想方法,考查逻辑推理、数学运算等核心素养.【命题方向】从近三年高考情况来看,此类知识点以解答题的形式出现,主要考查绝对值不等式的解法、不等式的证明、求最值问题等.【得分要点】(一)解绝对值不等式的常用方法有:(1)公式法:对于形如|f(x)|>g(x)或|f(x)|<g(x),利用公式|x|<a⇔−a<x<a(a>0)和|x|>a⇔x>a或x<−a(a>0)直接求解不等式;(2)平方法:对于形如|f(x)|≥|g(x)|,利用不等式两边平方的技巧,去掉绝对值,需保证不等式两边同正或同负,即|f(x)|≥|g(x)|⇔f(x)2≥g2(x);(3)零点分段法:对于形如|f(x)|±|g(x)|≥a,|f(x)|±|g(x)|≤a,利用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解;(4)几何法:对于形如|x±a|±|x±b|≤c,|x±a|±|x±b|≥c,利用绝对值三角不等式的性质求解,即①定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.②定理2:如果a ,b ,c 是实数,那么|a−c|≤|a−b|+|b−c|,当且仅当(a−b )(b−c )≥0时,等号成立.③推论1:||a|−|b||≤|a+b|.④推论2:||a|−|b||≤|a−b|.(5)图象法:对于形如|f (x )|+|g (x )|≥a 可构造y=|f (x )|+|g (x )|−a 或y=|f (x )|+|g (x )|与y=a ,在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解或通过移项构造一个函数.(二)含绝对值不等式的恒成立问题的常见类型及其解法:(1)分享参数法运用“max min ()(),()()f x a f x a f x a f x a ≤⇔≤≥⇔≥”可解决恒成立中的参数范围问题.求最值的思路:利用基本不等式和不等式的相关性质解决;将函数解析式用分段函数形式表示,作出函数图象,求得最值;利用性质“||||||||||||a b a b a b -≤±≤+”求最值.(2)更换主元法不少含参不等式恒成立问题,若直接从主元入手非常困难或不可能解决时,可转换思维角度,将主元与参数互换,常可得到简捷的解法.(3)数形结合法在研究曲线交点的恒成立问题时,若能数形结合,揭示问题所蕴含的几何背景,发挥形象思维和抽象思维各自的优势,可直接解决问题.(三)不等式的证明(1)比较法证明不等式最常用的是差值比较法,其基本步骤是:作差—变形—判断差的符号—下结论.其中“变形”是证明的关键,一般通过因式分解或配方将差式变形为几个因式的积或配成几个代数式平方和的形式,当差式是二次三项式时,有时也可用判别式来判断差值的符号.个别题目也可用柯西不等式来证明.(2)基本不等式:如果a ,b>0,那么2a b +≥a=b 时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.(3)算术平均—几何平均定理(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均数不小于它们的几何平均数,即123n n n a a a a n +++≥,当且仅当a 1=a 2=…=a n 时,等号成立.1.(2021·全国高三其他模拟(理))已知函数()()1a x a x x f =-++∈R .(1)当6a =时,解不等式()9f x ≥;(2)若()220f x a -≥对任意x ∈R 成立,求实数a 的最大值. 【答案】(1)(][),27,-∞-+∞;(2)1. 【分析】 (1)根据题意,讨论去绝对值即可求解;(2)由题意得,()2min 2f x a ≥,结合绝对值的三角不等式即可求出()min f x ,进而可得实数a 的最大值. 【详解】(1)当6a =时,()6161f x x x x x =-++=-++,此时不等式()9f x ≥为619x x -++≥,∴6,619x x x >⎧⎨-++≥⎩或16,619x x x -≤≤⎧⎨-++≥⎩或1,619x x x <-⎧⎨---≥⎩, 解得7x ≥或2x -≤,即所求不等式解集为(][),27,-∞-+∞. (2)∴11a x x a x x -++≥-++, ∴11a x x a -++≥+,又()220f x a -≥对任意x ∈R 成立, ∴212a a +≥,∴112a -≤≤, ∴所求实数a 的最大值为1.2.(2021·新安县第一高级中学高三其他模拟(理))已知函数()|21||2|,()|1|||f x x x g x x x a a =-++=+--+.(1)解不等式f (x )>3;(2)对于∀x 1,x 2∈R ,使得f (x 1)>g (x 2)成立,求a 的取值范围.【答案】(1)2(,0),3⎛⎫-∞⋃+∞ ⎪⎝⎭;(2)34a ≤. 【分析】 (1)通过讨论x 的范围得到关于x 的不等式组,解出即可;(2)依题意即()()min max f x g x ≥,所以求出()min f x 和()max g x ,得到关于a 的不等式,解出即可.【详解】解:(1)由2313x x ≤-⎧⎨-->⎩或12233x x ⎧-<<⎪⎨⎪-+>⎩或12313x x ⎧≥⎪⎨⎪+>⎩,解得0x <或23x >, ∴()3f x >的解集为()2,0,3⎛⎫-∞+∞ ⎪⎝⎭. (2)因为()|21||2|,()|1|||f x x x g x x x a a =-++=+--+所以()|21||2|f x x x =-++函数图象如下所示:所以当12x =时,()min 52f x =; ()()()|1|||11g x x x a a x x a a a a =+--+≤+--+=++当且仅当()()10x x a +-≥时成立,即()max 1g x a a =++.由题意,得()()min max f x g x ≥,即512a a ++≤,即512a a +≤-, ∴225025(1)()2a a a ⎧-⎪⎪⎨⎪+-⎪⎩,解得34a ≤. ∴的取值范围是3,4⎛⎤-∞ ⎥⎝⎦. 3.(2021·甘肃白银市·高三其他模拟(理))已知函数()|6||8|f x x x =---.(1)解不等式()1f x >;(2)记()f x 的最大值为t ,若||,||m t n t <<,求证:42mn m n+>+. 【答案】(1)15,2⎛⎫+∞⎪⎝⎭;(2)证明见解析. 【分析】 (1)由()1f x >,得到|6||8|1x x --->,分类讨论,即可求解;(2)由绝对值三角不等式,求得()2f x ≤,得到2t =,即||2,||2m n <<,要证42mn m n+>+,只需证22(4)4()mn m n +>+,结合比较法,即可求解.【详解】(1)由题意,函数()|6||8|f x x x =---,因为()1f x >,即|6||8|1x x --->,可得6681x x x ≤⎧⎨-+->⎩或68681x x x <<⎧⎨-+->⎩或8681x x x ≥⎧⎨--+>⎩, 解得x 无实根或1582x <<或8x ≥, 综上可得,不等式()1f x >的解集为15,2⎛⎫+∞ ⎪⎝⎭.(2)由()|6||8||68|2f x x x x x =---≤--+=,当且仅当(6)(8)0x x --≥,且|6||8|x x ->-,即8x ≥时取等号,所以2t =,即||2,||2m n <<, 要证42mn m n+>+, 只需证|4|2||mn m n +>+,即证22(4)4()mn m n +>+,(22222(4)4()8164mn m n m n mn m +-+=++-+)22n mn +()()222222441644m n m n m n =--+=--.又224,4m n <<,所以()()22440m n -->, 所以22(4)4()mn m n +>+,即|4|2||mn m n +>+,所以42mn m n+>+. 4.(2021·四川遂宁市·高三三模(理))已知函数()|1||2|f x x x =-++∣(1)求不等式()9f x ≤的解集;(2)当()f x 取最小值时,求使得21mx m x -=+成立的正实数m 的取值范围.【答案】(1)[]5,4-;(2)10,4⎛⎤ ⎥⎝⎦. 【分析】(1)根据零点分段讨论法进行分类讨论解不等式;(2)利用绝对值不等式的性质求出当()f x 取最小值时x 的取值范围,并对式子21mx m x -=+进行变形,从而可求正实数m 的取值范围.【详解】(1)由不等式()9f x ≤,可得()129f x x x =-++≤,可化为2129x x x <-⎧⎨---≤⎩或21129x x x -≤≤⎧⎨-++≤⎩或1129x x x >⎧⎨-++≤⎩, 解,得52x -≤<-或21x -≤≤或14x <≤,综上知不等式的解集为[]5,4-.(2)因为()1212123f x x x x x x x =-++=-++≥-++=,当且仅当(1)(2)0x x -+≤,即21x -≤≤时,等号成立.故当21x -≤≤时,min ()3f x =,法一:当()f x 取最小值时,21mx m x -=+,即211m x m +=-, 所以021211m m m >⎧⎪+⎨-≤≤⎪-⎩,即021212111m m m m m ⎧⎪>⎪+⎪≥-⎨-⎪+⎪≤⎪-⎩,解得104m <≤, 故所求m 的取值范围10,4⎛⎤ ⎥⎝⎦. 法二:13122x m x x +==+-- 因为21x -≤≤,所以421x -≤-≤-,所以11124x -≤≤--, 所以33324x -≤≤--,即312124x -≤+≤-,所以104m <≤, 故所求m 的取值范围10,4⎛⎤ ⎥⎝⎦ 5.(2021·安徽池州市·池州一中高三其他模拟(理))已知函数()()21f x x a x a R =-++∈. (1)当2a =时,解不等式()4f x <;(2)记关于x 的不等式()5f x x ≤+的解集为M ,若[]1,2M -⊆,求a 的取值范围. 【答案】(1)71,3⎛⎫ ⎪⎝⎭;(2)[]0,1. 【分析】(1)分类讨论去绝对值符号,然后解不等式即可;(2)首先根据x 的范围,确定10x +≥,50x +>,然后解不等式得到22a x a -≤≤+.,进而根据集合的包含关系得到不等式组,解不等式组即可.【详解】解:(1)当2a =时,()221f x x x =-++,原不等式可化为14214x x x <-⎧⎨---<⎩,或124214x x x -≤≤⎧⎨-++<⎩或22414x x x >⎧⎨-++<⎩,解得x ∈∅或12x <≤或723x <<, ∴原不等式的解集为71,3⎛⎫⎪⎝⎭. (2)若()5f x x ≤+的解集包含[]1,2-,即当[]1,2x ∈-时,215x a x x -++≤+恒成立,由于在[]1,2-上,10x +≥,50x +>, ∴11x x +=+,55x x +=+, ∴()5f x x ≤+,等价于24x a -≤, 即2x a -≤,22x a -≤-≤,∴22a x a -≤≤+.由于当[]1,2x ∈-时该不等式恒成立,∴21a -≤-且22a +≥,∴01a ≤≤,即a 的取值范围为[]0,1.6.(2021·河南高三其他模拟(理))已知函数()32x x a f a =-+.(1)当1a =-时,求不等式()5f x ≤的解集;(2)设函数()1g x x =-,当x ∈R 时,()()39f x g x +≥,求a 的取值范围.【答案】(1)823x x ⎧⎫-≤≤⎨⎬⎩⎭;(2)[)4,+∞. 【分析】(1)将所求不等式变形为317x +≤,解此不等式即可得解;(2)利用三角不等式可得()()min 3f x g x +⎡⎤⎣⎦,可得出关于实数a 的不等式,由此可解得实数a 的取值范围.【详解】(1)当1a =-时,()312f x x =+-. 由3125x +-≤,得317x +≤,整理得7317x -≤+≤,解得823x -≤≤, 因此不等式()5f x ≤的解集为823x x ⎧⎫-≤≤⎨⎬⎩⎭; (2)当x ∈R 时,()()33233333232f x g x x a a x x a x a a a +=-++-≥--++=-+. 所以当x ∈R 时,()()39f x g x +≥等价于329a a -+≥.∴当3a ≤时,∴等价于39a +≥,无解;当3a >时,∴等价于329a a -+≥,解得4a ≥.所以a 的取值范围是[)4,+∞.7.(2021·黑龙江高三其他模拟(理))设函数()121f x x x =--+的最大值为m . (1)作出函数()f x 的图像;(2)若22223a c b m ++=,求2ab bc +的最大值.【答案】(1)图像见详解;(2)34 【分析】(1)去绝对值将函数写成分段函数的形式,接着画出函数图像即可;(2)由(1)知32m =,接着利用基本不等式求2ab bc +的最大值即可.【详解】 (1)12,21()1213,122,1x x f x x x x x x x ⎧+≤-⎪⎪⎪=--+=--<<⎨⎪--≥⎪⎪⎩, 作出函数()f x 的图像如下:(2)由(1)可知:函数()121f x x x =--+的最大值为13()22m f =-=, 所以()22222223232242m a c b a b c b ab bc ==++=+++≥+, 当且仅当12a b c ===时等号成立, 所以3242ab bc ≥+,即324ab bc +≤, 所以2ab bc +的最大值为34. 8.(2021·正阳县高级中学高三其他模拟(理))已知函数()42f x x m x m =---,m ∈R . (1)若2m =,求不等式()1f x x >+的解集;(2)若关于x 的不等式()23f x m ≤-恒成立,求m 的取值范围. 【答案】(1)(),3-∞;(2)(][),33,-∞-+∞.【分析】 (1)分4x <、48x ≤≤、8x >讨论去绝对值,解不等式可得答案;(2)利用a b a b -≤-解不等式可得答案.【详解】(1)当2m =时,不等式()1f x x >+,即841x x x --->+,∴当4x <时,841x x x -+->+,解得3x <,故3x <;∴当48x ≤≤时,841x x x --+>+,解得113x <,故此时无解; ∴当8x >时,841x x x --+>+,解得5x <-,故此时无解;综上,不等式()1f x x >+的解集为(),3-∞.(2)∴()42422f x x m x m x m x m m =---≤--+=,∴由不等式()23f x m ≤-恒成立,得223m m ≤-, 即2230m m --≥,即3m ≥,解得3m ≥或3m ≤-.∴实数m 的取值范围为(][),33,-∞-+∞.9.(2021·吉林高三其他模拟(理))已知0a >,函数()12f x x x a =++-,()g x ax a =+ (1)当1a =时,解不等式()2f x ≤;(2)若函数()y f x =的图象恒在()y g x =的图象的上方,求实数a 的取值范围.【答案】(1)20,3⎡⎤⎢⎥⎣⎦;(2)(]0,1. 【分析】(1)由零点分区间法和绝对值的意义,去绝对值,解不等式,求并集,可得所求解集;(2)由题意可得不等式()120x x a ax a a ++->+>恒成立.去绝对值,结合不等式恒成立思想和一次函数的单调性,解不等式可得所求范围.解:【详解】(1)当1a =时,不等式()2f x ≤即为1212x x ++-≤, 等价为11122x x x ≤-⎧⎨--+-≤⎩或1121122x x x ⎧-<<⎪⎨⎪++-≤⎩或121212x x x ⎧≥⎪⎨⎪++-≤⎩, 解得x ∈∅或102x ≤<或1223x ≤≤,所以原不等式的解集为20,3⎡⎤⎢⎥⎣⎦; (2)若函数()y f x =的图象恒在()y g x =的图象的上方, 则不等式()120x x a ax a a ++->+>恒成立.当1x ≤-时,12x a x ax a --+->+,即为()13a x ->+恒成立,可得()13a ->-+,解得2a >-,则0a >; 当12a x -<<时,12x a x ax a ++->+,即为()11a x >+恒成立, 可得()112a a +⋅≥,解得20a -≤≤,则01a <≤; 由上面可得01a <≤, 又当2a x ≥时,12x x a ax a ++->+,即为()123a a x ->-恒成立, 由于01a <≤,30a -<,可得()()332a a x a --≤, 则()1232a a a ->-, 解得21a -≤≤,则01a <≤.