表面张力与润湿
- 格式:docx
- 大小:39.33 KB
- 文档页数:4
润湿原理的应用润湿原理是指液体在固体表面的扩展现象,也可以理解为液体与固体之间的相互作用力。
润湿现象广泛应用于生活和工业中的各个方面,以下是润湿原理的一些具体应用。
1. 表面润湿和表面张力:润湿现象可以使一些液体在固体表面上形成一层薄膜,这可以改变物体的表面性质。
例如,在纺织品加工中常用的涤纶功能面料采用了纳米级表面处理技术,通过润湿作用可以使面料具有防水、防油、防污等功能。
2. 渗透和分散:润湿原理可以被应用于渗透和分散过程中。
例如,在化妆品中,通过润湿作用可以使乳液或化妆品更容易渗透到皮肤中,提高吸收效果。
在农业领域,通过润湿作用可以促进植物根系对水分和养分的吸收。
3. 润滑:润滑是润湿原理在机械工程中的一个重要应用。
例如,在机械设备中润滑油或润滑脂能够减少机械零件之间的摩擦,降低能量损耗,并延长设备的使用寿命。
4. 涂层和印刷:通过润湿作用可以实现涂层和印刷工艺的精确控制。
在印刷过程中,墨水会通过润湿作用在印刷版与印刷媒介之间形成一层薄膜,从而实现传递。
在涂层过程中,涂料通过润湿作用可以均匀地附着在物体表面上,提供保护和装饰功能。
5. 表面改性:润湿原理可以通过表面改性实现多种功能。
例如,在材料科学领域,通过表面润湿作用可以提高材料的粘附性、耐磨性、耐腐蚀性等性能。
在光学和电子器件制造中,利用润湿现象可以改善材料的光学透明度和电子性能。
6. 微流控系统:微流控系统是一种利用微米级通道和润湿原理来控制微小流体流动的技术。
该技术被广泛应用于生物医学、化学分析和生物化工等领域。
微流控系统可以通过控制流体在不同通道中的润湿程度来实现样品的分离、混合和传感。
总的来说,润湿原理的应用十分广泛,涉及到生活的各个方面,如化妆品、纺织品、涂层和印刷、机械工程、材料科学等。
润湿现象的研究和应用不仅能改善材料的性能,还可以推动科技的发展,并为人们提供更便利、高效和可持续的生活方式。
润湿物理化学教案中的润湿剂的表面张力与润湿性能润湿是物体表面与液体之间的相互作用现象,能够决定液体在固体表面展开或收拢的能力。
在物理化学教学中,润湿剂的表面张力与润湿性能是重要而复杂的研究领域。
本文将探讨润湿剂的概念、表面张力以及润湿性能的关系,并着重介绍一些常见润湿剂的性质和应用。
1. 润湿剂的概念润湿剂是一种添加在液体中的化学物质,可以改善液体与固体表面之间的相互作用力,以增强液体对固体的润湿性能。
润湿剂一般分为两类:阳离子润湿剂和非离子润湿剂。
阳离子润湿剂是指在水中离解产生带正电荷的离子,并通过与固体表面上的空位或电子对相互作用来改变润湿性能。
非离子润湿剂则是由由非离子表面活性剂构成,其分子中不带电荷,通过分子间力来改变润湿性能。
2. 表面张力与润湿性能的关系表面张力是指液体表面上的分子间相互作用力,其大小决定了液体能否湿润固体表面。
润湿性能好的液体通常具有较低的表面张力。
润湿剂能够通过改变表面张力来调节液体的润湿性能。
当润湿剂添加到液体中时,润湿剂分子会吸附在液体-固体界面上,减小了界面的表面张力,从而使液体更好地与固体接触,提高了润湿性能。
3. 常见润湿剂的性质和应用3.1 阳离子润湿剂阳离子润湿剂常用于纺织工业和造纸工业中。
例如,十二烷基硫酸钠(SDS)是一种常见的阳离子润湿剂,可应用于洗涤剂和乳化剂中,以增强其润湿性能。
3.2 非离子润湿剂非离子润湿剂具有良好的表面活性能力和溶解性,常用于鞋类、皮革和塑料等工业中。
聚氧乙烯醇(POE)是一种常见的非离子润湿剂,可用于改善塑料和涂料的润湿性能。
4. 润湿剂的改善措施除了选择合适的润湿剂外,还可以通过控制温度、pH值和添加助剂等方式来改善润湿性能。
例如,提高温度可以使某些润湿剂分子更容易吸附在固体表面上,进而改善润湿性能。
结论:润湿剂在物理化学教学中扮演着重要的角色。
其表面张力与润湿性能的关系是润湿剂研究的核心内容。
理解润湿剂的概念、性质以及应用,对于掌握物体表面与液体相互作用的基本原理和应用具有重要意义。
焊接过程中表面张力与润湿力
表面张力:表面张力是化学中一个基本概念,表面化学是研究不同相共同存在的系统体系,在这个体系中不同相总是存在着界面,由于相界面分子与体相内分子之间作用力有着不同,故导致相界面总是趋于最小化.(能量守恒定率)
在焊接过程中,焊料的表面张力是一个不利于焊接的重要因素,但是,因为表面张力是物理的特性,只能改变它,不能取消它,在SMT焊接过程中,降低焊料表面张力可以提高焊料的润湿力.
