数字电子技术基础2
- 格式:ppt
- 大小:1.35 MB
- 文档页数:80
数字电子技术基础实验报告题目:实验二组合电路设计小组成员:小组成员:1.掌握全加器和全减器的逻辑功能;2.熟悉集成加法器的使用方法;3.了解算术运算电路的结构;4.通过实验的方法学习数据选择器的结构特点、逻辑功能和基本应用。
二、实验设备1.数字电路实验箱;2.Quartus II 软件。
三、实验要求要求1:参照参考内容,调用MAXPLUSⅡ库中的组合逻辑器件74153双四数据选择器和7400与非门电路,用原理图输入方法实现一一位全加器。
(1)用 Quartus II波形仿真验证;(2)下载到 DE0 开发板验证。
要求2:参照参考内容,调用MAXPLUSⅡ库中的组合逻辑器件74138三线八线译码器和门电路,用原理图输入方法实现一位全减器。
(1)用 Quartus II 波形仿真验证;(2)下载到 DE0 开发板验证。
要求3:参照参考内容,调用MAXPLUSⅡ库中的组合逻辑器件74138三线八线译码器和门电路,用原理图输入方法实现一个两位二进制数值比较器。
(MULTISM仿真和FPGA仿真)。
1、74138三线八线译码器原理2、74153双四数据选择器原理3、全加器原理全加器能进行加数、被加数和低位来的进位信号相加,并根据求和的结果给出该位的进位信号。
图一图一是全加器的符号,如果用i A,i B表示A,B两个数的第i位,1i C 表示为相邻低位来的进位数,i S表示为本位和数(称为全加和),i C表示为向相邻高位的进位数,则根据全加器运算规则可列出全加器的真值表如表一所示。
表一可以很容易地求出S 、C 的化简函数表达式。
i i i-1i i i-1i i ()i i S A B C C A B C A B =⊕⊕=⊕+用一位全加器可以构成多位加法电路。
由于每一位相加的结果必须等到低一位的进位产生后才能产生(这种结构称为串行进位加法器),因而运算速度很慢。
为了提高运算速度,制成了超前进位加法器。
这种电路各进位信号的产生只需经历以及与非门和一级或非门的延迟时间,比串行进位的全加器大大缩短了时间。
《数字电子技术基础》读书笔记02 逻辑代数基础2.1从布尔代数到逻辑代数1849年英国数学家乔治布尔(George Boole)提出布尔代数,使用数学方法进行逻辑运算。
把布尔代数应用到二值逻辑电路中,即为逻辑代数。
2.2逻辑代数中的运算(想想初等代数中的加减乘除)2.2.1三种基本运算与(AND):逻辑乘,Y=A B或(OR):逻辑加,Y=A+B非(NOT):逻辑求反,Y=Aˊ简单逻辑运算(与、或、非)的两套图形符号,均为IEEE(国际电气与电子工程师协会)和IEC(国际电工协会)认定。
上排为国外教材和EDA软件中普遍使用的特定外形符号;下排为矩形符号。
2.2.2复合逻辑运算(都可以表示为与、或、非的组合)与非(NAND):先与后非,与的反运算,Y=(A B)ˊ或非(NOR):先或后非,非的反运算,Y=(A+B)ˊ与或非(AND-NOR):先与再或再非,Y=(A B+C D)ˊ异或(Exclusive OR):Y=A⊕B=A Bˊ+AˊB A和B不同,Y为1;A和B相同,Y为0。
当A与B相反时,A Bˊ和AˊB,肯定有一个结果为1,则Y为1。
同或(Exclusive NOR):Y=A⊙B=A B+AˊBˊA和B相同,Y为1;A和B不同,Y为0。
当A与B相同时,A B和AˊBˊ,肯定有一个结果为1,则Y为1。
同或与同或互为反运算,即两组运算,只要输入相同,一定结果相反。
A⊕B=(A⊙B)ˊA⊙B=(A⊕B)ˊ复合逻辑运算的图像符号和运算符号。
2.3逻辑代数的基本公式和常用公式2.3.1基本公式(见对偶定理)2.3.2若干常用公式(见逻辑函数化简方法之公式化简法)2.4逻辑代数的基本定理2.4.1代入定理(相当于初等代数中的换元)任何一个包含逻辑变量A的逻辑等式中,若以另外一个逻辑式代入式中所有A的位置,则等式依然成立。
2.4.2反演定理对于任意一个逻辑式Y,若将其中所有的""换成"+","+"换成"","0"换成"1","1"换成"0",原变量换成反变量,反变量换成原变量,则得到的结果就是Yˊ。