所以,a 的取值范围是(]0,1.10.(2021·河南商丘市·高三月考(理))已知,,a b c 均为正数,且满足 1.abc =证明:(1)3ab bc ca ++;(2)333a b c ab bc ac ++++.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)由基本不等式可以直接证出;(2)由基本不等式得33333313,13,13a b ab b c bc a c ac ++++++,再用不等式得基本性质即可证得.【详解】(1)由基本不等式可知322233ab bc ac a b c ++=,当且仅当1a b c ===时,等号成立.(2)因为33333313,13,13a b ab b c bc a c ac ++++++,所以三式相加可得()()33323 3.a b c ab bc ac ++++-故只需证明()()332ab bc ac ab bc ac ++-++,即证 3.ab bc ac ++由(1)可知上式成立,故不等式333a b c ab bc ac ++++当且仅当1a b c ===时,等号成立. 11.(2021·黑龙江佳木斯市·佳木斯一中高三三模(理))已知函数()222f x x x =+--.(1)解不等式()6f x ≥.(2)已知0a >,0b >,()()1g x f x x =-+的最大值m ,11m a b +=,求22a b +的最小值. 【答案】(1){10x x ≤-或}2x ≥;(2)最小值为89. 【分析】(1)分2x >,12x -≤≤和1x <-三种情况解不等式;(2)先利用绝对值三角不等式求出()g x 的最大值为3m =,从而得113a b+=,所以()222221119a b a b a b ⎛⎫+=+⋅+ ⎪⎝⎭,化简后利用基本不等式求解即可 【详解】解:(1)函数()4,22223,124,1x x f x x x x x x x +>⎧⎪=+--=-≤≤⎨⎪--<-⎩,当2x >时,不等式()6f x ≥即为46+≥x ,解得2x ≥,所以2x >;当12x -≤≤时,不等式()6f x ≥即为36x ≥,解得2x ≥,所以2x =;当1x <-时,不等式()6f x ≥即为46x --≥,解得10x ≤-,所以10x ≤-.综上所述,不等式()6f x ≥的解集为{10x x ≤-或}2x ≥;(2)()()()()112123=-+=+--≤+--=g x f x x x x x x ,所以()g x 的最大值为3m =, 则113a b+=, 故()222222222111122299⎛⎫⎛⎫+=+⋅+=++++ ⎪ ⎪⎝⎭⎝⎭b a a b a b a b a b a b b a18299⎛≥+= ⎝, 当且仅当2222a b b a=且22a b b a =,即23a b ==时取等号, 故22a b +的最小值为89. 12.(2021·福建省永春第一中学高三其他模拟)已知函数()|22||1|f x x x =++-.(1)在图中的坐标系中画出()y f x =的图象;(2)若()y f x =的最小值为m ,当正数a ,b 满足22a b m +=,证明:2a b ab +≥.【答案】(1)函数图象见解析;(2)证明见解析;【分析】(1)将函数解析式转化成分段函数,再根据函数解析式画出函数图象;(2)由(1)可得2m =,再利用基本不等式和不等式的传递性,即可得证.【详解】解:(1)()31,12213,1131,1x x f x x x x x x x --<-⎧⎪=++-=+-⎨⎪+>⎩,其图象如图所示(2)由(1)可知,()(1)2min f x f =-=,2m ∴=所以222a b +=,0a >,0b >,因为222a b ab +,所以1ab ,2a b ab +,则12, 即有122ababa b +,当且仅当a b =时,取等号. 所以2a b ab +.13.(2021·全国高三其他模拟(理))已知函数f (x )=|x ﹣m |+|x +2m |.(1)当m =﹣1时,求不等式f (x )≤7的解集;(2)若不等式f (x )≤9有解,求实数m 的取值范围.【答案】(1)[﹣3,4];(2)[﹣3,3].【分析】(1)代入m 的值,用零点分段讨论法求解即可;(2)用三角不等式求得()f x 的最小值,进而可得结果.【详解】(1)m =﹣1时,f (x )=|x +1|+|x ﹣2|=21,23,1212,1x x x x x -⎧⎪-<⎨⎪-<-⎩,∴ x ≥2时,2x ﹣1≤7,解得:2≤x ≤4,x <﹣1时,1﹣2x ≤7,解得:﹣3≤x <﹣1,﹣1≤x <2时,3<7成立,解得:﹣1≤x <2,故不等式的解集是[﹣3,4];(2)因为()2()(2)33f x x m x m x m x m m m =-++≥--+=-=, 所以min ()3f x m =,依题意可得39m ≤,解得33m -≤≤,即实数m 的取值范围是[3,3]-.【点睛】结论点睛:对于不等式有解问题,常用到以下两个结论:(1)()a f x ≥有解min ()a f x ⇔≥;(2)()a f x ≤有解max ()a f x ⇔≤.14.(2021·黑龙江高三其他模拟(理))已知函数()|2|||f x x x a =---.(1)当1a =时,求不等式()3f x ≥的解集;(2)若()1f x ≤,求a 的取值范围.【答案】(1)空集;(2)[1,3].【分析】(1)根据零点分段法即可解出;(2)根据绝对值三角不等式求出函数()f x 的最大值为|2|a -,再解不等式|2|1a -≤即可求出.【详解】(1)1a =时,()|2||1|f x x x =---当2x ≥时,()|2||1|1f x x x =---=-当12x ≤≤时,()|2||1|21323f x x x x x x =---=--+=-≥,无解当1x ≤时,()|2||1|1f x x x =---=不等式()3f x ≥的解集是空集;(2)若()1f x ≤,()|2||||(2)()||2|f x x x a x x a a =---≤---=-所以max ()|2|f x a =-,即有|2|112113a a a -≤⇔-≤-≤⇔≤≤a 的取值范围是[1,3].15.(2021·山西太原市·太原五中高三二模(理))已知函数())||2|1|(f x x a x a R =-++∈.(1)当4a =时,解不等式()8f x <;(2)记关于x 的不等式()2|3|f x x ≤-的解集为M ,若[4,1]M --⊆,求a 的取值范围.【答案】(1)()2,2-;(2)[]9,4-.【分析】(1)当4a =时23,1()6,1432,4x x f x x x x x -<-⎧⎪=+-≤≤⎨⎪->⎩,进而分类讨论求解即可;(2)根据题意得当[4,1]x ∈--时,2123x a x x -++≤-恒成立,进而得||8x a -≤恒成立,再结合[4,1]x ∈--即可得答案.【详解】解:(1)当4a =时,()421f x x x =-++,不等式可转化为23,1()6,1432,4x x f x x x x x -<-⎧⎪=+-≤≤⎨⎪->⎩,若()8f x <,1238x x <-⎧⎨-<⎩或1468x x -≤≤⎧⎨+<⎩或4328x x >⎧⎨-<⎩ 解得:21x -<<-或12x -≤<或x ∈∅,综上,不等式的解集是()2,2-.(2)若[]4,1M --⊆,()23f x x ≤-,即当[]4,1x ∈--时,2123x a x x -++≤-恒成立,在[4,1]--上,10x +≤,30x -≤, |1|1x x ∴+=--,|3|3x x -=-,()23f x x ∴≤-等价于8x a -≤,即88x a -≤-≤,当[]4,1x ∈--时该不等式恒成立, 1848a a --≤⎧∴⎨--≥-⎩,解得94a -≤≤. 即a 的范围是[]9,4-.【点睛】本题考查分类讨论解绝对值不等式,根据解集求参数,考查运算求解能力,回归转化思想,是中档题.本题第二问解题的关键在于根据题意,将解不等式转化为恒成立问题求解.。
全国统一高考数学试卷(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.23.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.974.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.811.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤. 17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.【专题】11:计算题;4O:定义法;5J:集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A.1B.C.D.2【考点】A8:复数的模.【专题】34:方程思想;4O:定义法;5N:数系的扩充和复数.【分析】根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.3.(5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100B.99C.98D.97【考点】83:等差数列的性质.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5分)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.B.C.D.【考点】CF:几何概型.【专题】5I:概率与统计.【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5分)已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【考点】KB:双曲线的标准方程.【专题】11:计算题;35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n的取值范围是:(﹣1,3).当焦点在y轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【考点】R3:不等式的基本性质.【专题】33:函数思想;35:转化思想;4R:转化法;51:函数的性质及应用;5T:不等式.【分析】根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c>ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=4,|DE|=2,则C的焦点到准线的距离为()A.2B.4C.6D.8【考点】K8:抛物线的性质;KJ:圆与圆锥曲线的综合.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f (x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2.【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;29:规律型;35:转化思想;5A:平面向量及应用.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5分)(2x+)5的展开式中,x3的系数是10.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;34:方程思想;49:综合法;5P:二项式定理.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3,求出r,即可求出展开式中x3的系数.【解答】解:(2x+)5的展开式中,通项公式为:T r==25﹣r,+1令5﹣=3,解得r=4∴x3的系数2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为64.【考点】87:等比数列的性质;8I:数列与函数的综合.【专题】11:计算题;29:规律型;35:转化思想;54:等差数列与等比数列.【分析】求出数列的等比与首项,化简a1a2…a n,然后求解最值.【解答】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n﹣1)=8n•==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5小题,满分60分,解答须写出文字说明、证明过程或演算步骤. 17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【考点】HU:解三角形.【专题】15:综合题;35:转化思想;49:综合法;58:解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC不为0求出cosC的值,即可确定出出C的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b的值,即可求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12分)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;34:方程思想;49:综合法;5H:空间向量及应用;5Q:立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC为等腰梯形,以E为原点,建立如图所示的坐标系,求出平面BEC、平面ABC的法向量,代入向量夹角公式可得二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A的余弦值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(Ⅰ)求X的分布列;(Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P(X≤n)≥0.5中n的最小值.(Ⅲ)法一:由X的分布列得P(X≤19)=.求出买19个所需费用期望EX1和买20个所需费用期望EX2,由此能求出买19个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19时,费用的期望和当n=20时,费用的期望,从而得到买19个更合适.【解答】解:(Ⅰ)由已知得X的可能取值为16,17,18,19,20,21,22,P(X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)==,P(X=20)===,P(X=21)==,P(X=22)=,∴X的分布列为:X16171819202122P(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5中,n的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20个所需费用期望:EX2=+(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12分)设圆x2+y2+2x﹣15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(Ⅰ)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【考点】J2:圆的一般方程;KL:直线与椭圆的综合.【专题】34:方程思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E的轨迹为以A,B为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A到PQ的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E的轨迹为以A,B为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•=•=12•,A到PQ的距离为d==,|PQ|=2=2=,则四边形MPNQ面积为S=|PQ|•|MN|=••12•=24•=24,当m=0时,S取得最小值12,又>0,可得S<24•=8,即有四边形MPNQ面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设x1,x2是f(x)的两个零点,证明:x1+x2<2.