减小表面张力的方法(以锡铅焊料为例)
1) 表面张力一般会随着温度的升高而降低
2) 改善焊料合金成分(如锡铅焊料:随铅的含量增加表面张力降低)
3) 增加活性剂,可以去除焊料的表面氧化层,并有效地减小焊料的表面张力
4) 采用不能的保护气体,介质不同,焊料表面张力不同.
在SMT生产中,元器件是放置在锡膏之上,锡膏熔化的瞬间所形成的表面张力会作用在元器件的端电极上,对片式元件来说,由于元件重量极轻,若焊盘面积大小不一致,焊盘热容量就不一样,则两焊盘上锡膏熔化时间不一致,锡膏熔化时所产生的表面张力不一样,由于表面张力的不平衡,会导致元件出现力碑缺陷.。
表面张力和润湿张力
表面张力和润湿张力是两种不同的物理现象,它们在液体和固体表面都起着重要的作用。
表面张力是指液体表面会呈现出一定的弹性和凝聚性,导致液体表面形成一个比较平坦的形态。
它主要是由于液体分子之间的相互作用力所引起的。
表面张力在许多物理现象中都有所体现,比如水滴在荷叶上呈现出的球形,或者小虫子在水面上自由行走等。
润湿张力则是液体在固体表面上的现象,当液体与固体接触时,两者之间会形成一个界面,这个界面上的张力就叫做润湿张力。
它主要是由于液体和固体之间的分子相互作用力所引起的。
润湿张力在许多实际应用中都非常重要,比如在涂层、印刷、涂胶等工艺中,润湿张力的控制至关重要。
总的来说,表面张力和润湿张力都是由于分子间相互作用力引起的,但它们分别发生在液体和固体表面上,对于不同的物理现象有着不同的影响和应用。
实验6 固体聚合物表面张力与润湿的测定一、目的要求1.掌握测定固体聚合物表面张力的实验方法。
2.了解固体聚合物表面张力的意义及其实际应用二、基本原理固体聚合物的表面张力(r s)是由于固体聚合物表面上分子间作用力的不平衡而产生的。
在高分子科学中经常需要对聚合物的表面张力进行测定,在聚合物纺丝、聚合物粘接、分散稳定性、液体浸润聚合物、聚合物熔体在固体表面上涂布等方面有重要意义。
固体聚合物表面张力的测定方法主要有三种:1.测量固体与不同液体之间的接触角,根据Girifalco提供的方法,用式(24-1)进行计算:r s =r L×(1+cosθ)/4φ² (24-1)φ=4(V s V L)(1/3)/(V s+V L)2(24-2)式中:r s为固体的表面张力,r L为液体的表面张力,Vs为固体的克分子体积,V L为液体的克分子体积,cosθ为液固间接触角余弦。
2.测量各种已知表面张力液体与固体之间的接触角,制成cosθ- V L图,将所得直线外推至与cosθ=1的直线相交,求得临界表面张力r c,根据Zisman的假定,r s≈r c,从而求得r s。
3.把聚合物熔体表面张力的数据外推至室温时的数据作为r s。
由于第三种方法在固体熔融时会带来高温氧化或分解等现象,故应用较少。
一般常用的是第一种和第二种方法。
三、仪器和样品仪器:接触角测定仪、注射器、瓷盘、滴瓶、烘箱。
待测样品:碳纤维、聚丙烯(片材)、聚乙烯(片材)、聚氯乙烯(片材)。
参考液体:水、乙醇、乙二醇、丙三醇、苯、正己烷、正辛烷、环己酮、苯胺、甲酰胺、三氯甲烷、二碘甲烷。
四、实验步骤及数据处理1.将接触角测定仪放在牢固、平稳、无震动的工作台上,调整好。
2.准备好样品,放在指定位置上。
3.纤维与液体的接触角测定用插入法,板材与液体的接触角测定用倾斜板法。
4.启动开关,使主轴旋转,从显微镜中读出角度值,即所测样品的接触角。
表面张力:在不同相共同存在 的体系中,由于相界面分子与体相内分子之间的作用力不同,导致界面总是趋于最小的现象称之为表面张力.
