第七章液体对固体的润湿作用
- 格式:ppt
- 大小:499.56 KB
- 文档页数:32
润湿作用的应用及原理一、什么是润湿作用润湿作用是指液体在与固体接触时,能够在固体表面上形成一层平均和连续的薄液体膜,使固体表面被液体湿润的现象。
润湿作用广泛应用于各行各业,例如表面涂料、化妆品、医疗器械、涂层材料等。
二、使用润湿作用的应用领域润湿作用在很多领域都有重要的应用,以下为一些常见的应用领域:1. 化妆品润湿作用在化妆品中起着重要的作用。
化妆品中的润湿剂能够帮助产品更好地附着在皮肤表面,提高化妆品的使用体验。
同时,润湿作用还可以增加化妆品在皮肤上的持久性,使其更加耐用。
2. 医疗器械润湿作用在医疗器械中也有广泛的应用。
例如,在外科手术中,医疗器械通常需要与组织和体液接触,润湿作用可以帮助器械更好地与组织接触,并减少对组织的创伤。
3. 涂料润湿作用在涂料领域也有重要的应用。
涂料的润湿剂可以改善涂料在基材表面的附着,提高涂料的抗刮擦性和耐久性。
此外,润湿作用还可以减少涂料施工时的气泡和裂痕,提高涂料的光泽度。
4. 纺织工业在纺织工业中,润湿作用可以帮助纺织品更好地吸收染料,提高染色效果。
润湿剂可以改善纺织品与染料之间的接触,使染料能够快速、均匀地渗透到纤维中,提高染色的效果。
5. 粮食储藏润湿作用也可用于粮食储藏。
在贮存过程中,粮食表面积少的因素大大限制了湿气的渗透和沉积,采用润湿技术可以增加粮食表面积,提高粮食的储存效果。
三、润湿作用的原理润湿作用的原理涉及表面张力、界面能的概念及表面活性剂的作用,以下是润湿作用的一般原理:•表面张力:润湿作用的关键是液体的表面张力。
表面张力越小,润湿作用越好。
因为表面张力越小,液体越容易渗透到固体表面上,并形成一层薄液体膜。
•界面能:固体表面和液体之间具有一定的能量差异,称为界面能。
润湿作用的原理是通过降低界面能差异,使液体能够更好地湿润固体表面。
•表面活性剂:表面活性剂是一种能够降低表面张力的物质。
通过添加表面活性剂,可改变液体的表面性质,改善润湿作用。
2.2.2润湿现象1.润湿的概念润湿是固体(或液体)表面上的气体被液体取代的过程。
润湿现象是表面现象的重要内容,本节讨论液体对固体表面的润湿情况。
先看两种现象,把一小滴水银放在玻璃板上,呈球形,而放在清洁的锌板上,就会慢慢散开。
液滴呈球形叫做液体不润湿固体,液体沿固体表面散开叫做液体润湿固体;还有一种现象,把一根玻璃棒插入水银中,然后将它抽出,脱离水银后的玻璃棒是完全干净的,水银不润湿玻璃;如果把玻璃棒插入水中,当玻璃棒从水中抽出时,会看到棒被水沾湿了,表明水能够润湿玻璃。
上述现象可以这样解释:当液体跟固体接触时,接触层中的液体分子,一方面受到液体内部分子的作用(内聚力),同时受到固体分子的作用(附作力),如果内聚力大于附着力,就发生液体不润湿固体,在固体表面上的小液滴呈球形,相反,如果附着力大于内聚力,液体润湿固体;液体将沿固体表面散开。
对于具有光滑表面的块状固体,可测定固体与液体的接触角来衡量润湿程度。
如图8–5中的固–气、固–液、液–气三个界面,对应存在三个表面张力,即σs–g 、σs–l和σl–g。
在固、液、气三相的接触点O点处于平衡态,根据力的平衡原理,其合力为零。
图8–5 接触角和表面张力的关系(a) 润湿(b) 不润湿可得如下方程式:θσσσcos∙+=---gllsgs则gll sgs----=σσσθcos8–5上式表示表张力与接触角的关系,称杨氏方程,由此式可知,在一定温度、压力下:(1)当σs–g -σs–l<0,则cosθ<0,即θ>90°,为不润湿,由于过程总是向着表面能减小的方向进行,当σl–g 一定时,如果σs–g与σs–l相比,σs–g越小时,则液体越不易润湿固体表面(固–气界面),故液体趋向缩得更圆一些,即θ更大些,其平衡极限θ=180°,则为完全不润湿。
(2)当σs–g -σs–l>0,则cosθ>0,即θ<90°,为能润湿,这时v s.–g>σs–l,当σl–g一定时,如果σs–g 与σs–l相比,σs–g越大时,则液体越易润湿固体表面(固–气界面),故液体趋向展开的更扁平一些,即θ更小些,其平衡极限θ=0,则为完全润湿。