【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】32:分类讨论;35:转化思想;4C:分类法;4R:转化法;51:函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),对a进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0恒成立,当x<1时,f′(x)<0,此时函数为减函数;当x>1时,f′(x)>0,此时函数为增函数;此时当x=1时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1存在一个零点;当x<1时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0的两根为t1,t2,且t1<t2,则当x<t1,或x>t2时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1存在一个零点;即函数f(x)在R是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当ln(﹣2a)<x<1时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0得:函数f(x)在R上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当x>1时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故函数f(x)在R上单调递增,函数f(x)在R上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0恒成立,故f(x)单调递增,故当x=1时,函数取极大值,由f(1)=﹣e<0得:函数f(x)在R上至多存在一个零点,不合题意;综上所述,a的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1时,g′(x)<0,g(x)单调递减;当x>1时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)=,m>0,则h′(m)=>0恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a 值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
专题14不等式选讲解答题30题1.(2022-2023学年高三上学期一轮复习联考(五)理科数学试题(全国卷))已知函数() 2 1f x x a x =-++,() 21g x x =-+.(1)当a =2时画出函数()f x 的图象,并求出其值域;(2)若()()f x g x ≥恒成立,求a 的取值范围.2.(陕西省榆林市2023届高三上学期一模文科数学试题)已知函数()23f x x a x =+-++.(1)当0a =时,求不等式()9f x ≥的解集;(2)若()2f x >,求a 的取值范围.3.(陕西省渭南市富平县2022-2023学年高三下学期期末文科数学试题)已知函数()|1||2|f x x x =++-的最小值为m .(1)求不等式()5f x ≤的解集;(2)若a ,b 都是正数且ab m =,求2a b +的最小值.4.(江西省吉安市2023届高三上学期1月期末质量检测数学(文)试题)已知a ,b 均为正数,且2226a b +=,证明:(1)2a b +≤(2)12a b +≥5.(河南省郑州市2023届高三第一次质量预测理科数学试题)已知()223f x x x =++-.(1)求不等式()5f x ≤的解集;(2)若()f x 的最小值为m ,正实数a ,b ,c 满足a b c m ++=,求证:11192a b b c a c m++≥+++.6.(河南省洛平许济联考2022-2023学年高三上学期第一次质量检测理科数学试题)已知函数()121f x x x =++-.(1)求不等式()8f x <的解集;(2)设函数()()1g x f x x =--的最小值为m ,且正实数a ,b ,c 满足a b c m ++=,求证:2222a b c b c a++≥.7.(河南省部分名校2022-2023学年高三下学期学业质量联合检测理科数学试题)已知函数()12f x x x a =--+.(1)当12a =时,求不等式()0f x 的解集;(2)当1a -时,若函数()12g x x b =+的图象恒在()f x 图象的上方,证明:232b a ->.8.(河南省洛阳市第八高级中学2023届高三下学期开学摸底考试理科数学试题)已知函数()|||4|f x x a x =-++.(1)当2a =时,求不等式()8f x ≥的解集;(2)若()21>+f x a 恒成立,求a 的取值范围.9.(青海省西宁市大通回族土族自治县2022-2023学年高三下学期开学摸底考试数学(文)试题)已知函数()|2||22|(0,0)f x x a x b a b =++->>.(1)若2a =,2b =,求不等式()8f x >的解集;(2)若()f x 的最小值为1,求1123a b b++的最小值.10.(2023届甘肃省高考理科数学模拟试卷(四))已知函数()223f x x a x =-++,()12g x x =-+.(1)解不等式()5g x <.(2)若对任意1x R ∈,都有2x R ∈,使得()()12f x g x =成立,求实数a 的取值范围.11.(甘肃省兰州市第五十七中学2022-2023学年第一次模拟考试数学(文科)试题)已知函数()|21|,()||f x x g x x a=+=+(1)当0a =时,解不等式()()f x g x ≥;(2)若存在x ∈R ,使得()()f x g x ≤成立,求实数a 的取值范围.12.(安徽省江淮名校2022届高三下学期5月联考理科数学试题)已知函数()22212f x x m x m =-++-.(1)当3m =时,求不等式()10f x 的解集;(2)若()4f x 恒成立,求实数m 的取值范围.13.(河南省商开大联考2022-2023学年高三下学期考试文科数学试题)设函数()1f x x a x a =-+++.(1)当0a =时,求不等式()21f x x <+的解集;(2)若关于x 的不等式()2f x <有解,求实数a 的取值范围.14.(山西省太原市第五中学2022届高三下学期二模文科数学试题)(1)解不等式217x x -+-;(2)若正实数,a b 满足1a b +=,求2211a b b a +++的最小值.15.(山西省太原市2022届高三下学期模拟三理科数学试题)已知函数()2R f x x m m =+-∈,,且()0f x <的解集为[3,1]--.(1)求m 的值;(2)设a ,b ,c 为正数,且a b c m ++=,的最大值.16.(山西省吕梁市2022届高三三模理科数学试题)已知函数()22f x x a a x =---.(1)当1a =-时,求不等式()8f x <的解集;(2)当[]1,2x ∈时,()0f x ≥,求a 的取值范围.17.(内蒙古自治区包头市2022-2023学年高三上学期期末数学试题)已知()()4f x x m x x x m =-+--(1)当2m =时,求不等式()0f x ≥的解集;(2)若(),2x ∈-∞时,()0f x <,求m 的取值范围.18.(内蒙古自治区赤峰市2022-2023学年高三上学期10月月考数学文科试题)已知函数()|||2|f x x a x =++-,其中a 为实常数.(1)若函数()f x 的最小值为3,求a 的值;(2)若当[]1,2x ∈时,不等式()|4|f x x ≤-恒成立,求a 的取值范围.19.(内蒙古自治区呼和浩特市2023届高三上学期质量普查调研考试理科数学试题)已知m ≥0,函数()212f x x x m =--+的最大值为4,(1)求实数m 的值;(2)若实数a ,b ,c 满足2a b c m -+=,求222a b c ++的最小值.20.(宁夏石嘴山市第三中学2023届高三上学期期未考试数学(理)试题)已知函数f (x )=2|x +1|+|x -3|.(1)求不等式f (x )>10的解集;(2)若函数()()3g x f x x =+-的最小值为M ,正数a ,b ,c 满足a +b +c =M ,证明2228a b c c a b++≥.21.(河南省名校联盟2021-2022学年高三下学期2月大联考理科数学试卷)已知函数()1f x x =+.(1)求不等式()52f x x ≥--的解集;(2)记()1y f x x =+-的最小值为m ,若0a >,0b >,20a b m +-=,证明:189a b+≥.22.(新疆部分学校2023届高三下学期2月大联考(全国乙卷)数学(理)试题)已知函数()()22R f x ax x a =---∈.(1)当2a =时,求不等式()2f x >的解集;(2)若存在[]2,4x ∈,使得()0f x ≤,求a 的取值范围.23.(江西省部分学校2023届高三上学期1月联考数学(理)试题)已知函数()31f x x =-+.(1)求不等式()82f x x ≤-+的解集;(2)若对任意的0x >,关于x 的不等式()f x ax ≥恒成立,求a 的取值范围.24.(江西省赣州市2023届高三上学期1月期末考试数学(理)试题)已知函数()212f x x x =+++的最小值为m .(1)求m 的值;(2)设,,a b c 为正数,且a b c m ++=,求证:2222222a b c a b c c b a+++++≥.25.(2020届广西柳州市高三毕业班4月模拟(三模)文科数学试题)已知函数()11f x x x =-++.(1)求不等式()3f x <的解集;(2)若二次函数22y x x m =--+与函数()y f x =的图象恒有公共点,求实数m 的取值范围.26.(广西玉林、贵港、贺州市2023届高三联合调研考试(一模)数学(文)试题)已知函数()21,R f x x a a =-+∈,(1)当3a =时,求()f x 的最小值;(2)若对()0,6,R,m x ∀∈∀∈,不等式()f x >a 的取值范围.27.(贵州省贵阳市普通中学2023届高三上学期期末监测考试数学(文)试题)已知0,0a b >>,函数()|2||2|1f x x a x b =++-+的最小值为3.(1)求a b +的值;(2)求证:3221log 42b a ab ⎛⎫++≥- ⎪⎝⎭.28.(贵州省毕节市2023届高三年级诊断性考试(一)数学(文)试题)已知函数()2f x a x x =-++.(1)当1a =付,求不等式()4f x ≤的解集;(2)若()2f x a >-恒成立,求实数a 的取值范围.29.(贵州省铜仁市2023届高三上学期期末质量监测数学(文)试题)设不等式|21||21|4x x ++-<的解集为,,M a b M ∈.(1)求证:115236a b -<;(2)试比较|2|a b -与|2|ab -的大小,并说明理由.30.(广西柳州市、梧州市2023届高中毕业班2月大联考数学(文)试题)已知函数()|21||1|f x x ax =++-.(1)当2a =时,求不等式()3f x ≥的解集;(2)若0a >时,存在x ∈R ,使得()12a f x <+成立,求实数a 的取值范围.。
二次函数讲座问题选讲1.二次函数y=ax 2,y=a (x-h )2,y=a (x-h )2+k ,y=ax 2+b x+c (各式中,a ≠0)•的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:2.抛物线y=ax 2+bx+c (a ≠0)的图象;当a>0时,开口向上,当a<0时开口向下,•对称轴是直线x=-2b a ,顶点坐标是(-2b a ,244ac b a-). 3.抛物线y=a x 2+bx+c (a ≠0),若a>0,当x ≤-2b a 时,y 随x 的增大而减小;当x ≥-2b a时,y•随x 的增大而增大.若a<0,当x ≤-2b a 时,y 随x 的增大而增大;当x ≥-2b a 时,y 随x 的增大而减小. 4.抛物线y=a x 2+bx+c 的图象与坐标轴的交点:(1)图象与y 轴一定相交,交点坐标为(0,c );(2)当△=b 2-4ac>0,图象与x 轴交于两点A (x 1,0)和B (x 2,0),其中的x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根.这两点间的距离AB=│x 1-x 2│. 当△=0,图象与x 轴只有一个交点;当△<0,图象与x 轴没有交点.当a>0时,图象落在x 轴的上方,x 为任何实数,•都有y>0;当a<0时,图象落在x 轴的下方,x 为任何实数时,都有y<0.5.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x 、y 的三对对应值时,可设解析式为一般形式:y=a x 2+bx +c (a ≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=•a (x-h )2+k (a ≠0).(3)当题给条件为已知图象与x 轴的两个交点坐标时,可设解析式为两根式:y=a (x-x 1)(x-x 2)(a ≠0).6.二次函数知识很容易与其他知识综合应用,而形成较为复杂的综合题目.因此,以二次函数知识为主的综合性题目是热点考题,往往以大题形式出现.例题剖析例1 (2006年全国初中数学竞赛(浙江赛区)初赛试题)作抛物线A关于x•轴对称的抛物线B,再将抛物线B向左平移2个单位,向上平移1个单位,得到的抛物线C的函数解析式是y=2(x+1)2-1,则抛物线A所对应的函数表达式是()(A)y=-2(x+3)2-2; (B)y=-2(x+3)2+2;(C)y=-2(x-1)2-2; (D)y=-2(x-1)2+2例2 (2006年全国初中数学竞赛(海南赛区))根据下列表格的对应值,判断方程a x2+bx+c=0(a≠0,a,b,c为常数)一个解x的范围是()(A)3<x<3.23 (B)3.23<x<3.24(C)3.24<x<3.25 (D)3.25<x<3.26例3 (2006年芜湖市鸠江区初中数学竞赛试题)函数y=ax2+bx+c图象的大致位置如右图所示,则ab,bc,2a+b,(a+c)2-b2,(a+b)2-c2,b2-a2等代数式的值中,正数有()(A)2个(B)3个(C)4个(D)5个例4 (2004年河北省初中数学创新与知识应用竞赛决赛试题)一条抛物线y=ax2+bx+c的顶点为(4,-11),且与x轴的两个交点的横坐标为一正一负,则a、b、c中为正数的()(A)只有a (B)只有b (C)只有c (D)只有a和b例5 (2006年“信利杯”全国初中数学竞赛(广西赛区)初赛试题)设b>0,二次函数y=ax2+bx+a2-1的图象为下列图象之一,则a的值是()(A)1 (B)-1 (C(D例6 (2006年芜湖市鸠江区初中数学竞赛试题)若二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0)•,•则S=•a+•b+•c•的值的变化范围是__________.例7 (2005年全国初中数学竞赛试题)Rt △ABC 的三个顶点A ,B ,C•均在抛物线y=x 2上,并且斜边AB 平行于x 轴.若斜边上的高为h ,则( )(A )h<1 (B )h=1 (C )1<h<2 (D )h>2例8 (1993年江苏初中数学竞赛试题)已知mn 是两位数,二次函数y=x 2+mx+n•的图象与x 轴交于不同的两点,这两点间距离不超过2.(1)求证:0<m 2-4n ≤4;(2)求出所有这样的两位数mn .例9 (1997年天津市初中数学竞赛试题)已知函数y=x 2-│x │-12的图象与x 轴交于相异两点A ,B ,另一抛物线y=ax 2+bx+c 过点A ,B ,顶点为P ,且△APB 是等腰直角三角形,求a ,b ,c .