润湿:一滴液体置于固体表面,液体会在固体表面自动铺展.这种液体在固体表面漫流的物理现象称为润湿.液滴沿固体表面铺展结束时,液滴和固体表面的界面与液滴表面切线之间的夹角称为润湿角a.a 角表示液滴对母材的润湿程度.
(a) 当 0 <a< 90 时,表示液滴能润湿固体表面.
(b) 当90 <a<180 时,表示液滴不能润湿固体表面.
(c) 当a=0 时,表示液滴完全润湿固体表面.
(d) 当a=180 时,表示液滴完全不润湿固体表面.
润湿是液体在固体表面漫流的力,表面张力是液体在固体表面缩小的力,表面张力与润湿力方向相反,因此表面张力不利于润湿.
增加表面张力的方法(减小润湿的方法):
1.增加液体的粘度,粘度与表面张力成正比的,故粘度越大,液体的流动性越差,不利于润湿.
2.降低温度.
表面张力还有"自定位效应-self alignment":当元器件贴放位置有少量偏离时,在平衡的表面张力作用下,能自动被拉回到近似目标位置.如果表面张力不平衡,即使贴装位置十分准确,焊接后也会出现元件位置偏移,立碑,桥接等焊接缺陷.a 润湿角固体液体。
内容提要:本书是一部系统、全面论述化学驱法提高石油采收率的著作。
介绍了提高石油采收率的储集层物理基础、驱油机理、方法筛选和应用原则以及矿场实施的风险分析理论等。
⑧木质素磺酸盐(Lignosulfonate,Ls):木质素磺酸盐是亚硫酸盐法制木浆时的副产品,亦称为磺化木质素。
木浆在与二氧化硫水溶液利亚硫酸氢钙进行反应时形成的木质(P229) 素磺酸混杂在木浆中,通常由亚硫酸纸浆废液经加工浓缩后再用石灰、氯化钙沉淀制得钠盐、钙盐等,其化学结构如图3—2—2所示。
检测表明Ls的结构比较复杂,它是由大约50个4-羧基-3-甲氧基丙苯基的三维多聚物,低相对分子质量的LS多为直链,在水溶液中缔合,高相对分子质量的LS多为支链,在水溶液中呈现聚电解质的性质,高相对分子质量部分难以降解,LS的平均相对分子质量为200一10000不等。
在油田无论用作驱油主剂还是用作牺牲剂的LS,都是从制纸过程产生的废液中提取的,目前采用的LS的品种列于表3-2-1中。
可以将本质素进行改性,引入HS03CH2-,或进行甲基化、羧甲基化、羧乙基化、磺甲基化、甲氧基化改性得到相应的改性产品。
木浆造纸排污对环境会带来污染,为了减少污染,同时又废物利用。
因此,木浆造纸排泄液的提取物——木质素磺酸盐LS,一方面可以用来作为化学驱油主剂的牺牲剂,因为LS
的相对分子质量大,当其在固体表面上吸附时能够占据较大的表面积,因此,在注入主驱油剂之前预先注入Ls,使其预先吸附并占据易于产生吸附的岩石表面,以减少驱油主剂在驱替过程中的吸附损失。
另一方面,由于LS也是一种表面活性物质,将其与石油磺酸钠(PS)或其他表面活性剂复配用作表面活性剂驱油的助剂,可以使驱油剂体系具有更好的性能,同时由于其价格低廉,降低了化学驱油剂的成本。
在加拿大和美国的一些大学和石油公司都曾进行了木质素磺酸盐与石油磺酸盐复配用作驱油主剂的研究,并且得到了肯定的结论。
同时,也有资料表明Ls也能够用于油田开发的其他方面,如将LS与烷基酚聚氧乙烯醚类非离子表面活性剂复配能够乳化稠油和沥青,增加其流动能力,从而在稠油开采中能够用作稠油乳化降粘剂。
在钻井液中将其改性制得铁铬木质素磺酸盐用作钻井液分散剂,改善钻井液的流动性。
作为污水处理剂用以沉淀污水中的蛋白和整合水中的多价金属离子。
(P120) 磺化木质素等表面活性剂能降低原油粘度,使原油容易脱离岩石,提高采油率。
P143。