第七章表面现象练习题第十章界面现象练习题一、是非题(对的画√错的画×)1、液体的表面张力总是力图缩小液体的表面积。
()2、液体的表面张力的方向总是与液面垂直。
()3、分子间力越大的物体其表面张力也越大。
()4、垂直插入水槽中一支干净的玻璃毛细管,当在管中上升平衡液面外加热时,水柱会上升。
()5、在相同温度下,纯汞在玻璃毛细管中呈凸液面,所以与之平衡的饱和蒸气压必大于其平液面的蒸汽压。
()6、溶液表面张力总是随溶液的浓度增大而减小。
()7、某水溶液发生负吸附后,在干净的毛细管中的上升高度比纯水在该毛细管中上升的高度低。
()8、通常物理吸附的速率较小,而化学吸附的速率较大。
()9、兰格缪尔等温吸附理论只适用于单分子层吸附。
()10、临界胶束浓度(CMC)越小的表面活性剂,其活性越高。
()11、物理吸附无选择性。
()12、纯水、盐水、皂液相比,其表面张力的排列顺序是:γ(盐水)γ(纯水)γ(皂液)。
()13、在相同温度与外压力下,水在干净的玻璃毛细管中呈凹液面,故管中饱和蒸气压应小于水平液面的蒸气压力。
()14、朗缪尔吸附的理论假设之一是吸附剂固体的表面是均匀的。
()15、同一纯物质,小液滴的饱和蒸气压大于大液滴的饱和蒸气压。
()16、弯曲液面的饱和蒸气压总大于同温度下平液面的蒸气压。
()17、表面张力在数值上等于等温等压条件下系统增加单位表面积时环境对系统所做的可逆非体积功。
()18、某水溶液发生正吸附后,在干净的毛细管中的上升高度比在纯水的毛细管中的水上升高度低。
()19、弯曲液面处的表面张力的方向总是与液面相切。
()20、吉布斯所定义的“表面过剩物质的量”n只能是正值,不可能是负i值。
( )21、封闭在容器内的大、小液滴若干个,在等温下达平衡时,其个数不变,大小趋于一致。
()22、凡能引起表面张力降低的物质均称之为表面活性剂。
()23、表面过剩物质的量为负值,所以吸附达平衡后,必然引起液体表面张力降低。
液体-固体界面接触电致润湿效应
作者:
来源:《科学中国人》2024年第06期
中國科学院北京纳米能源系统研究所王中林院士团队林世权等人与合作者研究发现,当水滴在固体表面铺展时,伴随着的电荷转移会自发地引起固体润湿性的变化。
相关成果发表于《先进材料》(Advanced Materials)。
为了深入研究接触电致润湿效应,研究团队利用开尔文原子力显微镜和接触角测量仪对24种不同的介电薄膜材料进行了表征。
通过测量这些材料与水滴接触起电前后的静态接触角和表面电荷密度,发现接触角的变化量与转移电荷密度之间存在强烈的依赖关系,并进一步证明了接触起电对动态润湿过程的影响。
机理研究表明,摩擦电荷的积累增强了水和基底间的分子间相互作用,从而导致润湿性增强。
§12.6 液-固界面——润湿作用润湿过程:滴在固体表面上的少许液体,取代了部分固-气界面,产生了新的液-固界面。
这一过程称之为润湿过程。
润湿过程可以分为三类,即:粘湿、浸湿和铺展一、粘湿过程定义:液体与固体从不接触到接触,使部分液-气界面和固-气界面转变成新的固-液界面的过程。
设各相界面都是单位面积,该过程的Gibbs 自由能变化值为:a W 称为粘湿功。
注:粘湿功的绝对值愈大,液体愈容易粘湿固体,界面粘得愈牢。
二、浸湿过程定义:在恒温恒压可逆情况下,将具有单位表面积的固体浸入液体中,气-固界面转变为液-固界面的过程称为浸湿过程。
该过程的Gibbs 自由能的变化值为: i W 称为浸湿功,它是液体在固体表面上取代气体能力的一种量度,有时也被用来表示对抗液体表面收缩而产生的浸湿能力,故又称为粘附张力。
注:0≤i W 液体能浸湿固体。
三、铺展过程定义:等温、等压条件下,单位面积的液固界面取代了单位面积的气固界面并产生了单位面积的气液界面,这种过程称为铺展过程。
等温、等压条件下,可逆铺展单位面积时,Gibbs 自由能的变化值为S 称为铺展系数,若S ≥0,说明液体可以在固体表面自动铺展。
四、接触角与润湿方程1、接触角:在气液固三相交汇点固液界面的平面与气液界面的切线通过液体内部的夹角。