例10 (2006年全国初中数学竞赛(浙江赛区)初赛试题)已知二次函数y=x 2+2(m+1)x-m+1.(1)随着m 的变化,该二次函数图象的顶点P 是否都在某条抛物线上?如果是,请求出该抛物线的函数表达式;如果不是,请说明理由.(2)如果直线y=x+1经过二次函数y=x 2+2(m+1)x-m+1图象的顶点P ,求此时m 的值.例11 (2004年河北省初中数学创新与知识应用竞赛决赛试题)通过实验研究,•专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平衡的状态,随后开始分散.学生注意力指标数y 随时间x (分钟)变化的函数图象如图所示(y•越大表示学生注意力越集中).当0≤x ≤10时,图象是抛物线的一部分,当10≤x ≤20和20≤x≤40时,图象是线段.(1)当0≤x ≤10时,求注意力指标数y 与时间x 的函数关系式;(2)一道数学竞赛题需要讲解24分钟.问老师能否经过适当安排,•使学生在听这道题时,注意力的指标数都不低于36.例12 (2006年全国初中数学竞赛(海南赛区))已知A 1、A 2、A 3是抛物线y=12x 2上的三点,A 1B 1、A 2B 2、A 3B 3分别垂直于x 轴,垂足为B 1、B 2、B 3,直线A 2B 2交线段A 1A 3于点C .(1)如图(a ),若A 1、A 2、A 3三点的横坐标依次为1、2、3,求线段CA 2的长;(2)如图(b ),若将抛物线y=12x 2改为抛物线y=12x 2-x+1,A 1、A 2、A 3•三点的横坐标为连续整数,其他条件不变,求线段CA 2的长;(3)若将抛物线y=12x 2改为抛物线y=ax 2+bx+c ,A 1、A 2、A 3三点的横坐标为连续整数,其他条件不变,请猜想线段CA 2的长(用a 、b 、c 表示,并直接写出答案).例13 设抛物线C 的解析式为y=x 2-2kx+)k ,k 为实数.(1)求抛物线的顶点坐标和对称轴方程(用k 表示);(2)任意给定k 的三个不同实数值,请写出三个对应的顶点坐标,试说明当k•变化时,抛物线C 的顶点在一条定直线L 上,求出直线L 的解析式并画出图象;(3)在第一象限有任意两圆O 1、O 2相外切,且都与x 轴和(2)中的直线L 相切,设两圆在x 轴上的切点分别为A 、B (OA<OB ),试问:OA OB是否为一定值?若是,请求出该定值;若不是,请说明理由; (4)已知一直线L 1与抛物线C 中任意一条都相截,且截得的线段长都为6,求这条直线的解析式.巩固练习一、选择题1.直线y=52x-2与抛物线y=x 2-12x 的交点个数是( ) (A )0个 (B )1个 (C )2个 (D )互相重合的两个 2.关于抛物线y=a x 2+bx+c (a ≠0),下面几点结论中,正确的有( )①当a>0时,对称轴左边y 随x 的增大而减小,对称轴右边y 随x 的增大而增大,•当a<0时,情况相反.②抛物线的最高点或最低点都是指抛物线的顶点.③只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④一元二次方程a x 2+bx+c=0(a ≠0)的根,就是抛物线y=ax 2+bx+c 与x 轴交点的横坐标.(A )①②③④ (B )①②③ (C )①② (D )①③④3.若函数y=a x的图象经过点(1,-2),那么抛物线y=ax 2+(a-1)x+a+3的性质说得全对的是( ) (A )开口向下,对称轴在y 轴右侧,图象与正半y 轴相交(B )开口向下,对称轴在y 轴左侧,图象与正半y 轴相交(C)开口向上,对称轴在y轴左侧,图象与负半y轴相交(D)开口向下,对称轴在y轴右侧,图象与负半y轴相交4.函数y=a x2与y=ax(a<0)在同一直角坐标系中的大致图象是()5.如图,抛物线y=x2+bx+c与y轴交于A点,与x轴正半轴交于B,C两点,且BC=3,S△ABC=6,则b的值是()(A)b=5 (B)b=-5 (C)b=±5 (C)b=4(第5题)(第5题)6.不论x为何值,函数y=ax+bx+c(a≠0)的永远小于0的条件是()(A)a>0,△>0 (B)a>0,△<0 (C)a<0,△>0 (D)a<0,△<07.已知抛物线y=a x2+bx+c如图所示,则关于x的方程a x2+bx+c-3=0的根的情况是(• )(A)有两个不相等的正实数根(B)有两个异号实数根(C)有两个相等的实数根(D)没有实数根8.为了备战世界杯,中国足球队在某次训练中,一队员在距离球门12米处挑射,•正好射中了2.4米高的球门横梁.若足球运行的路线是抛物线y=a x2+bx+c(如图),则下列结论:①a<-160;②-160<a<0;③a-b+c>0;④0<b<-12a,其中正确的结论是()(A)①③(B)①④(C)②③(D)②④(第8题) (第12题) (第15题)9.已知:二次函数y=x2+b x+c与x轴相交于A(x1,0),B(x2,0)两点,其顶点坐标为P(-24,24b c b),AB=│x1-x2│,若S△APB=1,则b与c的关系式是()(A)b2-4c+1=0 (B)b2-4c-1=0 (C)b2-4c+4=0 (D)b2-4c-4=010.若函数y=12(x2-100x+196+│x2-100x+196│),则当自变量x取1、2、3、…、•10这100个自然数时,函数值的和是()A.540;B.390;C.194;D.9711.已知二次函数y=ax2+bx的图象经过点A(-1,1),则ab有()(A)最小值0 (B)最大值1 (C)最大值2 (D)有最小值1 412.抛物线y=ax2+bx+c的图象如图,OA=OC,则()(A)ac+1=b (B)ab+1=c (C)bc+1=a (D)以上都不是13.若二次函数y=a x2+bx+c的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c的变化范围是()(A)0<S<2 (B)S>1 (C)1<S<2 (D)-1<S<114.如果抛物线y=x2-6x+c-2的顶点到x轴的距离是3,那么c的值等于()(A)8 (B)14 (C)8或14 (D)-8或-1415.(2005年全国初中数学联赛初赛试题)如图,直线x=1是二次函数y=a x2+bx+c的图象的对称轴,则有()(A)a+b+c=0 (B)b>a+c (C)c>2b (D)abc<0二、填空题1.二次函数y=a x2+c(c不为零),当x取x1,x2(x1≠x2)时,函数值相等,则x1与x2的关系是________.2.已知直线y=2x-1与抛物线y=5x2+k交点的横坐标为2,则k=________,•交点坐标为________.3.已知二次函数y1=ax2+b x+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4)和B(8,2)(如图所示),则能使y1>y2成立的x的取值范围是________.(第3题) (第6题) (第9题)4.有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:_______.5.对于反比例函数y=-2x与二次函数y=-x2+3,•请说出它们的两个相同点①______②________;再说出它们的两个不同点①______,②_______.6.如图,已知点M(p,q)在抛物线y=x2-1上,以M为圆心的圆与x轴交于A、B两点,且A、B两点的横坐标是关于x的方程x2-2px+q=0的两根,则弦AB的长等于_______.7.设x、y、z满足关系式x-1=1223y z+-=,则x2+y2+z2的最小值为_______.8.已知二次函数y=ax2(a≥1)的图象上两点A、B的横坐标分别是-1、2,点O•是坐标原点,如果△AOB 是直角三角形,则△OAB的周长为________.9.如图,A、B、C是二次函数y=a x2+bx+c(a≠0)的图像上三点,根据图中给出的三点的位置,可得a_____0,c_____0,△_____0.10.炮弹从炮口射出后,飞行的h(m)高度与飞行的时间t(s)之间的函数关系是h=vtsina-5t2,其中v是炮弹发射的初速度,a是炮弹的发射角,当v0=300(m/s),sina=12时,炮弹飞行的最大高度是_______.11.抛物线y=-(x-L)(x-3-k)+L与抛物线y=(x-•3)2•+•4•关于原点对称,•则L+•k=________.12.(2000年全国初中数学联合竞赛试题)a,b是正数,并且抛物线y=x2+ax+2b和y=x2+2bx+a都与x 轴有公共点,则a2+b2的最小值是________.13.已知直线y=-2x+3与抛物线y=x2相交于A、B两点,O为坐标原点,那么△OAB•的面积等于________.14.(2003年“TRULY@信利杯”全国初中数学竞赛试题)已知二次函数y=ax 2+bx+c (其中a 是正整数)的图象经过点A (-1,4)与点B (2,1),并且与x 轴有两个不同的交点,则b+c 的最大值为________.15.(2005年全国初中数学竞赛浙江赛区试题)在直角坐标系中,抛物线y=x 2+mx-34m 2(m>0)与x 轴交于A ,B 两点,若A ,B 两点到原点的距离分别为OA ,OB ,且满足11OB OA =23,则m•的值等于_______. 三、解答题1.已知抛物线y=23x 2与直线y=x+k 有交点,求k 的取值范围. 2.如图,P 是抛物线y =x 2上第一象限内的一个点,A 点的坐标是(3,0).(1)令P 点坐标为(x ,y ),求△OPA 的面积S ;(2)S 是y 的什么函数?(3)S 是x 的什么函数?(4)当S=6时,求点P 的坐标;(5)在抛物线y=x 2上求一点P ′,使△OP ′A 的两边P ′O=P ′A .3.抛物线y=ax 2+bx+c 的顶点位于直线y=x-1和y=-2x-4的交点上,且与直线y=•4x-4有唯一交点,试求函数表达式.4.已知实数p<q ,抛物线y 1=x 2-px+2q 与y 2=x 2-qx+2p 在x 轴上有相同的交点A .(1)求A 点坐标;(2)求p+q 的值.5.已知抛物线y =x 2+kx+k-1.(1)求证:无论k 是什么实数,抛物线经过x 轴上一个定点;(2)设抛物线与y 轴交于C 点,与x 轴交于A (x 1,0),B (x 2,0)两点,且满足:x 1<x 2,│x 1│<│x 2│,S △ABC =6,问:过A 、B 、C 三点的圆与抛物线是否有第四个交点,试说明理由,•如果有,求出其坐标.6.如图,已知直线y=-2x+2在x 轴、y 轴分别交于点A 、B ,以线段AB•为直角边在第一象限内作等腰直角△ABC ,∠BAC=90°,过C 作CD ⊥x 轴,垂足为D .(1)求点A 、B 的坐标和AD 的长.(2)求过B 、A 、D 三点的抛物线的解析式.7.如图有一座抛物线形拱桥,桥下面在正常水位是AB 宽20m ,水位上升3m•就达到警戒线CD ,这是水面宽度为10m .(1)在如图的坐标系中求抛物线的解析式.(2)若洪水到来时,水位以每小时0.2m 的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?8.先阅读下面一段材料,再完成后面的问题:材料:过抛物线y=a x 2(a>0)的对称轴上一点(0,-14a )作对称轴的垂线L ,•则抛物线上任一点P 到点F (0,14a)的距离与P 到L 的距离一定相等.我们将点F 与直线L•分别称作这抛物线的焦点和准线,如y=x 的焦点为(0,14).问题:若直线y=kx+b 交抛物线y=14x 2于A 、B ,•AC 、BD 垂直于抛物线的准线L ,垂足分别为C 、D (如图).(1)求抛物线y=14x 2的焦点F 的坐标;(2)求证:直线AB 过焦点F 时,CF ⊥DF ; (3)当直线AB 过点(-1,0),且以线段AB 为直径的圆与准线L 相切时,求这直线对应的函数解析式.9.已知某绿色蔬菜生产基地收获的蒜苔,从四月一日起开始上市的30天内,蒜苔每10千克的批发价y (元)是上市时间x (元)的二次函数,•由近几年的行情可知如下信息:(1)求y 关于x 的函数解析式;(2)蒜台每10千克的批发价为10.8元时,问是在上市的多少天?10.已知:抛物线y=ax 2+4ax+t 与x 轴的一个交点为A (-1,0).(1)求抛物线与x 轴的另一个交点B 的坐标;(2)D 是抛物线与y 轴的交点,C 是抛物线上的一点,且以AB 为一底的梯形ABCD 的面积为9,求此抛物线的解析式;(3)E 是第二象限内到x 轴、y 轴的距离的比为5:2的点,如果点E 在(2)中的抛物线上,且它与点A 在此抛物线对称轴的同侧,问:在抛物线的对称轴上是否存在点P ,使△APE 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.11.已知二次函数y=x 2+b x+c 的图像与x 轴的两个交点的横坐标分别为x 1、x 2,•一元二次方程x 2+b 2x+20=0的两实数为x 3、x 4,且x 2-x 3=x 1-x 4=3,求二次函数的解析式,•并写出顶点坐标.12.改革开放以来,某镇通过多种途径发展地方经济,1995•年该镇国民生产总值为2亿元,根据测算,该镇国民生产总产值为5亿元时,可达到小康水平.(1)若从1996年开始,该镇国民生产总值每年比上一年增加0.6亿元,该镇通过几年可达到小康水平?(2)设以2001年为第一年,该镇第x 年的国民生产总值为y 亿元,y 与x•之间的关系是y=19x 2+23x+5(x ≥0)该镇那一年的国民生产总值可在1995•年的基础上翻两番(•即达到1995年的年国民生产总值的4倍)?13.已知:二次函数y=-x 2+3b x+c 与x 轴交于点M (x ,0),N (x ,0)两点,与y 轴交于点H .(1)若∠HMO=45°,∠MHN=105°时,求:函数解析式;(2)若│x 1│2+│x 2│2=1,当点Q (b ,c )在直线y=19x+13上时,求二次函数y=-x+3b x+c 的解析式.14.如图,一次函数y=kx+n 的图象与x 轴和y 轴分别交于点A (6,0)和B (0,• 线段AB 的垂直平分线交x 轴于点C ,交AB 于点D .(1)试确定这个一次函数关系式;(2)求过A 、B 、C 三点的抛物线的函数关系式.15.如图,在直角坐标系中,O 是原点,A 、B 、C 三点的坐标分别为A (18,0),B (•18,6),C (8,6),四边形OABC 是梯形,点P 、Q 同时从原点出发,分别坐匀速运动,•其中点P 沿OA 向终点A 运动,速度为每秒1个单位,点Q 沿OC 、CB 向终点B 运动,•当这两点有一点到达自己的终点时,另一点也停止运动.(1)求出直线OC 的解析式及经过O 、A 、C 三点的抛物线的解析式.(2)试在(1)中的抛物线上找一点D ,使得以O 、A 、D 为顶点的三角形与△AOC 全等,请直接写出点D 的坐标.(3)设从出发起,运动了t 秒,如果点Q 的速度为每秒2个单位,试写出点Q 的坐标,•并写出此时t 的取值范围.(4)设从出发起,运动了t 秒,当P 、Q 两点运动的路程之和恰好等于梯形OABC 的周长的一半,这时,直线PQ 能否把梯形的面积也分成相等的两部分,如有可能,•请求出t 的值;如不可能,请说明理由.16.抛物线y=ax 2+bx+c 交x 轴于A ,B 两点,交y 轴于点C ,已知抛物线的对称轴为x=1,B (3,0),C (0,-3).(1)求二次函数y=ax 2+bx+c 的解析式;(2)在抛物线对称轴上是否存在一点P ,使点P 到B 、C 两点距离之差最大?若存在,求出P 点坐标;若不存在,请说明理由;(3)平行于x 轴的一条直线交抛物线于M 、N 两点,若以MN 为直径的圆恰好与x 轴相切,求此圆的半径.答案:一、1~9.CDBDD DCBD10.B .提示:∵x 2-100x+196=(x-2)(x-98),∴当2≤x ≤98时,│x 2-100x+196│=-(x 2-100x+196). ∴当自变量x 取2、3、…、98时,函数值都为0. 而当x 取1、99、100时,│x 2-100x+196│=x 2-100x+196,故所求的和为:(1-2)(1-98)+(99-2)(99-98)+(100-•2)(100-98)=97+97+196=390. 11~15.DAACC二、1.互为相反数 2.-17,(2,3). 3.x<-2或x>8 4.y=15x 2-85x+3等 5.