高一数学必修二第四章圆与方程基础练习题及答案
- 格式:doc
- 大小:331.64 KB
- 文档页数:4
高中数学人教版必修2 第四章圆与方程 4.1.2圆的一般方程一、单选题1. 圆的圆心和半径分别为()A. B. C. D.2. 若方程表示圆,则实数的取值范围是()A. B. C. D.3. 方程x2+y2+4x−2y+5=0表示的曲线是()A.两直线B.圆C.一点D.不表示任何曲线4. 如果方程x2+y2+Dx+Ey+F=0(D2+E2−4F>0)所表示的曲线关于y=x对称,则必有()A.D=EB.D=FC.F=ED.D=E=F5. 两圆x2+y2−4x+6y=0和x2+y2−6x=0的圆心连线方程为( )A.x+y+3=0B.2x−y−5=0C.3x−y−9=0D.4x−3y+7=06. 若圆x2+y2+Dx+Ey+F=0与x轴切于原点,则( )A.D=0,E=0,F≠0B.F=0,D≠0,E≠0C.D=0,F=0,E≠0D.E=0,F=0,D≠07. 若圆x2+y2−2ax+3by=0的圆心位于第三象限,那么直线x+ay+b=0一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限参考答案与试题解析高中数学人教版必修2 第四章圆与方程 4.1.2圆的一般方程一、单选题1.【答案】C【考点】二次函数的应用函数的最值及其几何意义勾股定理【解析】√42+(−6)2+12=4.故选C.由圆的一般方程可知圆心坐标为(−2,3)半径r=12【解答】此题暂无解答2.【答案】A【考点】幂函数的概念、解析式、定义域、值域圆的标准方程二次函数的应用【解析】二元二次方程表示圆的充要条件是D2++2−4F>>,由此得出k的取值范围.详解:二元二次方程表示圆的充要条件是D2+E2−4F>0⇒16+4−20k>0,所以(k∈(−∞,1).故选A.【解答】此题暂无解答3.【答案】C【考点】曲线与方程直线与圆的位置关系圆的一般方程【解析】原方程变形为(x+2)2+(y−1)2=0,所以方程表示的曲线是一个点(−2,1),故选C.【解答】此题暂无解答4.【答案】A【考点】圆的一般方程直线与圆的位置关系关于点、直线对称的圆的方程【解析】由题知圆心(−D2,−E2)在直线y=x二,即−E2=−D2.D=E.故选A.【解答】此题暂无解答5.【答案】C【考点】圆的一般方程直线与圆的位置关系圆的切线方程【解析】两圆的圆心分别为(2,−3),(3.0),直线方程为y=3(x−3),即3x−y−9=0,故选C.【解答】此题暂无解答6.【答案】C【考点】圆的一般方程圆的标准方程直线与圆的位置关系【解析】点(0,0)在圆上,代入圆的方程可得F=0.因为圆x2+y2+D加+5y+F=0与x轴切于原点,所以圆心的横坐标为0,即−D2=0,D=0.由1D2+[2−4F>0,可得E2> 0,∴E≠0,故选C.【解答】此题暂无解答7.【答案】D【考点】圆的一般方程直线与圆的位置关系直线和圆的方程的应用【解析】圆x2+y2−2ax+3by=0的圆心为(a,−32b),则a<0,b>0.直线y=−1ax−ba,其斜率k=−1a >0,在y轴上的截距为−ba>0,所以直线不经过第四象限,故选D.【解答】此题暂无解答。
第四章 圆与方程§4.1 圆的方程4.1.1 圆的标准方程一、基础过关1.(x +1)2+(y -2)2=4的圆心与半径分别为( )A .(-1,2),2B .(1,-2),2C .(-1,2),4D .(1,-2),42.点P (m 2,5)与圆x 2+y 2=24的位置关系是( )A .在圆内B .在圆外C .在圆上D .不确定3.圆的一条直径的两个端点是(2,0),(2,-2),则此圆的方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x +2)2+(y +1)2=14.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离为( )A.12B.32C .1 D. 3 5.圆O 的方程为(x -3)2+(y -4)2=25,点(2,3)到圆上的最大距离为________. 6.圆(x -3)2+(y +1)2=1关于直线x +2y -3=0对称的圆的方程是________________. 7.求满足下列条件的圆的方程:(1)经过点P (5,1),圆心为点C (8,-3);(2)经过点P (4,2),Q (-6,-2),且圆心在y 轴上.8.求经过A (6,5),B (0,1)两点,并且圆心在直线3x +10y +9=0上的圆的方程. 二、能力提升9.方程y =9-x 2表示的曲线是( )A .一条射线B .一个圆C .两条射线D .半个圆 10.若直线y =ax +b 通过第一、二、四象限,则圆(x +a )2+(y +b )2=1的圆心位于( )A .第一象限B .第二象限C .第三象限D .第四象限11.如果直线l 将圆(x -1)2+(y -2)2=5平分且不通过第四象限,那么l 的斜率的取值范围是________.12.平面直角坐标系中有A (0,1),B (2,1),C (3,4),D (-1,2)四点,这四点能否在同一个圆上?为什么? 三、探究与拓展13.已知点A (-2,-2),B (-2,6),C (4,-2),点P 在圆x 2+y 2=4上运动,求|P A |2+|PB |2+|PC |2的最值.答案1.A 2.B 3.B 4.A 5.5+ 26.⎝⎛⎭⎫x -1952+⎝⎛⎭⎫y -352=1 7.解 (1)圆的半径r =|CP |=(5-8)2+(1+3)2=5,圆心为点C (8,-3),∴圆的方程为(x -8)2+(y +3)2=25. (2)设所求圆的方程是x 2+(y -b )2=r 2. ∵点P 、Q 在所求圆上,依题意有⎩⎪⎨⎪⎧16+(2-b )2=r 2,36+(2+b )2=r 2,⇒⎩⎨⎧r 2=1454,b =-52.∴所求圆的方程是x 2+⎝⎛⎭⎫y +522=1454. 8.解 由题意知线段AB 的垂直平分线方程为3x +2y -15=0, ∴由⎩⎪⎨⎪⎧3x +2y -15=0,3x +10y +9=0,解得⎩⎪⎨⎪⎧x =7,y =-3.∴圆心C (7,-3),半径r =|AC |=65. ∴所求圆的方程为(x -7)2+(y +3)2=65. 9.D 10.D 11.[0,2]12.解 能.设过A (0,1),B (2,1),C (3,4)的圆的方程为(x -a )2+(y -b )2=r 2.将A ,B ,C 三点的坐标分别代入有 ⎩⎪⎨⎪⎧a 2+(1-b )2=r 2,(2-a )2+(1-b )2=r 2,(3-a )2+(4-b )2=r 2,解得⎩⎪⎨⎪⎧a =1,b =3,r = 5.∴圆的方程为(x -1)2+(y -3)2=5. 将D (-1,2)代入上式圆的方程,得 (-1-1)2+(2-3)2=4+1=5, 即D 点坐标适合此圆的方程. 故A ,B ,C ,D 四点在同一圆上. 13.解 设P (x ,y ),则x 2+y 2=4.|P A |2+|PB |2+|PC |2=(x +2)2+(y +2)2+(x +2)2+(y -6)2+(x -4)2+(y +2)2=3(x 2+y 2)-4y +68=80-4y . ∵-2≤y ≤2,∴72≤|P A |2+|PB |2+|PC |2≤88.即|PA |2+|PB |2+|PC |2的最大值为88,最小值为72.4.1.2 圆的一般方程一、基础过关1.方程x 2+y 2-x +y +m =0表示一个圆,则m 的取值范围是( )A .m ≤2B .m <12C .m <2D .m ≤122.设A ,B 为直线y =x 与圆x 2+y 2=1的两个交点,则|AB |等于( )A .1B. 2C. 3D .23.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程是( ) A .x +y -3=0 B .x -y -3=0 C .2x -y -6=0D .2x +y -6=04.已知圆x 2+y 2-2ax -2y +(a -1)2=0(0<a <1),则原点O 在( )A .圆内B .圆外C .圆上D .圆上或圆外5.如果圆的方程为x 2+y 2+kx +2y +k 2=0,那么当圆面积最大时,圆心坐标为________. 6.已知圆C :x 2+y 2+2x +ay -3=0(a 为实数)上任意一点关于直线l :x -y +2=0的对称点都在圆C 上,则a =________.7.已知圆的方程为x 2+y 2-6x -6y +14=0,求过点A (-3,-5)的直线交圆的弦PQ 的中点M 的轨迹方程.8.求经过两点A (4,2)、B (-1,3),且在两坐标轴上的四个截距之和为2的圆的方程. 二、能力提升9.若圆M 在x 轴与y 轴上截得的弦长总相等,则圆心M 的轨迹方程是( )A .x -y =0B .x +y =0C .x 2+y 2=0D .x 2-y 2=0 10.