2、杨氏方程:g l s l g s Cos ,,,γγγθ-=可以利用实验测定的接触角和气-液界面张力,计算润湿过程的一些参数: l-s l-g s-g G γγγ∆=--a l-s l-g s-gW G γγγ=∆=--l s g s iG W γγ--∆=-=l s g l g sG γγγ---∆=+-g s g l l s S G γγγ---=-∆=--a g l (1cos )W γθ-=-+i g l cos W γθ-=-g l (cos 1)S γθ-=-。
第七章 表面现象一、表面现象表面现象是研究具有巨大表面系统的物理化学。
由于系统的表面层分子和相内部分子的处境不同,引起了表面的特殊物理化学性质,表现出各种表面现象。
1. 比表面吉布斯函数和表面张力 (1)比表面吉布斯函数nP T A G ,,s ⎪⎪⎭⎫⎝⎛∂∂=γ 物理意义:定温定压及组成一定的条件下,每增加单位表面积使系统增加的吉布斯函数;它的含义是,系统单位面积表面层分子比同量的相内分子超出的吉布斯函数。
(2)沿着与表面相切的方向垂直作用于表面上任意单位长度线段上的表面紧缩张力,称为表面张力。
lF 2=γ 它平行于水平液面,在边界上指向液体内部。
(3)比表面吉布斯函数和表面张力的数值相等,量纲相同,物理意义不同。
(4)表面张力与温度的关系B B,,,,s n p A n p T T A S ⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂γ 2.润湿(1)根据接触角来判断液体对固体的润湿能力: θ<90º,润湿;θ=0º,完全润湿;θ>90º,不润湿;θ=180º完全不润湿。
(2)根据杨氏方程lg sl s g ----=γγγθcos 3.弯曲液面现象(1)附加压力——拉普拉斯方程rp γ2=∆ 其方向总是指向曲率中心(2)微小液滴的蒸气压——开尔文公式rRT M p p r ργ2ln= (3)毛细现象grh ρθγcos 2=4.气——固吸附,朗缪尔吸附等温方程式bpbpΓΓm+=1 5.溶液的表面吸附和表面活性剂 (1)吉布斯吸附等温方程式cRT c Γd d γ-=(2)表面活性剂溶于水时,能显著地降低溶液表面张力的物质,称为表面活性剂。
结构为即含有亲水基,又含有亲油基,称为两亲性分子。
二、习题10.2 在293.15K 及101.325kPa 下,把半径为1×10-3m 的汞滴分散成半径为1×10-9的小汞滴,试求此过程系统的表面吉布斯函数变为若干?已知293.15K 汞的表面张力为0.470N •m -1。
润湿固体的原理和作用润湿固体是指在与固体表面接触时能够迅速扩展并使固体表面被液体湿润的物质。
润湿固体的原理是液体与固体之间的相互作用力。
在液体与固体接触时,液体分子与固体表面分子之间产生相互作用,使液体能够覆盖固体表面,并能在表面上形成一层较薄的液体薄膜。
润湿固体的作用十分广泛,下面从不同方面进行详细阐述:1. 表面润湿性:润湿固体可以提高固体表面的润湿性,使得液体能够更好地覆盖固体表面,从而降低液滴在固体表面上的接触角。
这种改善润湿性的能力在各个领域都有应用,例如化妆品中的高润湿性成分可以使化妆品更容易涂抹均匀。
2. 接触面积增加:润湿固体能够使液体在固体表面上形成较大的接触面积,增加液体与固体之间的接触面,从而提高反应速率,加快反应过程。
这在化学反应、催化剂和电化学领域都有应用。
3. 液体输运:润湿固体的作用还可在微纳米尺度上发挥作用,例如在微流控芯片中,润湿固体可以改变液体在微通道中的流动性质,使微通道中的液滴更容易前进或停止,实现液体的精确输送。
4. 界面性能:润湿固体的特性还可以改善液相与固相的界面性能,提高材料的稳定性和性能。
例如,润湿固体可以在涂层和塑料添加剂中应用,提高材料的耐候性和耐磨性。
5. 润滑剂:润湿固体还可应用于润滑剂领域。
润湿固体能够减小固体表面之间的摩擦力,使其变得更容易滑动。
因此,在液压系统、汽车零件以及机械设备中广泛使用。
6. 油墨、颜料:润湿固体也常用于油墨和颜料制造中。
润湿固体可以使颜料更好地附着在底材表面,提高油墨和颜料的光泽、色彩饱和度。
7. 成膜和涂层:润湿固体还可以用于成膜和涂层技术。
润湿固体可以使液体在固体表面上形成均匀的薄膜,提高涂层的平整度和附着力。