图象都是曲线,都过点(-1,2);图象形状不同,x 取值范围不同6.13.2 7.59148..<、<、> 10.1125m 11.-9 12.2013.如图,直线y=-2x+3与抛物线y =x 2的交点坐标为A (1,1),B (-3,9),作AA 1,BB 1分别垂直于x 轴,垂足为A 1,B 1, ∴S △OAB =S梯形AA1BB1-S △AA1O -S △BB1O =12³(1+9)³(1+3)-12³1³1-12³9³3=6.14.由于二次函数的图象过点A (-1,4),点B (2,1),所以4,1,421,32.a b c b a a b c c a -+==--⎧⎧⎨⎨++==-⎩⎩解得 • 因为二次函数图象与x 轴有两个不的交点,所以△=b 2-4ac>0,(-a-1)2-4a (3-2a )>0,即(9a-1)(a-1)>0,• 由于a 是正整数,故a>1,所以a ≥2.又因为b+c=-3a+2≤-4,且当a=2,b=-3,c=-1时,•满足题意, 故b+c 的最大值为-4. 15.2.提示:设方程x 2+mx-34m 2=0的两根分别x 1,x 2,且x 1<x 2, 则有x 1+x 2=-m<0,x 1x 2=-34m 2<0,•所以x 1<0,x 2>0,由11OB OA -=23,可知OA>OB ,又m>0, 所以抛物线的对称轴y 轴的左侧,于是OA=│x 1│=-x 1,OB=x 2. 所以2111x x +=23,1212x x x x +=23,故234mm --=23,解得m=2.三、1.由题意知,方程组22,3.y k y x k ⎧=⎪⎨⎪=+⎩有实数解,即方程23x 2=x+k 有实数解, 整理,得2x 2-3x-3k=0,∴△=9-4³2³(-3k )≥0,∴k ≥-38. 2.(1)S=32y ,又y =x 2,∴S=32x 2;(2)正比例函数;(3)二次函数;(4)P (2,4);(5)P ′(32,94).3.y=23x2+43x-43.4.(1)A(-2,0);(2)p+q=-2.5.(1)(-1,0);(2)过A,B,C三点的圆与抛物线有第四个交点D.∵│x1│<│x2│,•C点在y轴上,∴点C不是抛物线的顶点,由于抛物线都是轴对称图形,过A、B、C三点的圆与抛物线组成一个轴对称图形,所以过A、B、C•三点的圆与抛物线第四个交点与C是对称点.∵x1=-1<0,x1<x2,│x1│<│x2│,∴x2>1,即x2>-1,-k>1,∴k<0,∵S△ABC=6,∴12│1-•k│)²(1+│1-k│)=6,∴(1-k)2+(1-k)-12=0,解得1-k=-4或1-k=3,∴k=-2或k=5(舍去),∴y=x2-2x-3.其对称轴为x=1,据对称性,D点坐标为(2,-3).6.(1)A(1,0),B(0,2),AD=2;(2)y=23x2-83x+2.7.y=-125x2;5小时8.(1)F(0,1);(2)∵AC=AF,∴∠ACF=∠AFC.又∵AC∥OF,∴∠ACF=∠CFO,∴CF平分∠AFO.同理DF平分∠BFO.而∠AFO+∠BFO=180°,∴∠CFO+∠DFO=12(∠AFO+∠BFO)=90°,∴CF⊥DF.(3)设圆心为M切L于N,连结MN,∴MN=12 AB.在直角梯形ACDB中,M•是AB中点,∴MN=12(AC+BC).而AC=AF,BD=BF,∴MN=12(AF+BF),∴AF+BF=AB.∴AB过焦点F(0,1),又AB过点(-1,0),∴1bk b=⎧⎨-+=⎩∴AB对应的函数解析式为y=x+1.9.(1)设这个二次函数解析式为y=ax2+bx+c.根据题意,得15255 1022515 1562525a b ca b ca b c=++⎧⎪=++⎨⎪=++⎩• 解这个三元一次方程组,得12032854a y c ⎧=⎪⎪⎪=-⎨⎪⎪=⎪⎩∴这个函数解析式为:y=120x 2-32x+854.(或y=120(x-15)2+10) (2)把y=10.8代入上式,得10.8=120(x-15)2+10,(或10.8=120x 2-32x+854).整理,得x 2-30x+209=0,(x-11)(x-19)=0,∴x 1=11,x 2=19, 经检验x=11,x=19都符合题意.即蒜苔每10千克批发价为10.8元时,是上市11天、9天.10.(1)依题意,抛物线的对称轴为y=x-2.∵抛物线与x 轴的一个交点为A (-1,0),∴由抛物线的对称性,可得抛物线与x 轴的另一个交点B 的坐标为(-3,0). (2)∵抛物线y=a x 2+4ax+t 与x 轴的一个交点为A (-1,0),∴a (-1)2+4a (-1)+t=0,•∴t=3a .∴y=ax 2+4ax+3a .∴D (0,3a ). ∵梯形ABCD 中,AB ∥CD ,且点C 在抛物线y=a x 2+4ax+3a 上, ∴C (-4,3a ),∴AB=2,CD=4, ∵梯形ABCD 的面积为9,∴12(AB+CD )²OD=9. ∴12(2+4)│3a │=9,∴a=±1. ∴所求抛物线的解析式为y=x 2+4x+3或y=-x 2-4x-3.(3)设点E 坐标为(x 0,y 0),依题意x 0<0,y 0>0,且00||y x =52.∴y=-52.①设点E 在抛物线y=x 2+4x+3上,∴y 0=x 02+4x 0+3.解方程组000200005621540y x x y x x x ⎧=-=-⎧⎪⎨⎨=⎩⎪=++⎩得∴001`25`4x y ⎧=-⎪⎪⎨⎪=⎪⎩∵点E 与点A•在对称轴x=-2的同侧,∴点E 坐标为(-12,54), 设在抛物线的对称轴x=-2上存在一点P ,使△APE 的周长最小. ∵AE 长为定值,∴要使△APE 的周长最小,只须PA+PE 最小. ∵点A•关于对称轴x=-2的对称点是B (-3,0), ∴几何知识可知,P 是直线BE 与对称轴x=-2的交点.•设过点E 、B 的直线的解析式为y=mx+n ,∴1152243302m m n m n n ⎧=⎧⎪-+=⎪⎪⎨⎨⎪⎪-+==⎩⎪⎩解得 ∴直线BE 的解析式为y=12x+32,把x=-2•代入上式,得y=12, ∴点P 坐标为(-2,-12). ②设点E 在抛物线y=-x 2-4x-3上,∴y 0=-x 02-4x 0-3.解方程0020005243y x x x x ⎧=-⎪⎨⎪=---⎩ 消去y 0,得x 02+32x 0+3=0, ∴△<•0,∴此方程无实数根.综上.在抛物线的对称轴上存在点P (-2,12),使△APE 的周长最小. 11.y=x 2+3x+2;(-32,-14). 12.(1)5;(2)2003. 13.(1)y=-x 2+(2)y=-x 2+13x+94,y=-x 2-x .14.(1)2)先求出点C (2,0),故(x-2)(x-6). 15.(1)∵O ,C 两点的坐标分别为O (0,0),C (8,6),设OC 的解析式为y=kx+b ,将两点坐标代入得:k=34,b=0,∴y=34x . ∵抛物线过O ,A ,C 三点,这三点的坐标为O (0,0),A (18,0),C (8,6). ∵A ,O 是x 轴上两点,故可设抛物线的解析式为y=a (x-0)(x-18). 再将C (8,6)代入得:a=-340.∴y=-340x 2+2720x .(2)D (10,6).(3)当Q 在OC 上运动时,可设Q (m ,34m ), 依题意有:m 2+(34m )2=(2t )2,∴m=85t ,∴Q (85t ,65t )•,•(0≤t ≤5).当Q 在CB 上时,Q 点所走过的路程为2t . ∵OC=10,∴CQ=2t-10,∴Q 点的横坐标为2t-10+8=2t-2.∴Q (2t-2,6),(5<t ≤10).(4)∵梯形OABC 的周长为44,当Q 点在OC 上时,P 运动的路程为t , 则Q 运动的路程为(22-t ).△OPQ 中,OP 边上的高为:(22-t )³35.∴S △OPQ =12t (22-t )³35,S 梯形OABC =12(18+10)³6=84.• 依题意有:12t (22-t )³35=84³12.整理得:t 2-22t+140=0.∵△=222-4³140<0,∴这样的t 不存在.当Q 在BC 上时,Q 走过的路程为22-t ,∴CQ 的长为:22-t-10=12-t , ∴S梯形OCQP=12³6(22-t-10+t )=36≠84³12. ∴这样的t 值也不存在.综上所述,不存在这样的t 值,使得P 、Q 两点同时平分梯形的周长和面积. 16.(1)将C (0,-3)代入y=ax 2+bx+c ,得c=-3,将c=-3,B (3,0)代入y=a x 2+bx+c ,得9a+3b+c=0. ∵x=1是对称轴,∴-2ba=-1.(2). 将(2)代入(1)得a=1,b=-2.•所以二次函数得解析式是y=x 2-2x-3.(2)AC 与对称轴的交点P 即为到B 、C 的距离之差最大的点.∵C 点的坐标为(0,-3),A 点的坐标为(-1,0).∴直线AC 的解析式是y=-3x-3,又对称轴为x=1,∴点P 的坐标(1,-6).(3)设M (x 1,y ),N (x 2,y ),所求圆的半径为r ,则x 2-x 1=2r ,(1)∵对称轴为x=1,∴x 2+x 1=2.(2) 由(1)、(2)得:x 2=r+1. (3)将N (r+1,y )将代入解析式y=x 2-2x-3,得y=(r+1)2-2(r+1)-3,(4) 整理得:y=r 2-4.由于r=±y ,当y>0时,r 2-r-4=0,解得r 1,r 2(舍去),•当y<0时,r 2+r-4=0,解得r 1,r 2(舍去),所以圆的半径是12+或12.。
绝密★启用前2020年普通高等学校招生全国统一考试课标1理科数学2020年全国1高考数学与2020全国1高考数学难度方面相对持平,在选择题和填空题方面难度有所提升,解答题方面难度有所减缓.在保持稳定的基础上,进行适度创新,尤其是选择填空压轴题.试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础性的考查,同时加大了综合性、应用性和创新性的考查,如理科第2、3、10、11、12、16、19题,文科第2、4、9、12、19题.1.体现新课标理念,重视对传统核心考点考查的同时,增加了对数学文化的考查,如理科第2题,文科第4题以中国古代的太极图为背景,考查几何概型.2.关注通性通法.试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目的的命题要求.3.考查了数学思想、数学能力、数学的科学与人文价值,体现了知识与能力并重、科学与人文兼顾的精神.如理科第6、10、13、15题,文科第5、12、13、16题对数形结合思想的考查;理科第11,文科第9题对函数与方程思想的考查;理科第12、16题对数学的科学与人文价值的考查.4.体现了创新性,如理科第19题,文科第19题立意新、情景新、设问新,增强了学生数学应用意识和创新能力.命题趋势:(1)函数与导数知识:以函数性质为基础,考查函数与不等式综合知识,如理科第5题,;以基本初等函数为背景考查构造新函数解决比较大小问题,如理科第11题;对含参单调性以及零点问题的考查,如理科21题,比较常规.(2)三角函数与解三角形知识:对三角函数图像与性质的考查,如理科第9题;;对解三角形问题的考查,如理科第17题.重视对基础知识与运算能力的考查.(3)数列知识:对数列性质的考查,如理科第4题;突出了数列与现实生活的联系,考查学生分析问题的能力,如理科第12题,难点较大.整体考查比较平稳,没有出现偏、怪的数列相关考点.(4)立体几何知识:对立体几何图形的认识与考查,如理科第7题,试题难度不大,比较常规;对简单几何体的体积知识的考查,如理科第16题,用到函数知识进行解决,体现了综合性,难度较大,立体几何解答题的考查较常规,如理科对二面角的考查.(5)解析几何知识:对圆锥曲线综合知识的考查,如理科第15题,难度偏大;解答题考查较为常规,考查直线与圆锥曲线的位置关系,难度中等,重视对学生运算能力的考查.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I【答案】A2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π4【答案】B 【解析】试题分析:设正方形边长为a ,则圆的半径为2a ,则正方形的面积为2a ,圆的面积为24a π.由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221248a a ππ⋅=,选B. 秒杀解析:由题意可知,此点取自黑色部分的概率即为黑色部分面积占整个面积的比例,由图可知其概率1142p <<,故选B.【考点】几何概型【名师点睛】对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A . 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A.13,p pB .14,p pC .23,p pD .24,p p【答案】B4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.秒杀解析:因为166346()3()482a a S a a +==+=,即3416a a +=,则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C. 【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]【答案】D6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .35【答案】C 【解析】试题分析:因为6662211(1)(1)1(1)(1)x x x x x++=⋅++⋅+,则6(1)x +展开式中含2x 的项为2226115C x x ⋅=,621(1)x x⋅+展开式中含2x 的项为44262115C x x x ⋅=,故2x 前系数为151530+=,选C. 【考点】二项式定理【名师点睛】对于两个二项式乘积的问题,第一个二项式中的每项乘以第二个二项式的每项,分析好2x 的项共有几项,进行加和.这类问题的易错点主要是未能分析清楚构成这一项的具体情况,尤其是两个二项式展开式中的r 不同.7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B8.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和n=n+1B.A>1 000和n=n+2C.A≤1 000和n=n+1D.A≤1 000和n=n+2【答案】D9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2 【答案】D 【解析】试题分析:因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则222:sin(2)cos(2)cos(2)3326C y x x x ππππ=+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移12π个单位得到2C ,故选D. 【考点】三角函数图像变换.【名师点睛】对于三角函数图像变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,需要重点记住sin cos(),cos sin()22ππαααα=-=+;另外,在进行图像变换时,提倡先平移后伸缩,而先伸缩后平移在考试中经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A2222||sin cos()2p pDE παα==-,所以22222211||||4()cos sin cos sin p p AB DE αααα+=+=+ 2222222211sin cos 4()(cos sin )4(2)4(22)16cos sin cos sin αααααααα=++=++≥⋅+=11.