第二章逻辑门电路第一节重点与难点一、重点:1.TTL与非门外特性(1)电压传输特性及输入噪声容限:由电压传输特性曲线可以得出与非门的输出信号随输入信号的变化情况,同时还可以得出反映与非门抗干扰能力的参数U on、U off、U NH和U NL。
开门电平U ON是保证输出电平为最高低电平时输入高电平的最小值。
关门电平U OFF 是保证输出电平为最小高电平时,所允许的输入低电平的最大值。
(2)输入特性:描述与非门对信号源的负载效应。
根据输入端电平的高低,与非门呈现出不同的负载效应,当输入端为低电平U IL时,与非门对信号源是灌电流负载,输入低电平电流I IL通常为1~1.4mA。
当输入端为高电平U IH时,与非门对信号源呈现拉电流负载,输入高电平电流I IH通常小于50μA。
(3)输入负载特性:实际应用中,往往遇到在与非门输入端与地或信号源之间接入电阻的情况,电阻的取值不同,将影响相应输入端的电平取值。
当R≤关门电阻R OFF时,相应的输入端相当于输入低电平;当R≥ 开门电阻R ON时,相应的输入端相当于输入高电平。
2.其它类型的TTL门电路(1)集电极开路与非门(OC门)多个TTL与非门输出端不能直接并联使用,实现线与功能。
而集电极开路与非门(OC 门)输出端可以直接相连,实现线与的功能,它与普通的TTL与非门的差别在于用外接电阻代替复合管。
(2)三态门TSL三态门即保持推拉式输出级的优点,又能实现线与功能。
它的输出除了具有一般与非门的两种状态外,还具有高输出阻抗的第三个状态,称为高阻态,又称禁止态。
处于何种状态由使能端控制。
3.CMOS逻辑门电路CMOS反相器和CMOS传输门是CMOS逻辑门电路的最基本单元电路,由此可以构成各种CMOS逻辑电路。
当CMOS反相器处于稳态时,无论输出高电平还是低电平,两管中总有一管导通,一管截止,电源仅向反相器提供nA级电流,功耗非常小。
CMOS器件门限电平U TH近似等于1/2U DD,可获得最大限度的输入端噪声容限U NH和U NL=1/2U DD。
思考题:题2.1.1 答:肖特基二极管(SBD)、分流。
题2.1.2 答:基区、滞后。
题2.1.3 答:(A)、(B) 。
题2.1.4 答:对。
题2.2.1 答:A、B。
题2.2.2 答:C、D。
题2.2.3 答:4ns。
题2.2.4 答:(A)、(C)、。
题2.2.5 答:降低、降低。
题2.2.6 答:0、1和三态题2.2.7 答:若一个输出高电平,另一个输出低电平时,会在T4和T5间产生一个大电流,烧毁管子。
OC门“线与”在输出接一电阻和一5-30V电源电压。
题2.2.8 答:能、分时。
题2.2.9 答:1. 为了缩短传输延迟时间,电路中使用肖特基管和有源泄放电路,另外,还将输入级的多发射极管改用SBD代替,由于SBD没有电荷存储效应,因此有利于提高电路的工作速度。
电路中还接入了D3和D4两个SBD,当电路的输出端由高电平变为低电平时,D4经T2的集电极和T5的基极提供了一条通路,一是为了加快负载电容的放电速度,二是为了加速T5的导通过程。
另外,D3经T2的集电极为T4的基极提供了一条放电通路,加快了T4的截止过程。
2. 为降低功耗,提高了电路中各电阻的阻值,将电阻R5原来接地的一端改接到输出端,以减小T3导通时电阻R5上的功耗。
题2.3.1 答:A。
题2.3.2 答:A。
题2.3.3 答:A。
题2.3.4 答:导通。
题2.3.5 答:B、C。
思考题:题2.4.1 答:(A)分流。
题2.4.2 答:(B) 内部电阻和容性负载。
题2.4.3 答:(B) 3.3V;(C)5V;(D) 30V。
题2.4.4 答:CMOS反相器和CMOS传输门。
题2.4.5 答:加入缓冲器保证输出电压不抬高或者降低,正逻辑变负逻辑或者相反,与非变成或非,或者或非变为与非。
题2.4.6 答:(C)低、高。
题2.4.7答:(A) OD门;(B) OC门;(C)三态门。
16题2.4.8 答:(A)驱动大负载;(B)电平移位。