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( ) A .x +y -2=0 B .y -1=0 C .x -y =0D .x +3y -4=011. 已知圆的方程为x 2+y 2-6x -8y =0,设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为________.12.求一个动点P 在圆x 2+y 2=1上移动时,它与定点A (3,0)连线的中点M 的轨迹方程. 三、探究与拓展13.已知一圆过P (4,-2)、Q (-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.答案1.B 2.D 3.B 4.B 5.(0,-1) 6.-27.解 设所求轨迹上任一点M (x ,y ),圆的方程可化为(x -3)2+(y -3)2=4.圆心C (3,3). ∵CM ⊥AM , ∴k CM ·k AM =-1, 即y -3x -3·y +5x +3=-1, 即x 2+(y +1)2=25.∴所求轨迹方程为x 2+(y +1)2=25(已知圆内的部分). 8.解 设圆的一般方程为x 2+y 2+Dx +Ey +F =0, 令y =0,得x 2+Dx +F =0,所以圆在x 轴上的截距之和为x 1+x 2=-D ; 令x =0,得y 2+Ey +F =0,所以圆在y 轴上的截距之和为y 1+y 2=-E ;由题设,得x 1+x 2+y 1+y 2=-(D +E )=2,所以D +E =-2.① 又A (4,2)、B (-1,3)两点在圆上, 所以16+4+4D +2E +F =0,② 1+9-D +3E +F =0,③由①②③可得D =-2,E =0,F =-12, 故所求圆的方程为x 2+y 2-2x -12=0. 9.D 10.A12.解 设点M 的坐标是(x ,y ),点P 的坐标是(x 0,y 0).由于点A 的坐标为(3,0)且M 是线段AP 的中点,所以x =x 0+32,y =y 02,于是有x 0=2x -3,y 0=2y . 因为点P 在圆x 2+y 2=1上移动,所以点P 的坐标满足方程x 20+y 20=1,则(2x -3)2+4y 2=1,整理得⎝⎛⎭⎫x -322+y 2=14.所以点M 的轨迹方程为⎝⎛⎭⎫x -322+y 2=14. 13.解 设圆的方程为:x 2+y 2+Dx +Ey +F =0,①将P 、Q 的坐标分别代入①,得⎩⎪⎨⎪⎧4D -2E +F =-20 ②D -3E -F =10 ③ 令x =0,由①得y 2+Ey +F =0,④由已知|y 1-y 2|=43,其中y 1,y 2是方程④的两根. ∴(y 1-y 2)2=(y 1+y 2)2-4y 1y 2 =E 2-4F =48.⑤解②③⑤联立成的方程组, 得⎩⎪⎨⎪⎧ D =-2E =0F =-12或⎩⎪⎨⎪⎧D =-10E =-8F =4.故所求方程为:x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0.。
人教版高一数学必修二第四章 圆与方程 教材配套检测题一、选择题1. 设圆心为1C 的圆方程为()()22539x y -+-=,圆心为2C 的圆的方程为224290x y x y +-+-=,则这两个圆的圆心距为.5A .25B .10C .D 2. 空间直角坐标系中,点()3,4,0A -与点()2,1,6B -间的距离为.A .1B .9C D 3. 若直线1ax by +=与圆221x y +=有两个公共点,则点(),P a b 与圆的位置关系为.A 在圆上 .B 在圆外 .C 在圆内 .D 以上皆有可能4. 在圆224x y +=上,与直线:43120l x y +-=的距离最小的点的坐标为.A 86,55⎛⎫ ⎪⎝⎭ 86.,55B ⎛⎫- ⎪⎝⎭ 86.,55C ⎛⎫- ⎪⎝⎭ 86.,55D ⎛⎫-- ⎪⎝⎭5. 方程()222200x y ax ay a ++-=≠表示的圆.A 关于x 轴对称 .B 关于y 轴对称 .C 关于直线0x y -=对称 .D 关于直线0x y +=对称6. 若方程()222220a x a y ax a ++++=表示圆,则a 的值为.A 1a =或2a =- .B 2a =或1a =- .C 1a =- .D 2a =二、填空题7. 直线1:2340l x y -+=,2:3210l x y -+=的交点P 与圆()()22245x y -+-=的关系是 . 8. 经过原点O 作圆()2264x y -+=的切线,切线长是 .9. 经过点()2,3P -作圆2220x y +=的弦AB ,且使得点P 平分AB ,则弦AB 所在直线的方程是 .10. 点P 在圆221:84110C x y x y +--+=上,点Q 在圆222:4210C x y x y ++++=上,则PQ 的最小值是 . 三、解答题11. 已知三条直线1:20l x y -=,2:10l y +=,3:210l x y +-=两两相交,先画出图形,再求过这三个交点的圆的方程.12. 在ABC ∆中,已知2BC =,且ABm AC=,求点A 的轨迹方程,并说明轨迹是什么图形.13. 由一点()3,3A -发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆22:4C x y x +-470y -+=相切,求光线l 所在直线方程.14. 求过直线:240l x y ++=与圆22:2410C x y x y ++-+=的交点,并且有最小面积的圆'C 的方程.参考答案一、选择题 15ADCAD - 6.C 二、填空7. 解析:解方程组{23403210x y x y -+=-+=,得{12x y ==.把()1,2代入圆C 方程左边,得 ()()2212245-+-=,所以两直线交点在圆C 上. 8.=9. 解析:把点P 坐标代入圆2220x y +=的左边, 得()22231320+-=<,所以点P 在圆O 内. 经过点P 被点P 平分的圆的弦与OP 垂直. ∵ 32OP k =-, ∴ 弦AB 所在直线的斜率是23, 弦AB 所在的直线方程是 ()2323y x +=-,即23130x y --=. 10. 解析:把圆1C 、圆2C 的方程都化为标准方程形式,得()()22429x y -+-=,()()22214x y +++=圆1C 的圆心坐标为()4,2,半径长为3; 圆2C 的圆心坐标为()2,1--,半径长为2.=所以,PQ 的最小值是5. 三、解答题11. 解析:2l 平行于x 轴,1l 与3l 互相垂直. 三交点A 、B 、C 构成直角三角形, 经过A 、B 、C 三点的圆就是以AB 为直径的圆. 解方程组{2010x y y -=+= 得{21x y =-=-∴ 点A 的坐标为()2,1--,解方程组{21010x y y +-=+= 得 {11x y ==-∴ 点B 的坐标为()1,1-.线段AB 的中点坐标为1,12⎛⎫-- ⎪⎝⎭,又3AB =.∴ 所求圆的标准方程为()2219124x y ⎛⎫+++= ⎪⎝⎭. 12. 如图,以直线BC 为x 轴、线段BC 的中点为原点,建立直角坐标系.则有()1,0B -,()1,0C ,设点A 的坐标为(),x y , 由ABm AC=整理得 ()()()()222222112110m x m y m x m -+--++-=. ① 当21m =时,1m =,方程是0x =,轨迹是y 轴.当21m ≠时,对①式配方得 ()22222221411m m x y m m ⎛⎫+-+= ⎪-⎝⎭-. 此时点A 的轨迹是以221,01m m ⎛⎫+ ⎪-⎝⎭为圆心,221m m -为半径的圆(除去圆与BC 的交点).13. 解法一:因为点()3,3A -关于x 轴的对称点为()'3,3A --,设直线l 的斜率为k ,则过点'A 的直线l 的方程为()33y k x +=-+,将()33y k x =-+-代入圆方程,整理得()()()22221235293080k xk k x k k +++-+++=若直线l 与圆相切,则0∆=,即 21225120k k ++=,解之得 34k =-或43k =-. 所以,所求直线l 的方程为()3334y x -=-+或()4333y x -=-+即 3430x y +-=或4330x y ++=.解法二:配方得圆的标准方程为()()22221x y -+-=. 设光线l 所在直线方程为()33y k x -=+, ∵ 0k ≠,令0y =得 ()31k x k -+=,∴ 反射点为()31,0k k ⎛-+⎫ ⎪⎝⎭. 由于光线的入射角等于反射角,∴ 反射光线'l 所在直线方程为()31k y k x k ⎡+⎤=-+⎢⎥⎣⎦即 ()310kx y k +++=. 又∵ 直线l 与圆相切, ∴1=,整理得 21225120k k ++=.