设x 、y 、z 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z【答案】D12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110【答案】A【解析】试题分析:由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 1(1)1(12)(122)222k k k k S k ++⎛⎫=+++++++=-- ⎪⎝⎭L L 要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是之后的等比数列11,2,,2k +L 的部分和,即1212221t t k -+=+++=-L ,所以2314tk =-≥,则5t ≥,此时52329k =-=, 对应满足的最小条件为293054402N ⨯=+=,故选A. 【考点】等差数列、等比数列的求和.【名师点睛】本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 二、填空题:本题共4小题,每小题5分,共20分.13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= . 【答案】2314.设x,y满足约束条件2121x yx yx y+≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y=-的最小值为.【答案】5-15.已知双曲线C:22221x ya b-=(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C 的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.23【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的1换成0即可;②双曲线的焦点到渐近线的距离是b;③双曲线的顶点到渐近线的距离是abc.16.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_______.【答案】415【考点】简单几何体的体积【名师点睛】对于三棱锥最值问题,肯定需要用到函数的思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导得方式进行解决.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.【考点】三角函数及其变换.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值.则3cos ,||||3⋅==-<>n m n m n m , 所以二面角A PB C --的余弦值为33-. 【考点】面面垂直的证明,二面角平面角的求解【名师点睛】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.96 10.01 9.92 9.98 10.04 10.269.9110.1310.029.2210.0410.059.95经计算得16119.9716i i x x ===∑,161622221111()(16)0.2121616i ii i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01). 附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=,0.0080.09≈.试题解析:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B .因此(1)1(0)10.99740.0408P X P X ≥=-==-=.X 的数学期望为160.00260.0416EX =⨯=.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,32),P 4(1,32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.(2)设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t ,24t -,(t ,24t -). 则221242421t t k k ---++==-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=由题设可知22=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841kmk -+,x 1x 2=224441m k -+.而12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得12m k +=-. 当且仅当1m >-时,0∆>,欲使l :12m y x m +=-+,即11(2)2m y x ++=--, 所以l 过定点(2,1-)【考点】椭圆的标准方程,直线与圆锥曲线的位置关系.【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中为告知,则一定要讨论直线斜率不存在和存在情况,接着通法是联立方程组,求判别式、韦达定理,根据题设关系进行化简. 21.(12分)已知函数2()(2)x xf x ae a e x =+--.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到l 17 a.【解析】试题分析:(1)先将曲线C 和直线l 化成普通方程,然后联立求出交点坐标;(2)直线l 的普通方程为440x y a +--=,设C 上的点(3cos ,sin )θθ,l 的距离为17d =.对a 进行讨23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.【解析】试题分析:(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,。
数学不等式选讲试题答案及解析1.(本题满分10分)选修4-5:不等式选讲已知,.(1)求的最小值;(2)证明:.【答案】(1)3(2)见解析【解析】(Ⅰ)因为,,所以,即,当且仅当时,取最小值3. 5分(Ⅱ).又,所以. 10分2.(本小题满分10分)选修4-5:不等式选讲设函数.(1)当时,求不等式的解集;(2)若对恒成立,求的取值范围。
【答案】(1)或(2)或【解析】(1)当时,不等式为,所以或或,解得或. 4分故不等式的解集为或. 5分.(2)因为(当时等号成立), 8分所以.由题意得,解得或. 10分【命题意图】本题考查绝对值不等式的解法、绝对值三角不等式等基础知识,意在考查基本运算求解能力.3.已知a,b,c均为正数,证明:a2+b2+c2+2≥6,并确定a、b、c为何值时,等号成立.【答案】a=b=c=3时,原不等式等号成立.【解析】因为a,b,c均为正数,由基本不等式得a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,(2分)所以a2+b2+c2≥ab+bc+ac,①同理++≥++,②(4分)故a2+b2+c2+2≥ab+bc+ac+3+3+3≥6.③所以原不等式成立.(8分)当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a=b=c=3时,原不等式等号成立.(10分)4.已知实数x、y、z满足x2+4y2+9z2=a(a>0),且x+y+z的最大值是1,求a的值.【答案】【解析】由柯西不等式知:[x2+(2y)2+(3z)2][12+()2+()2]≥(x+×2y+×3z)2(当且仅当x=4y=9z时取等号).因为x2+4y2+9z2=a(a>0),所以a≥(x+y+z)2,即-≤x+y+z≤.因为x+y+z的最大值是1,所以=1,a=,所以当x=,y=,z=时,x+y+z取最大值1,所以a的值为.点评:用柯西不等式证明或求值时要注意两点,一是所给不等式的形式是否和柯西不等式的形式一致,若不一致,需要将所给式子变形;二要注意等号成立的条件.5.在实数范围内,不等式的解集为___________.【答案】【解析】因此解集为.【考点】本题主要考查绝对值不等式的解法,考查运用能力.6.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.【答案】-2≤a≤4【解析】本题考查了不等式解法的相关知识,解题的突破口是理解不等式的几何意义.|x-a|+|x-1|≤3表示的几何意义是在数轴上一点x到1的距离与到a的距离之和小于或等于3个单位长度,此时我们可以以1为原点找离此点小于或等于3个单位长度的点即为a的取值范围,不难发现-2≤a≤4.7.不等式|2x+1|-2|x-1|>0的解集为________.【答案】【解析】考查解含绝对值不等式,此题的关键是转化为|2x+1|>2|x-1|,再两边平方,轻松求解.不等式转化为|2x+1|>2|x-1|,两边平方得(2x+1)2>4(x-1)2,化简得4x>1,解得x> ,故解集为.8.设函数(1)当时,求不等式的解集;(2)如果不等式的解集为,求的值。
高三数学函数试题1.(2013•浙江)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0B.a<0,4a+b=0C.a>0,2a+b=0D.a<0,2a+b=0【答案】A【解析】因为f(0)=f(4),即c=16a+4b+c,所以4a+b=0;又f(0)>f(1),即c>a+b+c,所以a+b<0,即a+(﹣4a)<0,所以﹣3a<0,故a>0.故选A.2.已知函数,则使函数有零点的实数的取值范围是()A.B.C.D.【答案】C【解析】由题意方程有解,即有解,的取值范围就是函数的值域,当时,,当时,是增函数,取值范围是,即函数的值域是,这就是的取值范围.【考点】方程有解与函数的值域.3.如果函数的定义域为R,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”。
(1)判断函数是否具有“性质”,若具有“性质”,求出所有的值;若不具有“性质”,说明理由;(2)已知具有“性质”,且当时,求在上有最大值;(3)设函数具有“性质”,且当时,.若与交点个数为2013,求的值.【答案】(1) ,(2) 当时,,当时,,(3) .【解析】(1)新定义问题,必须从定义出发,实际是对定义条件的直译. 由得,(2)由性质知函数为偶函数. ∴当时,∵在单调增,∴时,,当时,∵在单调减,在上单调增,又,∴时,,当时,∵在单调减,在上单调增,又,∴时,. (3) ∵函数具有“性质” ∴∴∴函数是以2为周期的函数. 当时,为偶函数,因此易得函数是以1为周期的函数.结合图像得: ①当时,要使得与有2013个交点,只要与在区间有2012个交点,而在内有一个交点∴过,从而得,②当时,同理可得,③当时,不合题意, 综上所述.(1)由得∴∴函数具有“性质”,其中 2分(2) ∵具有“性质”∴设,则,∴∴ 4分当时,∵在单调增,∴时, 5分当时,∵在单调减,在上单调增又,∴时, 6分当时,∵在单调减,在上单调增又,∴时, 7分综上得当时,,当时, 8分(3) ∵函数具有“性质”∴∴,∴函数是以2为周期的函数 9分设,则,再设当,则当,则∴对于,都有而∴∴函数是以1为周期的函数 12分①当时,要使得与有2013个交点,只要与在区间有2012个交点,而在内有一个交点∴过,从而得 14分②当时,同理可得③当时,不合题意综上所述 16分【考点】函数奇偶性,函数周期,函数图像4.对实数a与b,定义新运算“⊗”:.设函数f(x)=(x2﹣2)⊗(x﹣x2),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.B.C.D.【答案】B【解析】∵,∴函数f(x)=(x2﹣2)⊗(x﹣x2)=,由图可知,当c∈函数f(x)与y=c的图象有两个公共点,∴c的取值范围是,故选B.5.已知,定义,其中,则等于()A.B.C.D.【答案】B【解析】依题意,,,,,,,,依次,函数值周期性地出现,且,故,选B.【考点】1、分段函数;2、函数的周期性.6.已知是定义在上的奇函数,且,若,有恒成立.(1)判断在上是增函数还是减函数,并证明你的结论;(2)若对所有恒成立,求实数的取值范围。
高三数学对数与对数函数试题答案及解析1.函数的单调递增区间为()A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)【答案】D【解析】首先由得函数的定义域为(-∞,-2) (2,+∞);再令,则在(0,+∞)是减函数,又因为在(-∞,-2)上是减函数;由复合函数的单调性可知:函数的单调递增区间为(-∞,-2);故选D.【考点】复合函数的单调性.2.已知函数为奇函数则实数的值为【答案】1【解析】由奇函数得:,,,因为,所以【考点】奇函数3.计算.【答案】2【解析】【考点】对数式的运算.4.已知函数为常数,其中的图象如右图,则下列结论成立的是()A.B.C.D.【答案】D【解析】由图可知,的图象是由的图象向左平移个单位而得到的,其中,再根据单调性易知,故选D.【考点】对数函数的图象和性质.5.设且.若对恒成立,则的取值范围是()A.B.C.D.【答案】D【解析】时显然不成立.当时,结合图象可知:.【考点】对数函数与三角函数.6.函数的定义域是A.[1,2]B.C.D.【答案】C【解析】根据函数定义域的要求得:.【考点】(1)函数的定义域;(1)对数函数的性质.7. (1)解方程:(2)已知命题命题且命题是的必要条件,求实数m的取值范围【答案】(1);(2).【解析】(1)解对数方程,一般把利用对数的运算法则把对数方程变形为,转化为代数方程,但解题过程中要注意对数函数的定义域,即,;(2)这类问题的解决,首先要把两个命题化简,本题中命题化为:,命题是命题的必要条件,说明由命题成立可推导出命题也成立,若把命题成立时的变量的集合分别记为,从集合角度,即有,由此我们可得出关于的不等关系,从而求出的取值范围. 试题解析:(1)解:由原方程化简得,即:所以,,解得.(2)解:由于命题是的必要条件,所以,所以.【考点】(1)对数方程;(2)充分与必要条件.8.函数f(x)=ln是________(填“奇”或“偶”)函数.【答案】奇【解析】因为f(-x)=ln=ln=-ln=-f(x),所以f(x)是奇函数.9.已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是________.【答案】(3,+∞)【解析】因为f(a)=f(b),即|lga|=|lgb|,所以a=b(舍去)或b=,得a+2b=a+.又0<a<b,所以0<a<1<b.令f(a)=a+,则f′(a)=1-<0,所以f(a)在a∈(0,1)上为减函数,得f(a)>f(1)=1+2=3,即a+2b的取值范围是(3,+∞).10.设a=lge,b=(lge)2,c=lg,则a、b、c的大小关系是________.【答案】a>c>b【解析】本题考查对数函数的增减性,由1>lge>0,知a>b.又c=lge,作商比较知c>b,故a>c>b.x|,正实数m、n满足m<n,且f(m)=f(n),若f(x)在区间[m2,n]上的最大值为2, 11.已知函数f(x)=|log2则m+n等于()A.-1B.C.1D.2【答案】B【解析】由函数f(x)=|log2x|的图象知,当m<n且f(m)=f(n),得mn=1,且0<m<1<n.∴0<m2<m<1<n.∵f(x)在区间[m2,n]上的最大值为2,∴|log2m2|=2,∴m=,n=2,∴m+n=.12.设则a,b,c的大小关系为A.a<c<b B.b<a<c C.a<b<c D.b<c<a【答案】B【解析】因为所以显然,所以的值最大.故排除A,D选项.又因为,所以.即.综上.故选B.本小题关键是进行对数的运算.【考点】1.对数的运算.2.数的大小比较的方法.13.已知f(x)是定义域为实数集R的偶函数,∀x1≥0,∀x2≥0,若x1≠x2,则<0.如果f=,4f()>3,那么x的取值范围为()A.B.C.∪(2,+∞)D.∪【答案】B【解析】依题意得,函数f(x)在[0,+∞)上是减函数,不等式4f()>3等价于f()>,f(||)>f,||<,即-<<,由此解得<x<2,故选B.14.计算:lg-lg+lg7=.【答案】【解析】原式=lg4+lg2-lg7-lg8+lg7+lg5=2lg2+(lg2+lg5)-2lg2=.15.已知函数.(1)若,当时,求的取值范围;(2)若定义在上奇函数满足,且当时,,求在上的反函数;(3)若关于的不等式在区间上有解,求实数的取值范围.【答案】(1);(2);(3).【解析】(1)这实质上是解不等式,即,但是要注意对数的真数要为正,,;(2)上奇函数满足,可很快求出,要求在上的反函数,必须求出在上的解析式,当时,,故,当然求反函数还要求出反函数的定义域即原函数的值域;(3)可转化为,这样利用对数函数的性质得,变成了整式不等式,问题转化为不等式在区间上有解,而这个问题通常采用分离参数法,转化为求相应函数的值域或最值.试题解析:(1)原不等式可化为 1分所以,, 1分得 2分(2)因为是奇函数,所以,得 1分当时,2分此时,,所以 2分(3)由题意, 1分即 1分所以不等式在区间上有解,即 3分所以实数的取值范围为 1分【考点】(1)对数不等式;(2)分段函数的反函数;(3)不等式有解问题.16.设,则之间的关系是()A.B.C.D.【答案】A【解析】由函数的图象可知,又由函数的图象可得该函数在上单调增,因为,则,综上所述选A.【考点】1.对数函数;2.幂函数的单调性17.使不等式(其中)成立的的取值范围是.【答案】【解析】即,而,所以,,答案为.【考点】对数函数及其性质18.已知,,,,则()A.B.C.D.【答案】C【解析】,,,因为且,所以.【考点】对数的运算.19.设函数的定义域为,值域为,若的最小值为,则实数的值为.【答案】.【解析】由题意函数的值域为,,则,当即时,,;当即时,,,.【考点】对数函数的值域.20.设,则( )A.B.C.D.【答案】D【解析】因为,所以.【考点】对数比较大小21.函数,其中满足且∥,则_________。