总结来说,润湿固体作为一种能够改善固体表面润湿性的物质,广泛应用于各个领域,包括化学、材料、催化剂、润滑剂、油墨、颜料等。
通过提高液体与固体之间的相互作用力,润湿固体能够改善材料的界面性能,提高材料的稳定性、耐磨性和反应速率。
第七章 表面现象1. 表面现象在自然界普遍存在,但有些自然现象与表面现象并不密切相关,例如(A) 气体在固体上的吸附(B) 微小固体在溶剂中溶解(C) 微小液滴自动呈球形(D) 不同浓度的蔗糖水溶液混合答案:D2. 液体的内压力和表面张力的联系与区别在于(A) 产生的原因相同而作用点不同(B) 产生的原因相同而作用的方向不同(C) 作用点相同而方向不同(D) 点相同而产生的原因不同答案:B3. 液体的附加压力和表面张力的联系与区别在于(A) 产生的原因和方向相同而大小不同(B) 作用点相同而方向和大小不同(C) 作用点相同而产生的原因不同(D) 产生的原因相同而方向不同答案:D4. 对于理想的水平液面,其值为零的表面物理量是(A) 表面能(B) 比表面吉布斯函数(C) 表面张力(D) 附加压力答案:D 。
r p σ2=∆对于平面,r →∞。
5. 表面张力是物质的表面性质,其值与很多因素有关,但是它与下列因素无关(A) 温度(B) 压力(C) 组成(D) 表面积答案:D6. 对弯曲液面上的蒸气压的描述正确的是(A) 大于平面液体的蒸气压(B) 小于平面液体的蒸气压(C) 大于或小于平面液体的蒸气压(D) 都不对答案:C7. 常见的一些亚稳现象都与表面现象有关,下面的说法正确的是(A) 过饱和蒸气是由于小液滴的蒸气压小于大液滴的蒸气压所致(B) 过热液体形成的原因是新相种子──小气泡的附加压力太小(C) 饱和溶液陈化,晶粒长大是因为小晶粒溶解度比大晶粒的小(D) 人工降雨时在大气中撒入化学物质的主要目的是促进凝结中心形成答案:D8. 物理吸附和化学吸附有许多不同之处,下面的说法中不正确的是(A) 物理吸附是分子间力起作用,化学吸附是化学键力起作用(B) 物理吸附有选择性,化学吸附无选择性(C) 物理吸附速率快,化学吸附速率慢(D) 物理吸附一般是单分子层或多分子层,化学吸附一般是单分子层答案:B。
正确的说法是物理吸附无选择性,化学吸附有选择性。
润湿现象的名词解释润湿现象是物理学中一个重要的概念,它描述了液体与固体表面接触时的现象和行为。
当一个液体接触到固体表面时,会发生润湿现象,液体会在固体表面上形成一个薄薄的液体层,从而使液体能够在固体表面上均匀地分布。
润湿现象的产生是由于液体分子与固体表面分子之间的相互作用力的结果。
液体分子会与固体表面分子发生相互作用,吸附在表面上形成一个分子层。
这种相互作用力主要有两种形式:一种是液体分子与固体表面分子之间的吸引力,称为吸附力;另一种是液体分子与固体表面分子之间的相互排斥力,称为排斥力。
在润湿现象中,如果吸附力大于排斥力,液体分子就会更容易与固体表面接触并展开分子层,形成均匀的润湿现象。
这种现象在许多生活中都有体现,比如水滴在一个平坦的表面上会展开成薄薄的水膜,形成润湿现象。
润湿现象的程度可以用接触角来描述。
接触角是指液体与固体表面上的接触线所形成的角度,它可以反映液体在固体表面上的润湿程度。
根据接触角的大小,润湿现象可以分为三种类型:完全润湿、部分润湿和非润湿。
当液体与固体表面接触时,如果接触角等于0度,说明液体完全润湿了固体表面,液体能均匀地覆盖在固体表面上,形成完全润湿现象。
这种现象常见于玻璃、金属等固体表面。
部分润湿现象指接触角大于0度但小于90度,液体只部分地润湿了固体表面。
这种现象常见于一些纺织品、木材等。
部分润湿现象的程度取决于液体与固体之间的相互作用力。
非润湿现象是指接触角等于90度,液体无法润湿固体表面,形成了一种抗润湿的现象。
这种现象常见于许多润滑材料、塑料等。
润湿现象不仅在日常生活中有重要意义,在科学研究和工程技术中也有广泛应用。
例如,在涂料、油墨、染料等工艺中,润湿性能的改善可以提高涂层的均匀性和附着力。
在纳米技术领域,润湿现象的研究有助于设计和制备具有特殊润湿性质的纳米材料。
此外,润湿现象也在生物学、医学和环境科学等领域发挥着重要作用。
总之,润湿现象是液体与固体表面相互作用的结果,液体在固体表面上形成一层薄薄的液体层,以保持均匀分布。