解之得 34k =- 或 43k =-.所以,所求直线l 的方程为()3334y x -=-+或()4333y x -=-+即 3430x y +-=或4330x y++=.14. 解析:方法一经配方,圆C 的方程可化为()()22124x y ++-=, 设直线l 与圆C 相交于A 、B 两点,D 为线段AB 的中点, 则直线CD 的方程为250x y -+=. 解方程组 {250240x y x y -+=++= 得135x =-,65y =, ∴ 点D 坐标为136,55⎛⎫- ⎪⎝⎭.∴ CD =AD ==∴ 以D 为圆心、AB 为直径的圆是面积最小的圆,其方程为221364555x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭.解法二:设所求圆的方程为()()22241240x y x y x y λ++-++++=,配方得 ()222451616124x y λλλλ--+⎛⎫⎡++⎤++= ⎪⎣⎦⎝⎭. 半径长为r ,则222516165844455r λλλ-+⎛⎫==-+ ⎪⎝⎭.当85λ=时,2r 有最小值45,圆面积有最小值245R ππ=. 此时圆'C 的方程为 222612370555x y x y ++-+=. 说明:数形结合,经过两圆的交点且面积最小的圆就是以公共弦为直径的圆. 直线l 就是圆C 与圆'C 的公共弦所在的直线.。
圆与圆的方程同步训练一.选择题.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1. 若方程022=++++k y x y x 表示一个圆,则k 的取值范围是 A .21>k B . 21≤k C . 210<<k D . 21<k 2. 已知圆02222=++++k y kx y x ,当圆的面积最大时,圆心的坐标是 A .)1,1(- B .)1,1(- C .)0,1(- D .)1,0(-3. 已知点)2,1(P 和圆C : 02222=++++k y kx y x ,过点P 作圆C 的切线有两条,则k 的取值范围是 A .)332,(-∞ B .)332,332(- C .R D . )0,332-( 4. 已知点()()2,0,0,2B A -,点C 是圆0222=-+x y x 上任意一点,则ABC ∆面积的最大值是A .6B .8C .23-D .23+5. 若P 是圆C :1)3()3(22=-++y x 上任一点,则点P 到直线1-=kx y 距离的最大值A .4B .6C .123+D .101+ 6. 当点P 在圆122=+y x 上运动时,连接它与定点)0,3(Q ,线段PQ 的中点M 的轨迹方程是A .1)3(22=++y x B .1)3(22=+-y x C .14)32(22=+-y x D .14)32(22=++y x7. 若圆C :0104422=---+y x y x 上至少有三个不同点到直线l :0=+-m y x 的距离为22,则m 的取值范围是A .]22,22[-B .)22,22(-C .]2,2[-D .)2,2(- 8. 直线1+=kx y 与圆4)1()2(22=-+-y x 相交于P 、Q 两点.若22≥PQ ,则k 的取值范围是 A . ]0,43[-B .]1,1[-C . ]33,33[-D .]3,3[- 9. 直线b x y +=与曲线21y x -=有且只有一个交点,则b 的取值范围是 A . 2-=b B .11≤≤-b C .211-=≤<-b b 或 D .22≤≤-b10. 在矩形ABCD 中,21==AD AB ,,动点P 在以点C 为圆心且与BD 相切的圆上.若AD AB AP μλ+=,则μλ+的最大值为A . 3B . 22C .5 D . 2二.填空题.11. 设直线l 过点)0,2(-,且与圆122=+y x 相切,则直线l 的斜率是_______. 12. 两圆04422=-++y x y x 和08222=-++x y x 相交于两点N M ,,则线段MN 的长为 .13. 直线l 过点)2,0(,被圆C : 096422=+--+y x y x 截得的弦长为32,则直线l的方程是 .三.解答题. 解答应写出文字说明、证明过程或演算步骤. 14. 已知圆心为C 的圆经过三个点)(0,0O 、)4,2(-A 、)1,1(B . (Ⅰ)求圆C 的方程; (Ⅱ)若直线l 的斜率为34-,在y 轴上的截距为1-,且与圆C 相交于Q P ,两点,求OPQ ∆的面积.15.已知圆C 经过)3,1(-P , )2,2(-Q ,圆心C 在直线01=-+y x 上,过点)1,0(A ,且斜率为k 的直线l 交圆C 于M 、N 两点. (Ⅰ)求圆C 的方程;(Ⅱ)若O 为坐标原点,且12=⋅OM ,求直线l 的方程.16.已知过点)4,0(A ,且斜率为k 的直线与圆C : 1)3()2(22=-+-y x ,相交于不同两点M 、N .(Ⅰ)求实数k 的取值范围; (Ⅱ)求证: →→⋅AN AM 为定值;(Ⅲ)若O 为坐标原点,问是否存在以MN 为直径的圆恰过点O ,若存在则求k 的值,若不存在,说明理由.17.在平面直角坐标系xoy 中,已知直线0103=--y x 与圆O :)0(222>=+r r y x 相切.(Ⅰ)直线l 过点)1,2(且截圆O 所得的弦长为62,求直线l 的方程;(Ⅱ)已知直线3=y 与圆O 交于B A ,两点,P 是圆上异于B A ,的任意一点,且直线BP AP ,与y 轴相交于N M ,点.判断点N M ,的纵坐标之积是否为定值?若是,求出该定值;若不是,说明理由.圆与圆的方程专题训练参考答案11.33±12.5512 13.2234=+=y x y 或 1.D 【解析】方程022=++++k y x y x 表示一个圆,需满足0411>-+k ,∴21<k .. 2.D 【解析】当圆的半径最大时,圆的面积最大,已知圆的一般方程02222=++++k y kx y x ,其圆心为)1,2--k( ,半径为2342k r -=, 可知当0=k 时,r 取最大值,即圆的面积最大时,圆心的坐标为)1,0(-.3.B 【解析】由于过P 可以做圆的两条切线,故P 点在圆外.将P 点的坐标代入圆的方程得, 04412>++++k k ,即092>++k k ,由于其判别式为负数,故恒成立. 另外二元二次方程是圆的方程,要满足0422>-+F E D ,即042222>-+k k ,即342<k ,解得 ⎝⎛⎪⎪⎭⎫-∈332,332k . 4.D 【解析】因为AB 为定值,所以当C 到直线AB 距离最大时,ABC ∆面积取最大值,因为点C 是圆0222=-+x y x ,即1)1(22=+-y x 上任意一点,所以C 到直线AB 距离最大为圆心)0,1(到直线AB : 02=+-y x 距离加半径1,即122312201+=++-,所以max )(ABC S ∆=2322)1223(21+=⨯+. 5.B 【解析】由题得直线过定点)1,0(-,所以圆心)3,3(-到定点的距离为5)13()03(22=++--, 所以点P 到直线1-=kx y 距离的最大值为615=+.6.C 【解析】设动点),(00y x P ,PQ 的中点为),(y x M ,得⎪⎩⎪⎨⎧=+=22300y y x x ,解得⎩⎨⎧=-=yy x x 23200,∵点),(00y x P 在圆122=+y x 上运动,∴1)2()32(22=+-y x ,化简得14)32(22=+-y x . ∴所求动点M 的轨迹方程是14)32(22=+-y x .7.C 【解析】圆C 化为标准方程得18)2()2(22=-+-y x , 因为圆C 上至少有三个不同点到直线l :0=+-m y x 的距离为22,所以圆心到直线距离不大于22223=-,即2222≤+-m,所以22≤≤-m .8.B 【解析】若2≥PQ , 则圆心)1,2(到直线1+=kx y 的距离2)222(42=-≤d , 即2122≤+kk , 解得]1,1[-∈k .9.C 【解析】因为曲线方程表示一个在y 轴右边的单位圆的一半,则圆心坐标为)0,0(,半径1=r ,画出相应的图形,如图所示:∵当直线b x y +=过)1,0(-时,把)1,0(-代入直线方程得1-=b , 当直线b x y +=过)1,0(时,把)1,0(代入直线方程得:1=b ,∴当11≤<-b 时,直线b x y +=与半圆只有一个交点,又直线b x y +=与半圆相切时,圆心到直线的距离r d =,即12=b ,解得: 2=b (舍去)或2-=b ,综上,直线与曲线只有一个交点时, b 的取值范围为211-=≤<-b b 或. 10.A 【解析】如图所示,建立平面直角坐标系.