甲卷理科2023年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A =x x =3k +1,k ∈Z ,B =x x =3k +2,k ∈Z ,U 为整数集,则∁U A ∪B =()A.x x =3k ,k ∈ZB.x x =3k -1,k ∈ZC.x x =3k -2,k ∈ZD.∅2.若复数(a +i )(1-a i )=2,则a =()A.-1B.0C.1D.23.执行下面的程序框图,输出的B =()n ≤3n =1,A =1,B =2开始A =A +B B =A +B n =n +1结束输出B否A.21B.34C.55D.894.向量a =b =1,c =2,且a +b +c =0,则cos a -c ,b -c =()A.-15B.-25C.25D.455.已知等比数列a n 中,a 1=1,S n 为a n 前n 项和,S 5=5S 3-4,则S 4=()A.7B.9C.15D.306.有50人报名报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报名足球俱乐部,则其报名乒乓球俱乐部的概率为()A.0.8B.0.4C.0.2D.0.17.“sin 2α+sin 2β=1”是“sin α+cos β=0”()A.充分条件但不是必要条件 B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件8.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,其中一条渐近线与圆(x -2)2+(y -3)2=1交于A ,B 两点,则AB =()A.15B.55C.255D.4559.有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则恰有一人连续参加两天服务的选择种数为()A.120B.60C.40D.3010.已知f (x )为函数y =cos 2x +π6 向左平移π6个单位所得函数,则y =f (x )与y =12x -12的交点个数为()A.1B.2C.3D.411.在四棱锥P -ABCD 中,底面ABCD 为正方形,AB =4,PC =PD =3,∠PCA =45°,则△PBC 的面积为()A.22B.32C.42D.5212.已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos ∠F 1PF 2=35,则OP =()A.25B.302C.35D.352二、填空题:本题共4小题,每小题5分,共20分。
全国统一高考数学试卷(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.810.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E 于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N 内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB 垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[﹣,]时,f(x)≤g(x),求a的取值范围.全国统一高考数学试卷(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)已知集合A={x|x2﹣2x>0},B={x|﹣<x<},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】1D:并集及其运算;73:一元二次不等式及其应用.【专题】59:不等式的解法及应用;5J:集合.【分析】根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选:B.【点评】本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)若复数z满足(3﹣4i)z=|4+3i|,则z的虚部为()A.﹣4B.C.4D.【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由题意可得z==,再利用两个复数代数形式的乘除法法则化简为+i,由此可得z的虚部.【解答】解:∵复数z满足(3﹣4i)z=|4+3i|,∴z====+i,故z的虚部等于,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,属于基础题.3.(5分)为了解某地区中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单的随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样【考点】B3:分层抽样方法.【专题】21:阅读型.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.了解某地区中小学生的视力情况,按学段分层抽样,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由离心率和abc的关系可得b2=4a2,而渐近线方程为y=±x,代入可得答案.【解答】解:由双曲线C:(a>0,b>0),则离心率e===,即4b2=a2,故渐近线方程为y=±x=x,故选:D.【点评】本题考查双曲线的简单性质,涉及的渐近线方程,属基础题.5.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5]【考点】3B:分段函数的解析式求法及其图象的作法;EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】本题考查的知识点是程序框图,分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算一个分段函数的函数值,由条件为t<1我们可得,分段函数的分类标准,由分支结构中是否两条分支上对应的语句行,我们易得函数的解析式.【解答】解:由判断框中的条件为t<1,可得:函数分为两段,即t<1与t≥1,又由满足条件时函数的解析式为:s=3t;不满足条件时,即t≥1时,函数的解析式为:s=4t﹣t2故分段函数的解析式为:s=,如果输入的t∈[﹣1,3],画出此分段函数在t∈[﹣1,3]时的图象,则输出的s属于[﹣3,4].故选:A.【点评】要求条件结构对应的函数解析式,要分如下几个步骤:①分析流程图的结构,分析条件结构是如何嵌套的,以确定函数所分的段数;②根据判断框中的条件,设置分类标准;③根据判断框的“是”与“否”分支对应的操作,分析函数各段的解析式;④对前面的分类进行总结,写出分段函数的解析式.6.(5分)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】设正方体上底面所在平面截球得小圆M,可得圆心M为正方体上底面正方形的中心.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质建立关于R的方程并解出R=5,用球的体积公式即可算出该球的体积.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V===.故选:A.【点评】本题给出球与正方体相切的问题,求球的体积,着重考查了正方体的性质、球的截面圆性质和球的体积公式等知识,属于中档题.7.(5分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.6【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题;54:等差数列与等比数列.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,﹣a m=1,所以公差d=a m+1S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.【点评】本题考查等差数列的通项公式、前n项和公式及通项a n与S n的关系,考查学生的计算能力.8.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【考点】L!:由三视图求面积、体积.【专题】16:压轴题;27:图表型.【分析】三视图复原的几何体是一个长方体与半个圆柱的组合体,依据三视图的数据,得出组合体长、宽、高,即可求出几何体的体积.【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积=×22×π×4=8π所以这个几何体的体积是16+8π;故选:A.【点评】本题考查了几何体的三视图及直观图的画法,三视图与直观图的关系,柱体体积计算公式,空间想象能力9.(5分)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+1展开式的二项式系数的最大值为b,若13a=7b,则m=()A.5B.6C.7D.8【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】根据二项式系数的性质求得a和b,再利用组合数的计算公式,解方程13a=7b求得m的值.【解答】解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.【点评】本题主要考查二项式系数的性质的应用,组合数的计算公式,属于中档题.10.(5分)已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选:D.【点评】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.11.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】7E:其他不等式的解法.【专题】16:压轴题;59:不等式的解法及应用.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l 为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.【点评】本题考查其它不等式的解法,数形结合是解决问题的关键,属中档题.12.(5分)设△A n B n C n的三边长分别为a n,b n,c n,△A n B n C n的面积为S n,n=1,2,3…若b1>c1,b1+c1=2a1,a n+1=a n,,,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性;8H:数列递推式.【专题】16:压轴题;54:等差数列与等比数列;55:点列、递归数列与数学归纳法.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=及+1b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n+1﹣c n+1=,得b n﹣c n=,可知n→+∞时b n→c n,据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴,由题意,+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,由此可知顶点A n在以B n、C n为焦点的椭圆上,又由题意,b n﹣c n+1=,∴=a1﹣b n,+1﹣a1=,∴b n﹣a1=,∴b n+1∴,c n=2a1﹣b n=,∴[][]=[﹣]单调递增(可证当n=1时>0)故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,是本年度全国高考试题中的“亮点”之一.二.填空题:本大题共4小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=2.【考点】9H:平面向量的基本定理;9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由于•=0,对式子=t+(1﹣t)两边与作数量积可得=0,经过化简即可得出.【解答】解:∵,,∴=0,∴tcos60°+1﹣t=0,∴1=0,解得t=2.故答案为2.【点评】熟练掌握向量的数量积运算是解题的关键.14.(5分)若数列{a n}的前n项和为S n=a n+,则数列{a n}的通项公式是a n=(﹣2)n﹣1.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】把n=1代入已知式子可得数列的首项,由n≥2时,a n=S n﹣S n﹣1,可得数列为等比数列,且公比为﹣2,代入等比数列的通项公式分段可得答案.【解答】解:当n=1时,a1=S1=,解得a1=1当n≥2时,a n=S n﹣S n﹣1=()﹣()=,整理可得,即=﹣2,故数列{a n}从第二项开始是以﹣2为首项,﹣2为公比的等比数列,故当n≥2时,a n=(﹣2)n﹣1,经验证当n=1时,上式也适合,故答案为:(﹣2)n﹣1【点评】本题考查等比数列的通项公式,涉及等比数列的判定,属基础题.15.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=﹣.【考点】GP:两角和与差的三角函数;H4:正弦函数的定义域和值域.【专题】16:压轴题;56:三角函数的求值.【分析】f(x)解析式提取,利用两角和与差的正弦函数公式化为一个角的正弦函数,由x=θ时,函数f(x)取得最大值,得到sinθ﹣2cosθ=,与sin2θ+cos2θ=1联立即可求出cosθ的值.【解答】解:f(x)=sinx﹣2cosx=(sinx﹣cosx)=sin(x﹣α)(其中cosα=,sinα=),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ=,又sin2θ+cos2θ=1,联立得(2cosθ+)2+cos2θ=1,解得cosθ=﹣.故答案为:﹣【点评】此题考查了两角和与差的正弦函数公式,同角三角函数间的基本关系,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.16.(5分)若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为16.【考点】57:函数与方程的综合运用;6E:利用导数研究函数的最值.【专题】11:计算题;16:压轴题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意得f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,由此求出a=8且b=15,由此可得f(x)=﹣x4﹣8x3﹣14x2+8x+15.