哈尔滨工业大学《系统建模与仿真》系统建模与仿真-第三章-连续系统仿真方法
- 格式:ppt
- 大小:4.23 MB
- 文档页数:96
第3章 连续系统仿真的方法3.1 数值积分法连续系统数值积分法,就是利用数值积分方法对广微分方程建立离散化形式的数学模型——差分方程,并求其数值解。
可以想象在数学计算机上构造若干个数字积分器,利用这些数字积分器进行积分运算。
在数字计算机上构造数字积分器的方法就是数值积分法,因而数字机的硬件特点决定了这种积分运算必须是离散和串行的。
把被仿真系统表示成一阶微分方程组或状态方程的形式。
一阶向量微分方程及初值为()(),00t Y Y t Y ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭Y =F =(3-1)其中,Y 为n 维状态向量,F (t ,Y )为n 维向量函数。
设方程(3-1)在011,,,,n n t t t t t +=…处的形式上的连续解为()()()()n+1n+1t t n+10t t t =Y t +,(),n Y F t Y dt Y t F t Y dt=+⎰⎰(3-2)设 n =()n Y Y t ,令1n n n Y Y Q +=+(3-3)则有:()1n+1t n Y Y +=也就是说,1(,)n nt n t Q F t Y dt +≈⎰(3-4)如果n Y 准确解()n Y t 为近似值,n Q 是准确积分值的近似值,则式(3-4)就是式(3-2)的近似公式。
换句话说,连续系统的数值解就转化为相邻两个时间点上的数值积分问题。
因此,所谓数值解法,就是寻求初值问题(3-1)的真解在一系列离散点12n t t t <…<…上的近似解12,,,n Y Y Y ……,相邻两个时间离散点的间隔1n n n t t +=-h ,称为计算步距或步长,通常取n =h h 为定值。
可见,数值积分法的主要问题归结为对函数(,)F t y 的数值积分问题,即如何求出该函数定积分的近似解。
为此,首先要把连续变量问题用数值积分方法转化成离散的差分方程的初值问题,然后根据已知的初值条件0y ,逐步地递推计算后续时刻的数值解(1,2,)i y i =…。
研究生学位课《工程系统建模与仿真》实验报告(2017 年秋季学期)姓名学号班级研一专业机械电子报告提交日期哈尔滨工业大学报告要求1.实验报告统一用该模板撰写:(1)实验名称(2)同组成员(必须写)(3)实验器材(4)实验原理(5)实验过程(6)实验结果及分析2.正文格式:小四号字体,行距单倍行距;3.用A4纸单面打印;左侧装订;4.报告需同时提交打印稿和电子文档进行存档,电子文档请发送至:***********。
5.此页不得删除。
评语:教师签名:年月日实验一报告正文一、 实验名称TH -I 型智能转动惯量实验 二、 同组成员(必须写)17S三、 实验器材(简单列出)1. 扭摆及几种有规则的待测转动惯量的物体2. 转动惯量测试仪3. 数字式电子台秤4.游标卡尺四、 实验原理(简洁)将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。
根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即M =-K θ (1) 式中,K 为弹簧的扭转常数,根据转动定律M =I β式中,I 为物体绕转轴的转动惯量,β为 角加速度,由上式得MIβ= (2) 令2IKω=,忽略轴承的磨擦阻力矩,由式(1)、(2)得222d Kdt Iθβθωθ==-=-上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。
此方程的解为:cos()A t θωφ=+式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动周期为22T πω== (3) 由式(3)可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另一个量。
五、 实验过程(简洁)1. 用游标卡尺测出实心塑料圆柱体的外径D 1、空心金属圆筒的内、外径D 内、D 外、木球直径D 直、金属细杆长度L ;用数字式电子秤测出各物体质量m (各测量3次求平均值)。
2. 调整扭摆基座底脚螺丝,使水平仪的气泡位于中心。
连续系统仿真方法连续系统仿真是指通过对系统进行建模和模拟计算,来分析和预测系统的行为和性能。
它是现代工程领域中一种重要的设计和分析工具,可以帮助工程师们快速而准确地了解和评估系统的行为,并在设计过程中进行优化。
连续系统仿真方法主要由系统建模、模型求解和结果分析三个步骤组成。
首先是系统建模。
在连续系统仿真中,系统被描述为一组微分方程或差分方程,这些方程描述了系统的动态行为。
系统的建模可以使用多种方法,包括物理模型、数学模型、状态空间模型等。
物理模型是通过对系统的物理特性进行建模,将系统的动态行为转化为物理参数和方程。
数学模型则是将系统的行为转化为数学方程来描述。
状态空间模型则是通过引入状态变量来描述系统的行为。
根据具体的系统特性和实际需求,可以选择不同的建模方法。
其次是模型求解。
求解模型通常使用数值计算方法,如欧拉法、Runge-Kutta法等。
这些方法将系统的微分方程或差分方程转化为一系列离散时间点上的数值。
通过迭代计算,在每个时间点上更新系统的状态变量,并计算系统的输出。
数值计算方法的选择要考虑到系统动态特性、求解精度和计算效率等因素。
最后是结果分析。
仿真结果可以用来分析系统的动态行为、输出响应和性能指标。
可以通过绘制时间域图、频率域图和相图等,来直观地展示系统的响应和特性。
根据仿真结果,可以对系统的工作状态和性能进行评价,并进行灵敏度分析、优化设计等进一步分析。
连续系统仿真方法在工程领域中有广泛的应用。
例如,在电子电路设计中,可以使用连续系统仿真方法来分析电路的动态响应和稳定性。
在机械系统设计中,可以使用仿真方法来分析结构的强度和振动特性。
在控制系统设计中,可以使用仿真方法来评估控制系统的闭环性能和稳定性。
在通信系统设计中,可以使用仿真方法来分析信号传输的效果和误码率。
与传统的试验方法相比,连续系统仿真方法具有时间和成本的优势。
仿真可以在计算机上进行,不需要进行实际的试验和测试。
通过对系统的各种参数和条件进行调整和变化,可以快速地评估系统的性能和响应,为系统的设计和优化提供便利。