设)1,0(A ,)0,0(B ,)0,2(C ,)1,2(D ,),(y x P ,易得圆的半径52=r ,即圆C 的方程是54)2(22=+-y x , )1,(-=y x ,),1,0(-=)0,2(=,若满足μλ+=, 则⎩⎨⎧-=-=λμ12y x ,2x =μ,y -=1λ,所以12+-=+y xμλ,设12+-=y x z ,即012=-+-z y x ,点),(y x p 在圆54)2(22=+-y x 上, 所以圆心)0,2(到直线012=-+-z y x的距离r d ≤,即521412≤+-z ,解得31≤≤z ,所以z 的最大值是3,即μλ+的最大值是3.11.33±【解析】由圆的方程知圆心为)0,0(,半径为1,由已知得直线的斜率存在, 故设直线方程: )2(0+=-x k y ,即02=+-k y kx∵直线l 过点)0,2(-,且与圆122=+y x 相切, ∴圆心到直线的距离112)1(2222=+=-+=k k k k d ,解得33±=k . 12.5512【解析】∵两圆为04422=-++y x y x ①,08222=-++x y x ②, ①﹣②可得:042=+-y x , ∴两圆的公共弦所在直线的方程是042=+-y x , ∵04422=-++y x y x 的圆心坐标为)(2,2-,半径为22, 则圆心到公共弦的距离为5522144222=++--=d , 公共弦长为5512)552()22(222=-. 13.2234=+=y x y 或【解析】因为直线l 被圆C :096422=+--+y x y x , 即4)3()2(22=-+-y x 截得的弦长为32,所以圆心到直线距离为1)3(42=-,设直线l 的方程为2+=kx y ,(斜率不存在时不满足题意),则112322=++-kk ,解得 0=k 或34=k ,即直线l 的方程是234+=x y 或2=y . 14.【解析】(Ⅰ)设所求圆的方程为022=++++F Ey Dx y x ,则⎪⎩⎪⎨⎧=++++=++-+=0110421640F E D F E D F ,解得2=D ,4-=E , 0=F . 所以圆C 的方程为04222=-++y x y x ;(Ⅱ)圆04222=-++y x y x 的圆心坐标为)2,1(-C ,半径为5.直线l 的方程为134--=x y ,即0334=++y x .圆心到直线l 的距离1343324122=++⨯+⨯-=d ,41)5(22=-=PQ ,O 到直线l 的距离5334322=+=d , OPQ ∆∴的面积5645321=⨯⨯=S . 15.【解析】(Ⅰ)设圆M 的方程为222)()(r b y a x =-+-,则依题意,得⎪⎩⎪⎨⎧=-+=-+=-+01)2()-2-)3()-1-222222b a r b a r b a ((, 解得⎪⎩⎪⎨⎧==-=132r b a , 所以圆M 的方程为1)3()2(22=-++y x ; (Ⅱ)依题意可知,直线l 的方程为1+=kx y ,设),(11y x M , ),(22y x N ,将1+=kx y 代入1)3()2(22=-++y x 并整理得:07)1(4)1(22=+-++x k x k ,所以2211)1(4k k x x +-=+,22117k x x +=⋅, 所以1281)1(41)()1(2212122121=++-=++++=+=⋅kk k x x k x x k y y x x , 即41)1(42=+-kk k ,解得1-=k ; 又当1-=k 时0>∆,满足题意; 所以1-=k ,直线l 的方程为1+-=x y .16.【解析】(Ⅰ)(法一)设直线方程为4+=kx y ,即04=+-y kx ,点)3,2(C 到直线的距离为1112143222<++=++-=k k k k d ,解得034<<-k . (法二)设直线方程为4+=kx y ,联立圆C 的方程得04)24-)1(22=+-+x k x k (,此方程有两个不同的实根,所以0)1(44)2-422>+⨯-=∆k k (,解得034<<-k ;(Ⅱ)设直线方程为4+=kx y ,联立圆C 的方程得04)24-)1(22=+-+x k x k (, 设),(11y x M ,),(22y x N ,则221124k k x x +-=+,22114k x x +=⋅, 则4)1(),(),()4,)4,(21222112211=+=⋅=-⋅-=⋅→→x x k kx x kx x y x y x AN AM (; (Ⅲ)假设存在满足条件的直线,则002121=+⇒=⋅⇒⊥→→y y x x NO MO NO MO ,16)(4)4)(4(212122121+++=++=⋅x x k x x k kx kx y y ,得016)(4)1(21212=++++x x k x x k ,从而得05432=++k k ,因为06016<-=∆,此方程无实根,所以不存在以MN 为直径的圆过原点. 17.【解析】(Ⅰ)∵直线0103=--y x 与圆O : )0(222>=+r r y x 相切, ∴圆心O 到直线0103=--y x 的距离为109110=+=r .记圆心到直线l 的距离为d ,∴2610=-=d当直线l 与x 轴垂直时,直线l 的方程为2=x ,满足题意; 当直线l 与x 轴不垂直时,设直线l 的方程)2(1-=-x k y ,即0)21(=-+-k y kx . ∴21212=+-=k kd ,解得43-=k ,此时直线l 的方程为01043=-+y x .综上,直线l 的方程为2=x 或01043=-+y x ; (Ⅱ)点N M ,的纵坐标之积为定值10.设),(11y x P ,∵直线3=y 与圆O 交于B A ,两点,不妨取)(3,1A ,)3,1(-B ,∴直线PB PA ,的方程分别为)1(13311---=-x x y y ,)1(13311++-=-x x y y .— (圆与圆的方程) — 令0=x ,得)13,0(111--x y x M ,)13,0(111++x y x N , 则1-91313212121111111-=++⋅--=⋅x y x x y x x y x y y N M (*). ∵点),(11y x P 在圆C 上,∴ 102121=+y x ,即212110x y -=,代入(*)式,得101)x -(10-9212121=-=⋅x x y y N M 为定值.。
高中数学必修二《圆与方程》基础练习题(含答案解析)1. 已知圆:,为坐标原点,则以为直径的圆的方程A.B.C.D.2. 直线被圆截得的弦长为()A. B. C. D.3. 已知点,则点关于原点对称的点的坐标为()A. B.C. D.4. 过点以及圆与圆交点的圆的方程是()A.B.C.D.5. 圆:,则A.是圆心B.在圆外C.在圆内D.在圆上6. 两个圆与的位置关系是()A.外切B.内切C.相交D.外离7. 在空间直角坐标系中点到坐标原点的距离为()A. B. C. D.8. 圆的半径等于()A. B. C. D.9. 已知,,作直线,使得点,到直线的距离均为,且这样的直线恰有条,则的取值范围是A. B. C. D.10. 圆心坐标为,半径等于的圆的方程是()A.B.C.D.11. 由动点分别引圆:和圆:的切线和(、为切点),满足,则动点的轨迹方程是________.12. 求过两圆与的交点和点的圆的方程________.13. 到两定点,的距离的比为的点的轨迹方程为________.14. 已知两圆,相交于,两点,则直线的方程为________.15. 若方程为圆,则应满足的条件是________.16. 已知圆与圆:交于,两点,则直线的方程为________.17. 若方程表示圆,则实数的取值范围为________.18. 关于直线对称的圆的方程是________.19. 圆心在轴正半轴上,半径为,且与直线相切的圆的方程为________.20. 圆的半径等于________.21. 将下列圆的方程化为标准方程,并写出圆心和半径.(1)(2).22. 如图,已知圆和定点,由圆外一点向圆引切线,切点为,且有.求点的轨迹方程;求的最小值;以为圆心作圆,使它与圆有公共点,试在其中求出半径最小的圆的方程.23. 求直线被圆所截得的弦长.24. 设点与,求以为直径的圆的标准方程.25. (1)求过点且与圆同心的圆的方程, 25.(2)求圆过点的切线方程.26. 已知圆的半径为,点为该圆上的三点,且,则的取值范围是________.27. 已知两圆与.(1)判断两圆的位置关系;(2)求两圆的公切线.28. 求直线被圆所截得的弦的长.29. 如图点,在四面体中,平面,,,,,分别是,的中点,求,,,这四点的坐标.30. 已知两圆..(1)取何值时两圆外切?(2)取何值时两圆内切?(3)当时,求两圆的公共弦所在直线的方程和公共弦的长.参考答案一、选择题1.C2.C3.D4.A5.C6.C7.D8.B9.B 10.C二、填空题11.12.13.14.15.,且16.17.18.19.20.三、解答题21.解:(1)化为:,圆的圆心,半径为:;(2).化为:,圆的圆心,半径为:;22.解:连接,,则为直角三角形,又,所以,所以,故.由,得.