利用导数研究f(x)的单调性,可得f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数,结合f(﹣2﹣)=f(﹣2+)=16,即可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,即[1﹣(﹣3)2][(﹣3)2+a•(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a•(﹣5)+b]=0,解之得,因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,令f′(x)=0,得x1=﹣2﹣,x2=﹣2,x3=﹣2+,当x∈(﹣∞,﹣2﹣)时,f′(x)>0;当x∈(﹣2﹣,﹣2)时,f′(x)<0;当x∈(﹣2,﹣2+)时,f′(x)>0;当x∈(﹣2+,+∞)时,f′(x)<0∴f(x)在区间(﹣∞,﹣2﹣)、(﹣2,﹣2+)上是增函数,在区间(﹣2﹣,﹣2)、(﹣2+,+∞)上是减函数.又∵f(﹣2﹣)=f(﹣2+)=16,∴f(x)的最大值为16.故答案为:16.【点评】本题给出多项式函数的图象关于x=﹣2对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)如图,在△ABC中,∠ABC=90°,AB=,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB=,求PA;(2)若∠APB=150°,求tan∠PBA.【考点】HP:正弦定理;HR:余弦定理.【专题】58:解三角形.【分析】(I)在Rt△PBC,利用边角关系即可得到∠PBC=60°,得到∠PBA=30°.在△PBA中,利用余弦定理即可求得PA.(II)设∠PBA=α,在Rt△PBC中,可得PB=sinα.在△PBA中,由正弦定理得,即,化简即可求出.【解答】解:(I)在Rt△PBC中,=,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得PA2=PB2+AB2﹣2PB•ABcos30°==.∴PA=.(II)设∠PBA=α,在Rt△PBC中,PB=BCcos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.【点评】熟练掌握直角三角形的边角关系、正弦定理和余弦定理是解题的关键.18.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【考点】LW:直线与平面垂直;LY:平面与平面垂直;MI:直线与平面所成的角.【专题】5F:空间位置关系与距离;5G:空间角.【分析】(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos<,>|,即为所求正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.【点评】本题考查直线与平面所成的角,涉及直线与平面垂直的性质和平面与平面垂直的判定,属难题.19.(12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】5I:概率与统计.【分析】(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,由概率得加法公式和条件概率,代入数据计算可得;(Ⅱ)X可能的取值为400,500,800,分别求其概率,可得分布列,进而可得期望值.【解答】解:(Ⅰ)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品全是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)==(Ⅱ)X可能的取值为400,500,800,并且P(X=800)=,P(X=500)=,P(X=400)=1﹣﹣=,故X的分布列如下:X 400 500 800P故EX=400×+500×+800×=506.25【点评】本题考查离散型随机变量及其分布列涉及数学期望的求解,属中档题.20.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N 内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.【考点】J3:轨迹方程;J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】(I)设动圆的半径为R,由已知动圆P与圆M外切并与圆N内切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,求出即可;(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.分①l的倾斜角为90°,此时l与y轴重合,可得|AB|.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,根据,可得Q(﹣4,0),所以可设l:y=k(x+4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I)由圆M:(x+1)2+y2=1,可知圆心M(﹣1,0);圆N:(x﹣1)2+y2=9,圆心N(1,0),半径3.设动圆的半径为R,∵动圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由椭圆的定义可知:动点P的轨迹是以M,N为焦点,4为长轴长的椭圆,∴a=2,c=1,b2=a2﹣c2=3.∴曲线C的方程为(x≠﹣2).(II)设曲线C上任意一点P(x,y),由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,当且仅当⊙P的圆心为(2,0)R=2时,其半径最大,其方程为(x﹣2)2+y2=4.①l的倾斜角为90°,则l与y轴重合,可得|AB|=.②若l的倾斜角不为90°,由于⊙M的半径1≠R,可知l与x轴不平行,设l与x轴的交点为Q,则,可得Q(﹣4,0),所以可设l:y=k(x+4),由l于M相切可得:,解得.当时,联立,得到7x2+8x﹣8=0.∴,.∴|AB|===由于对称性可知:当时,也有|AB|=.综上可知:|AB|=或.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.21.(12分)已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.【考点】3R:函数恒成立问题;6H:利用导数研究曲线上某点切线方程.【专题】16:压轴题;53:导数的综合应用.【分析】(Ⅰ)对f(x),g(x)进行求导,已知在交点处有相同的切线及曲线y=f(x)和曲线y=g(x)都过点P(0,2),从而解出a,b,c,d的值;(Ⅱ)由(I)得出f(x),g(x)的解析式,再求出F(x)及它的导函数,通过对k的讨论,判断出F(x)的最值,从而判断出f(x)≤kg(x)恒成立,从而求出k的范围.【解答】解:(Ⅰ)由题意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,而f′(x)=2x+a,g′(x)=e x(cx+d+c),故b=2,d=2,a=4,d+c=4,从而a=4,b=2,c=2,d=2;(Ⅱ)由(I)知,f(x)=x2+4x+2,g(x)=2e x(x+1)设F(x)=kg(x)﹣f(x)=2ke x(x+1)﹣x2﹣4x﹣2,则F′(x)=2ke x(x+2)﹣2x﹣4=2(x+2)(ke x﹣1),由题设得F(0)≥0,即k≥1,令F′(x)=0,得x1=﹣lnk,x2=﹣2,①若1≤k<e2,则﹣2<x1≤0,从而当x∈(﹣2,x1)时,F′(x)<0,当x∈(x1,+∞)时,F′(x)>0,即F(x)在(﹣2,x1)上减,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值为F(x1),而F(x1)=﹣x1(x1+2)≥0,x≥﹣2时F(x)≥0,即f(x)≤kg(x)恒成立.②若k=e2,则F′(x)=2e2(x+2)(e x﹣e﹣2),从而当x∈(﹣2,+∞)时,F′(x)>0,即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故当x≥﹣2时,F(x)≥0,即f(x)≤kg(x)恒成立.③若k>e2时,F′(x)>2e2(x+2)(e x﹣e﹣2),而F(﹣2)=﹣2ke﹣2+2<0,所以当x>﹣2时,f(x)≤kg(x)不恒成立,综上,k的取值范围是[1,e2].【点评】此题主要考查利用导数研究曲线上某点切线方程,函数恒成立问题,考查分类讨论思想,解题的关键是能够利用导数工具研究函数的性质,此题是一道中档题.四、请考生在第22、23、24题中任选一道作答,并用2B铅笔将答题卡上所选的题目对应的题号右侧方框涂黑,按所涂题号进行评分;多涂、多答,按所涂的首题进行评分,不涂,按本选考题的首题进行评分.22.(10分)(选修4﹣1:几何证明选讲)如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB 垂直BE交圆于D.(Ⅰ)证明:DB=DC;(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径.【考点】NC:与圆有关的比例线段.【专题】5B:直线与圆.【分析】(I)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt △DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(II)由(I)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到Rt△BCF的外接圆的半径=.【解答】(I)证明:连接DE交BC于点G.由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DB⊥BE,∴DE为⊙O的直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(II)由(I)可知:∠CDE=∠BDE,DB=DC.故DG是BC的垂直平分线,∴BG=.设DE的中点为O,连接BO,则∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.∴CF⊥BF.∴Rt△BCF的外接圆的半径=.【点评】本题综合考查了圆的性质、弦切角定理、等边三角形的性质、三角形全等、三角形的外接圆的半径等知识,需要较强的推理能力、分析问题和解决问题的能力.23.已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】11:计算题;35:转化思想;4R:转化法;5S:坐标系和参数方程.【分析】(1)曲线C1的参数方程消去参数t,得到普通方程,再由,能求出C1的极坐标方程.(2)曲线C2的极坐标方程化为直角坐标方程,与C1的普通方程联立,求出C1与C2交点的直角坐标,由此能求出C1与C2交点的极坐标.【解答】解:(1)将,消去参数t,化为普通方程(x﹣4)2+(y﹣5)2=25,即C1:x2+y2﹣8x﹣10y+16=0,将代入x2+y2﹣8x﹣10y+16=0,得ρ2﹣8ρcosθ﹣10ρsinθ+16=0.∴C1的极坐标方程为ρ2﹣8ρcosθ﹣10ρsinθ+16=0.(2)∵曲线C2的极坐标方程为ρ=2sinθ.。
有关函数通性的试题选讲
【内容综述】
函数是数学上的一个基本而又重要的概念,在现代数学中,它几乎渗透到各个分支中。
函数的性质主要指函数的对称性、单调性和周期性。
函数图象的对称性反映了函数图象的局部与整体的关系,恰当地运用函数的对称性,往往可使问题简化。
函数的奇偶性是对称性中最重要的特殊情形。
函数的单调性可用函数值的比较给出证明,利用函数的单调性,可以比较实数的大小,证明一些不等式和确定某些函数的值域及最值。
设f是D上的函数,如果存在常数T≠0,使得对每个x∈D,都有f(x+T)=f(x-T)=f(x)成立,则称f(x)为周期函数,T为f(x)的一个周期,如果f(x)的所有正周期中存在最
小值,称为周期函数f(x)的最小正周期,一般说函数的周期都是指最小正周期。
例题分析:
例1 已知函数y=f(x)(x∈R,且x≠0),对任意非零实数都有
,试判定f(x)的奇偶性。
分析:欲判别f(x)的奇偶性,即找出f(-x)与f(x)之间的关系,可令
,为此必求出f(-1),而求f(-1),又可令,,为此又必先求出f(1),而f(1)不难求得。
解令,则f(1)=2f(1),所以f(1)=0。
令,,则f(1)=f(-1)+f(-1),所以f(-1)=0。
于是,在已知等式中,以-1,x分别代替,则f(-x)=f(-1)+f(x),即
f(-x)=f(x),故f(x)为偶函数。
说明在以抽象的函数等为条件的问题中,常常先考虑x取0,-1,1等的特殊值,再利用f(0),f(±1)的值来研究函数f(x)的性质。
例2 设a是大于0的实数,f(x)是定义在全体实数R上的一个实函数,并且对每一实数x满足条件:
1.试证明:函数f(x)是周期函数,也就是,存在一个实数b>0,使得对每一x 都有f(x+b)=f(x)。
2.就a=1举出一个这种函数f(x)的例子,但f(x)不能是常数。
分析这是一道探索存在性的问题,题中给出的已知条件只有唯一的一个含有a 的方程,直觉告诉我们,f(x)的周期定与a有关,于是,我们可从原方程出发,边递推边探索。
解1,由①
有
②
将②代入①
但
故f(x+a)=f(x-a)
即f(x)是一个周期函数,且周期b=2a。
2.现在我们来构造一个周期为2的,满足(1)式的函数f(x),由于(1)式可化为
这使我们想到最熟悉的周期函数:正余弦,但同时应注意到2f(x)-1非负、周期
为2,所以可令
即
不难证实它的确满足条件。
说明 f(x)不唯一,显然,函数也是满足条件的一个函数。
例3 证明:函数可以表示为两个单调递增的多项式函数之差。
证:注意到恒等式
而函数都是单调递增的多项式函数,从而命题得证。
说明一般地,任意实系数多项式可表示为两个单调递增的多项式函数之差。
例4 设二次函数的图象以y轴为对称轴,已知,
而且若点在的图象上,则点在函数的图象上。
(1)求的解析式
(2)设,问是否存在实数,使内是减
函数,在内是增函数。
分析由已知条件的解析式不难求得,欲求,可按定义分别求出
内分别是减函数,增函数的的范围,求出它们的交即可。
解(1)因的对称轴为y轴,故,从而。
设在的图象上,即,则点在
的图象上,即。
故,因此,。
(2)由(1)可得。
设,则
要使在内为减函数,只需,但,
故只要,所以。
然而当时,,因此,我们只要,在
,内是减函数。
同理,当时,内是增函数。
综上讨论,存在唯一的实数,使得对应的满足要求。
例5 奇函数的定义域为R,当时,,设函数
的值域为,,求a,b的值。
分析可先由已知条件写出在R上的解析式,再根据二次函数的单调性分情
形讨论的最大值和最小值,从而得到关于a、b的方程。
解:是奇函数
时,函数式为
因为与同时存在,
所以
同号
分以下情形讨论:
(1)时,由
(2)时,由
(3)时,由
无解
(5)时,由
矛盾
(6),由
与矛盾。
综上分析
说明本题源自第四届“希望杯”第二试解答题,重在考查学生的分类讨论问题能力和运用函数性质的解题能力。
例6 函数的定义域关于原点对称,但不包括数0,对定义域中的任意实数x,
在定义域中存在使,,且满足以下3个条件。
(1)定义域中的数,,或,则。
(2),(a是一个正常数)
(3)当0<x<2a时,f(x)>0。
证明(i)f(x)是奇函数;(ii)f(x)是周期函数,并求出其周期;(iii)f(x)在(0,4a)内为减函数。
证:(i)对定义域中的x,由题设知在定义域中存在使,
,则
∴f(x)为奇函数
(ii)因f(a)=1,∴f(-a)=-f(a)=-1,于是
若f(x)≠0,则
若f(x)=0,则
仍有 f(x+4a)=f(x)。
∴f(x)为周期函数,4a是它的一个周期。
(iii)先证在(0,2a)内f(x)为减函数,事实上,设,则
,则(当)。
所以
当时,
,于是
即在(2a,4a)内,f(x)也是减函数,从而命题得证。