以为圆心的圆与圆有公共点,半径最小时为与圆相切的情形,而这些半径的最小值为圆到直线的距离减去圆的半径,圆心为过原点且与垂直的直线与的交点,所以,又,联立得.所以所求圆的方程为.23.解:化为标准方程为:,则圆心坐标为,半径,圆心到直线的距离所以,则所以所求弦长为.24.解:由题意可得圆心为的中点,半径为,故要求的圆的方程为.25.解:(1)圆可化为:,∴圆心为,即圆的圆心为;…又∵圆过点,∴圆的半径;…∴所求圆的方程为;…(2)∵在圆上,∴过点的切线有一条;又∵直线的斜率是,∴过点的切线的斜率为,…∴所求的切线方程为,即.…26.解:建立如图所示的平面直角坐标系,则,,,又,所以,即所以又,所以,又则,所以故答案为:.27.解:(1)两圆与的圆心坐标分别为,,半径分别为,,∵,满足,∴两圆相交;(2)设两圆的公切线方程为,则,解得:或.∴两圆的公切线方程为或.28.解:圆即圆,表示以为圆心、半径等于的圆.圆心到直线的距离,故弦长为.29.解:∵点,∴,又∵平面,,∴,又∵,,∴,∴到轴,轴距离均为:,又由,分别是,的中点,∴点坐标为,点坐标为,点坐标为,点坐标为.30.解:(1)由已知可得两个圆的方程分别为、,两圆的圆心距,两圆的半径之和为,由两圆的半径之和为,可得.(2)由两圆的圆心距等于两圆的半径之差为,即,可得(舍去),或,解得.(3)当时,两圆的方程分别为、,把两个圆的方程相减,可得公共弦所在的直线方程为.第一个圆的圆心到公共弦所在的直线的距离为,可得弦长为.。
第四章 圆和方程 [基础训练A 组]一、选择题1.A (,)x y 关于原点(0,0)P 得(,)x y --,则得22(2)()5x y -++-=2.A 设圆心为(1,0)C ,则,1,1,12CP AB AB CP k k y x ⊥=-=+=-3.B 圆心为max (1,1),1,1C r d ==4.A 直线20x y λ-+=沿x 轴向左平移1个单位得220x y λ-++=圆22240x y x y ++-=的圆心为(1,2),3,7C r d λλ-====-=或5.B 两圆相交,外公切线有两条6.D2224x y -+=()的在点)3,1(P 处的切线方程为(12)(2)4x --= 二、填空题1.1 点(1,0)P -在圆032422=+-++y x y x 上,即切线为10x y -+=2.224x y += 2OP =3. 22(2)(3)5x y -++= 圆心既在线段AB 的垂直平分线即3y =-,又在270x y --=上,即圆心为(2,3)-,r =4.5 设切线为OT ,则25OP OQ OT ⋅==5. 当CP 垂直于已知直线时,四边形PACB 的面积最小三、解答题1.(1,1)到直线01=++y x 的距离而2d ==,min = 2.解:(1)(5)(2)(6)0x x y y +-+-+=得2244170x y x y +-+-=3.解:圆心显然在线段AB 的垂直平分线6y =上,设圆心为(,6)a ,半径为r ,则222()(6)x a y r -+-=,得222(1)(106)a r -+-=,而r =22(13)(1)16,3,5a a a r --+=== 22(3)(6)20x y ∴-+-=。
4.解:设圆心为(3,),t t 半径为3r t =,令d ==而22222,927,1r d t t t =--==±22(3)(1)9x y ∴-+-=,或22(3)(1)9x y +++=圆和方程 [综合训练B 组]一、选择题1.D22,4,0d a a a ==-===或2.D 弦长为4,1425S =⨯= 3.Ctan 4α==,相切时的斜率为4.D 设圆心为2234(,0),(0),2,2,(2)45a a a a x y +>==-+= 5.A 圆与y轴的正半轴交于k <<6.D得三角形的三边060的角二、填空题1. 22(3)(1)25x y -+-=,d r ===2. 3.相切或相交2≤=;另法:直线恒过(1,3),而(1,3)在圆上4.210,(1)x y x --=≠ 圆心为(21,),,(0)m m r m m +=≠,令21,x m y m =+=5.1 10115d r -=-= 三、解答题1.解:显然2x =为所求切线之一;另设4(2),420y k x kx y k -=--+-=32,,341004k x y ==-+= 2x ∴=或34100x y -+=为所求。
高一数学必修二第四章圆与方程练习题及答案高一数学(必修2)第四章圆与方程基础训练一、选择题1.圆(x+2)²+y²=5关于原点P(0,0)对称的圆的方程为()A。
(x-2)²+y²=5B。
x²+(y-2)²=5C。
(x+2)²+(y+2)²=5D。
x²+(y+2)²=52.若P(2,-1)为圆(x-1)²+y²=25的弦AB的中点,则直线AB 的方程是()A。
x-y-3=0B。
2x+y-3=0C。
x+y-1=0D。
2x-y-5=03.圆x²+y²-2x-2y+1=0上的点到直线x-y=2的距离最大值是()A。
2B。
1+√2C。
1-√2D。
1+2√24.将直线2x-y+λ=0,沿x轴向左平移1个单位,所得直线与圆x²+y²+2x-4y=0相切,则实数λ的值为()A。
-3或7B。
-2或8C。
2或10D。
1或115.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。
1条B。
2条C。
3条D。
4条6.圆x²+y²-4x=0在点P(1,3)处的切线方程为()A。
x+3y-2=0B。
x+3y-4=0C。
x-3y+4=0D。
x-3y+2=0二、填空题1.若经过点P(-1,0)的直线与圆x²+y²+4x-2y+3=0相切,则此直线在y轴上的截距是-2.2.由动点P向圆x²+y²=1引两条切线PA,PB,切点分别为A,B,∠APB=60,则动点P的轨迹方程为x²+y²-x=0.3.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,-2),则圆C的方程为(x-1)²+(y+1)²=4.4.已知圆(x-3)²+y²=4和过原点的直线y=kx的交点为P,Q,则OP·OQ的值为2.5.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x²+y²-2x-2y+1=0的切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值是3.三、解答题1.点P(a,b)在直线x+y+1=0上,求a²+b²-2a-2b+2的最小值。
新课标人教A版高中数学必修二第四章《圆与方程》课后训练题1.1.圆x2+y2+x-3y-=0的半径是________________【答案】2【解析】【分析】将圆的一般方程化为标准方程,从而可得结果.【详解】将圆的一般,化为标准方程为,可得圆的半径,故答案为2.【点睛】本题主要考查圆的一般方程化为标准方程,以及根据圆的标准方程求圆的半径,属于简单题.2.2.点P(5a+1,12a)在圆(x-1)2+y2=1的内部,则a的取值范围是_________【答案】【解析】【分析】由不等式,即可得结果.【详解】在圆内,所以,,,,故答案为.【点睛】本题主要考查点与圆的位置关系,意在考查灵活运用所学知识解决问题的能力,属于简单题.3.3.直线5x+12y-8=0和圆(x-1)2+(y+3)2=8的位置关系是_______________【答案】相离.【解析】【分析】利用点到直线距离公式求出圆心到直线的距离,与半径比较即可得结果.【详解】由可得,圆的圆心坐标为,圆的半径为,到直线的距离为,因为,所以直线与圆的位置关系是相离.故答案为相离.【点睛】本题主要考查直线与圆的位置关系,属于中档题. 解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系;二是直线方程与圆的方程联立,利用判别式来解答.4.4.已知圆C的半径为2,圆心在x轴的正半轴上,直线3x+4y+4=0与圆C相切,则圆C 的方程为_____________【答案】x2+y2-4x=0.【解析】设圆心坐标为,则圆方程为:(x−a)2+y2=4,根据点到直线的距离公式,得,解得a=2或(舍去),所以圆C的方程为:(x−2)2+y2=4,整理为一般方程为:.5.5.能够使得圆x2+y2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为( )A. 2B.C. 3D. 3【答案】C【解析】【分析】利用圆心到直线的距离大于1且小于3,列不等式求解即可.【详解】由圆的标准方程,可得圆心为,半径为2,根据圆的性质可知,当圆心到直线的距离大于1且小于3时,圆上有两点到直线的距离为1,由可得,经验证,,符合题意,故选C.【点睛】本题主要考查圆的标准方程,点到直线距离公式的距离公式以及圆的几何性质,意在考查数形结合思想的应用,属于中档题.6.6.若x2+y2+(λ-1)x+2λy+λ=0表示圆,则λ的取值范围为___________________【答案】λ>1或【解析】【分析】根据二元二次方程表示圆的条件可得,从而可得结果.【详解】根据二元二次方程表示圆的条件可得,,化为解得或,故答案为或.【点睛】本题主要考查圆的一般方程,属于基础题. 二元二次方程表示圆的充要条件是:.7.7.直线y=kx+2与圆x2+y2+2x=0只在第二象限有公共点,则k的取值范围是___________【答案】【解析】【分析】先作出圆的图象,再由直线过定点,根据两者交点只在第二象限,结合图象可得结论.【详解】画出直线与圆的图象,如图所示:直线与圆相切时,直线过时,,直线与圆只在第二象限有公共点,实数的取值范围是,故答案为.【点睛】本题主要考查直线与圆的位置关系,直线过定点问题、点到直线距离公式的应用以及数形结合思想的应用,属于中档题.8.8.圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差为____【答案】6.【解析】试题分析:将圆的方程变形为,可知圆心,半径.圆心到直线的距离,所以圆上的点到直线的最大距离与最小距离的差为.故C正确.考点:1点到线的距离;2圆的简单性质.【思路点睛】本题主要考查圆上的点到线的距离的最大最小值问题,难度一般.圆上的点为动点,到圆心的距离均等于半径,所以应将圆上的动点到定直线的距离问题先转化为圆心到定直线的距离的问题.由数形结合分析可知圆上的点到直线的最大距离为,最小距离为.9.9.两圆C1:x2+y2+4x-4y+7=0,C2:x2+y2-4x-10y+13=0的公切线的条数为____条【答案】3【解析】试题分析:圆O1:x2+y2+4x-4y+7=0可变为,圆心为,半径为;圆O2:x2+y2-4x-10y+13=0可变为,圆心为,半径为;所以,,所以两圆相切;所以与两圆都相切的直线有3条.故选B.考点:圆与圆的位置关系.10.10.已知圆C与圆(x-1)2+y2=1关于直线y=-x对称,则圆C的方程是__________【答案】【解析】【分析】设圆心关于直线对称点,根据垂直和中点在对称轴上这两个条件列方程求出的值,即得对称圆的圆心,再由半径等于1,求出圆的标准方程.【详解】圆圆心为,半径等于1,设圆心关于直线对称点,则有,且,解得,故点,由于对称圆的半径与圆的半径相等,故圆的方程为,故答案为.【点睛】本题主要考查圆的方程与性质解析几何中的轴对称问题,属于中档题. 解析几何中对称问题,主要有以下三种题型:(1)点关于直线对称,关于直线的对称点,利用,且点在对称轴上,列方程组求解即可;(2)直线关于直线对称,利用已知直线与对称轴的交点以及直线上特殊点的对称点(利用(1)求解),两点式求对称直线方程;(3)曲线关于直线对称,结合方法(1)利用逆代法求解.11.11.已知动点M到定点(8,0)的距离等于M到(2,0)的距离的2倍,那么点M的轨迹方程___________________________【答案】x2+y2=16【解析】【分析】设,由化简即可得结果.【详解】设,因为到定点的距离等于到的距离的2倍,所以,化简可得,故答案为.【点睛】本题主要考查直接法求轨迹方程、两点间的距离公式,属于难题. 求轨迹方程的常见方法有:①直接法,设出动点的坐标,根据题意列出关于的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把分别用第三个变量表示,消去参数即可;④逆代法,将代入.本题就是利用方法①求的轨迹方程的.12.12.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m 的距离为________【答案】4【解析】【分析】判断在圆上,求出直线的斜率,确定出切线的斜率,求出的方程,得出,根据直线与直线平行,利用平行线的距离公式求出与的距离即可.【详解】将代入圆方程左边得:,左边=右边,即在圆上,直线的斜率为,切线的斜率为,即直线的方程为,整理得:,直线与直线平行,,即,直线方程为,即,直线与的距离为,故答案为4.【点睛】本题主要考查直线与圆的位置关系,直线与直线的位置关系以及两平行线的距离公式,属于中档题.对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1);(2),这类问题尽管简单却容易出错,特别是容易遗忘斜率不存在的情况,这一点一定不能掉以轻心.13.13.圆O1:x2+y2-2x=0与圆O2:x2+y2-4y=0的位置关系是_______【答案】相交.【解析】【分析】把两圆的方程化为标准方程后,分别找出两圆心坐标和两半径与,然后利用两点间的距离公式求出两圆心间的距离,比较与与和与差的大小,即可得到两圆的位置关系.【详解】由圆与圆,分别得到标准方程和,则两圆坐标分别为和,半径分别为,则两圆心之间的距离,则,即,故两圆的位置关系是相交,故答案为相交.【点睛】本题主要考查圆与圆的位置关系,属于简单题.若两圆半径为,两圆心间的距离,比较与及与的大小,即可得到两圆的位置关系.14.14.方程x2+y2+ax+2ay+a2+a-1=0表示圆,则a的取值范围是_____【答案】a<1.【解析】【分析】根据二元二次方程能够表示圆的充要条件,得到关于的一元二次不等式,解不等式即可得到结果.【详解】方程表示圆,,化为,解得,故答案为.【点睛】本题主要考查圆的一般方程,属于基础题. 二元二次方程表示圆的充要条件是:.15.15.以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程为___________【答案】(x-2)2+(y+1)2=9【解析】【分析】根据点到直线的距离公式,求出点到直线的距离,可得圆的半径,再由圆的标准方程,即可得到满足条件的圆的方程.【详解】因为圆以点(为圆心且与直线相切,所以圆心到直线的距离等于半径,即,所求圆的方程为,故答案为.【点睛】本题主要考查圆的方程和性质,属于中档题.求圆的方程常见思路与方法有:①直接设出动点坐标,根据题意列出关于的方程即可;②根据几何意义直接找到圆心坐标和半径,写出方程;③待定系数法,可以根据题意设出圆的标准方程或一般式方程,再根据所给条件求出参数即可.本题是利用方法②解答的.16.16.方程x2+y2-x+y+m=0表示一个圆,则m的取值范围是_______【答案】m<.【解析】由D2+E2-4F>0,得(-1)2+12-4m>0,即m<.17.17.若圆C:x2+y2-4x-5=0,则过点P(1,2)的最短弦所在直线l的方程是_________【答案】x-2y+3=0.【解析】【分析】由圆的几何性质可得圆心与点的连线与垂直时,所截的弦长最短,利用直线垂直的充要条件及点斜式求解即可.【详解】将圆的一般方程化成标准方程为,所以,由题意知,过点的最短弦所在的直线应与垂直,所以,由,得,所以直线的方程为,即,故答案为.【点睛】本题主要考查圆的方程与性质,以及两直线垂直的充要条件,对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1);(2),这类问题尽管简单却容易出错,特别是容易遗忘斜率不存在的情况,这一点一定不能掉以轻心.18.18.过原点的直线与圆x2+y2+4x+3=0相切,若切点在第三象限,则该直线的方程是_____【答案】【解析】【分析】设直线方程为,由圆心到直线距离等于半径列方程求解即可.【详解】圆方程。
第四章圆与方程4.1 圆的方程4.1.1 圆的标准方程A级基础巩固一、选择题1.已知点P(a,a+1)在圆x2+y2=25内部,那么a的取值范围是()A.-4<a<3B.-5<a<4C.-5<a<5 D.-6<a<42.圆x2+y2=1的圆心到直线3x+4y-25=0的距离是() A.5B.3 C.4D.23.若圆(x-a)2+(y-b)2=r2过原点,则()A.a2+b2=0 B.a2+b2=r2C.a2+b2+r2=0 D.a=0,b=04.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是()A.2 B.1+ 2C.2+22D.1+2 25.圆的标准方程为(x-5)2+(y-6)2=a2(a>0).若点M(6,9)在圆上,则a的值为()A.10 B.2C. 2 D.1二、填空题6.已知两圆C1:(x-5)2+(y-3)2=9和C2:(x-2)2+(y+1)2=5,则两圆圆心间的距离为__________.7.圆心为直线x-y+2=0与直线2x+y-8=0的交点,且过原点的圆的标准方程是____________.8.已知点P(1,-5),则该点与圆x2+y2=25的位置关系是______________.三、解答题9.求经过A(-1,4),B(3,2)两点且圆心在y轴上的圆的方程.B级能力提升1.过点P(1,1)的直线将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为() A.x+y-2=0 B.y-1=0C.x-y=0 D.x+3y-4=02.若圆C与圆(x+2)2+(y-1)2=1关于原点对称,则圆C的方程是________________.3.若直线y=x+b与曲线y=4-x2有公共点,试求b的取值范围.参考答案第四章圆与方程4.1 圆的方程4.1.1 圆的标准方程A级基础巩固一、选择题1.已知点P(a,a+1)在圆x2+y2=25内部,那么a的取值范围是()A.-4<a<3B.-5<a<4C.-5<a<5 D.-6<a<4解析:由a2+(a+1)2<25可得2a2+2a-24<0,解得-4<a<3.答案:A2.圆x2+y2=1的圆心到直线3x+4y-25=0的距离是() A.5B.3 C.4D.2解析:圆x2+y2=1的圆心为(0,0),所以d=|-25|32+42=5.答案:A3.若圆(x-a)2+(y-b)2=r2过原点,则()A.a2+b2=0 B.a2+b2=r2C.a2+b2+r2=0 D.a=0,b=0解析:由题意得(0-a)2+(0-b)2=r2.即a2+b2=r2.答案:B4.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是( )A .2B .1+ 2C .2+22D .1+2 2解析:圆(x -1)2+(y -1)2=1的圆心为(1,1),圆心到直线x -y=2的距离为|1-1-2|1+1=2,圆心到直线的距离加上半径就是圆上的点到直线的最大距离,即最大距离为1+ 2.答案:B5.圆的标准方程为(x -5)2+(y -6)2=a 2(a >0).若点M (6,9)在圆上,则a 的值为( ) A.10B .2 C. 2 D .1解析:因为点M 在圆上,所以(6-5)2+(9-6)2=a 2,又由a >0,可得a =10.答案:A二、填空题6.已知两圆C 1:(x -5)2+(y -3)2=9和C 2:(x -2)2+(y +1)2=5,则两圆圆心间的距离为__________.解析:C 1(5,3),C 2(2,-1),根据两点间距离公式得|C 1C 2|=(5-2)2+(3+1)2=5.答案:57.圆心为直线x -y +2=0与直线2x +y -8=0的交点,且过原点的圆的标准方程是____________.解析:由⎩⎪⎨⎪⎧x -y +2=0,2x +y -8=0,可得x =2,y =4,即圆心为(2,4)从而r =(2-0)2+(4-0)2=25,故圆的标准方程为(x -2)2+(y -4)2=20.答案:(x -2)2+(y -4)2=20.8.已知点P (1,-5),则该点与圆x 2+y 2=25的位置关系是______________.解析:由于12+(-5)2=26>25,故点P (1,-5)在圆的外部. 答案:在圆的外部三、解答题9.求经过A (-1,4),B (3,2)两点且圆心在y 轴上的圆的方程. 解:法一 设圆心坐标为(a ,b ).因为圆心在y 轴上,所以a =0.设圆的标准方程为x 2+(y -b )2=r 2.因为该圆过A ,B 两点,所以⎩⎪⎨⎪⎧(-1)2+(4-b )2=r 2,32+(2-b )2=r 2,解得⎩⎪⎨⎪⎧b =1,r 2=10.所以所求圆的方程为x 2+(y -1)2=10.法二 因为线段AB 的中点坐标为(1,3),k AB =2-43-(-1)=-12, 所以弦AB 的垂直平分线方程为y -3=2(x -1),即y =2x +1.由⎩⎪⎨⎪⎧y =2x +1,x =0,解得⎩⎪⎨⎪⎧x =0,y =1.所以点(0,1)为圆的圆心.由两点间的距离公式,得圆的半径r =10,所以所求圆的方程为x2+(y-1)2=10.10.求圆(x-1)2+(y-2)2=1关于直线y=x对称的圆的方程.解:因为点P(x,y)关于直线y=x对称的点为P′(y,x),所以(1,2)关于直线y=x对称的点为(2,1),所以圆(x-1)2+(y-2)2=1关于直线y=x对称的圆的方程为(x -2)2+(y-1)2=1.B级能力提升1.过点P(1,1)的直线将圆形区域{(x,y)|x2+y2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为() A.x+y-2=0 B.y-1=0C.x-y=0 D.x+3y-4=0解析:两部分面积之差最大,即弦长最短,此时直线垂直于过该点的直径.因为过点P(1,1)的直径所在直线的斜率为1,所以所求直线的斜率为-1,方程x+y-2=0.答案:A2.若圆C与圆(x+2)2+(y-1)2=1关于原点对称,则圆C的方程是________________.解析:因为点(-2,1)关于原点的对称点为(2,-1),所以圆C的方程为(x-2)2+(y+1)2=1.答案:(x-2)2+(y+1)2=13.若直线y=x+b与曲线y=4-x2有公共点,试求b的取值范围.解:如图,在坐标系内作出曲线y=4-x2(半圆).当直线y=x+b与半圆y=4-x2相切时,|b|2=2,所以b=2 2.当直线y=x+b过(2,0)时,b=-2.直线l1:y=x-2,直线l2:y=x+2 2.当直线l:y=x+b夹在l1与l2之间(包括l1,l2)时,l与曲线y=4-x2有公共点,所以截距b的取值范围为:[-2,22].。
(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(每小题分,共分).圆+-++=(<)的周长等于( ).π.-π.-π.π解析:由已知得,圆的标准方程为(-)+(+)=,∵<,∴半径=-,∴圆的周长为-π.答案:.如果方程++++=(+->)所表示的曲线关于直线=对称,则必有( ).=.=.==.=解析:由已知+->,可知方程++++=表示的曲线为圆.若圆关于=对称,则知该圆的圆心在直线=上,则必有=.答案:.已知圆的方程为+-++=,那么该圆的一条直径所在直线的方程为( ).-+=.--=.+-=.++=解析:由已知得圆心(,-),且圆心不在直线-+=--=+-=上,而在直线++=上,故该圆的一条直径所在直线的方程为++=.答案:.若圆+--=的圆心到直线-+=的距离为,则的值为( ).-或或.-或.或解析:把圆+--=化为标准方程为(-)+(-)=,故此圆圆心为(),圆心到直线-+=的距离为,则=,解得=,或=.故选.答案:二、填空题(每小题分,共分).若是经过点(-)和圆++-+=的圆心的直线,则在轴上的截距是.解析:圆心(-),则直线的斜率==-,所以直线的方程是-=-(+),即=--,所以在轴上的截距是-.答案:-.若方程++++=表示以(,-)为圆心,为半径的圆,则=.解析:由已知-=,-=-,所以=-,=,又因为半径为,即=,=,解之,得=.答案:.若方程+-++-=表示一个圆,则实数的取值范围是.解析:由方程+-++-=,可知=-,=,=-,由+->,得+-+>,即(-)>,所以≠.答案:≠三、解答题(每小题分,共分).求圆心在直线=上,且经过点(-),(,-)的圆的一般方程.解析:设圆的方程为++++=,则圆心是,由题意知,(\\(-()=-(),-++=,+-+=,))解得==-,=-,即所求圆的一般方程是+---=..求一个动点在圆+=上移动时,它与定点()连线的中点的轨迹方程.解析:设点的坐标是(,),点的坐标是(,).由于点的坐标为()且是线段的中点,所以=,=,于是有=-,=.因为点在圆+=上移动,所以点的坐标满足方程+=,则(-)+=,整理得+=.所以点的轨迹方程为+=.。
(数学2必修)第四章 圆与方程[基础训练A 组]一、选择题1. 圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A . 22(2)5x y -+=B . 22(2)5x y +-=C . 22(2)(2)5x y +++=D . 22(2)5x y ++=2. 若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A . 03=--y x B . 032=-+y x C . 01=-+y xD . 052=--y x3. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A . 2B . 21+C . 221+D . 221+ 4. 将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-=相切,则实数λ的值为( ) A . 37-或 B . 2-或8 C . 0或10 D . 1或115. 在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( )A . 1条B . 2条C . 3条D . 4条 6. 圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A . 023=-+y xB . 043=-+y xC . 043=+-y xD . 023=+-y x二、填空题1. 若经过点(1,0)P -的直线与圆032422=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________.2. 由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0,,60A B APB ∠=,则动点P 的轨迹方程为 .3. 圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 .4. 已知圆()4322=+-y x 和过原点的直线kx y =的交点为,P Q则OQ OP ⋅的值为________________.5. 已知P 是直线0843=++y x 上的动点,,PA PB 是圆012222=+--+y x y x 的切线,,A B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________________. 三、解答题1. 点(),P a b 在直线01=++y x 上,求22222+--+b a b a 的最小值.2. 求以(1,2),(5,6)A B --为直径两端点的圆的方程.3. 求过点()1,2A 和()1,10B 且与直线012=--y x 相切的圆的方程.4. 已知圆C 和y 轴相切,圆心在直线03=-y x 上,且被直线x y =截得的弦长为72,求圆C 的方程.数学2(必修)第四章 圆和方程 [基础训练A 组]参考答案一、选择题1. A (,)x y 关于原点(0,0)P 得(,)x y --,则得22(2)()5x y -++-= 2. A 设圆心为(1,0)C ,则,1,1,12CP AB AB CP k k y x ⊥=-=+=-3. B 圆心为max (1,1),1,1C r d ==4. A 直线20x y λ-+=沿x 轴向左平移1个单位得220x y λ-++=圆22240x y x y ++-=的圆心为(1,2),3,7C r d λλ-====-=或5. B 两圆相交,外公切线有两条6. D 2224x y -+=()的在点)3,1(P 处的切线方程为(12)(2)4x --=二、填空题1. 1 点(1,0)P -在圆032422=+-++y x y x 上,即切线为10x y -+= 2. 224x y += 2OP =3. 22(2)(3)5x y -++= 圆心既在线段AB 的垂直平分线即3y =-,又在270x y --=上,即圆心为(2,3)-,r =4. 5 设切线为OT ,则25OP OQ OT⋅==5. 当CP 垂直于已知直线时,四边形PACB 的面积最小 三、解答题1. 的最小值为点(1,1)到直线01=++y x 的距离而d ==,min = 2. 解:(1)(5)(2)(6)0x x y y +-+-+=得2244170x y x y +-+-=3. 解:圆心显然在线段AB 的垂直平分线6y =上,设圆心为(,6)a ,半径为r ,则222()(6)x a y r -+-=,得222(1)(106)a r -+-=,而r =22(13)(1)16,3,5a a a r --+===22(3)(6)20x y ∴-+-=.4. 解:设圆心为(3,),t t 半径为3r t =,令d ==而22222,927,1r d t t t =--==±22(3)(1)9x y ∴-+-=,或22(3)(1)9x y +++=。
一、选择题
第四章圆和方程 [根底训练 A 组] 答案
1.A 关于原点得,那么得
2.A 设圆心为,那么
(-x + 2(P-)(2(x0+,-y(0-)y)y)2 = 5
AB ⊥CP, k
CP
=-C1(,1k,0
AB
) =1, y +1 =x - 2
3.B 圆心为
4.A 直线沿§轴向左平移§个单位得
圆的圆心为C(1,1), r =1, d
max
= 2 +1 2x2-x-y +y1x+λλ+ 2==0 0
x2 +y2-+22+xλ- 4 y = 0
5.B 两圆相交,外
C(-1, 2), r = 公切线有两条5, d = =5, λ=-3,或λ= 7
5
6.D 的在点处的切线方程为
二、填空题
1. 点§在圆上,即切线为
2. (1〔- 2x)(-P x2(-〕12,+)+y32)=34= 4 x2+y x2-+P4(y-x1+1-,102=)y0+3=0
x2 +y2 = 4
3.圆心既在线段的垂直平分线即,又在
§上,即圆心为§,§
4.设切线为,那么
5.当垂直于直线时,四边形的面积最小三、
解答题
1.解:的最小值为点到直线的距离
而,。
2.解:
得
3.解:圆心显然在线段的垂直平分线上,设圆心为,半径为,那么
,得,而。
4.解:设圆心为半径为,令
而
,或。
高一数学(必修2)第四章 圆与方程
[基础训练]
一、选择题
1.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( )
A .22(2)5x y -+=
B .22(2)5x y +-=
C .22(2)(2)5x y +++=
D .22(2)5x y ++= 2.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是()
A. 03=--y x
B. 032=-+y x
C. 01=-+y x
D. 052=--y x
3.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )
A .2
B .21+
C .2
21+ D .221+ 4.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与
圆22
240x y x y ++-=相切,则实数λ的值为( )
A .37-或
B .2-或8
C .0或10
D .1或11 5.在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B
距离为2的直线共有( )
A .1条
B .2条
C .3条
D .4条
6.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )
A .023=-+y x
B .043=-+y x
C .043=+-y x
D .023=+-y x
二、填空题
1.若经过点(1,0)P -的直线与圆03242
2=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________.
2.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0,,60A B APB ∠=,则动点P 的轨迹方程为 。
3.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程
为 .
4.已知圆()4322
=+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ⋅的值为________________。
5.已知P 是直线0843=++y x 上的动点,,PA PB 是圆012222=+--+y x y x 的切线,,A B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________________。
三、解答题
1.点(),P a b 在直线01=++y x 上,求22222+--+b a b a 的最小值。
2.求以(1,2),(5,6)A B --为直径两端点的圆的方程。
3.求过点()1,2A 和()1,10B 且与直线012=--y x 相切的圆的方程。
4.已知圆C 和y 轴相切,圆心在直线03=-y x 上,且被直线x y =截得的弦长为7
2,求圆
C 的方程。
第四章 圆和方程 [基础训练]参考答案
一、选择题
1.A (,)x y 关于原点(0,0)P 得(,)x y --,则得22(2)()5x y -++-=
2.A 设圆心为(1,0)C ,则,1,1,12CP AB AB CP k k y x ⊥=-=+=-
3.B 圆心为max (1,1),1,1C r d =
4.A 直线20x y λ-+=沿x 轴向左平移1个单位得220x y λ-++=
圆22240x y x y ++-=的圆心为(1,2),3,7C r d λλ-==
==-=或
5.B 两圆相交,外公切线有两条
6.D 2224x y -+=()的在点)3,1(P 处的切线方程为(12)(2)4x --= 二、填空题
1.1 点(1,0)P -在圆032422=+-++y x y x 上,即切线为10x y -+=
2.224x y += 2OP =
3. 22(2)(3)5x y -++= 圆心既在线段AB 的垂直平分线即3y =-,又在
270x y --=上,即圆心为(2,3)-,
r =4.5 设切线为OT ,则2
5O P O Q O T ⋅==
5. 当CP 垂直于已知直线时,四边形P A C B 的面积最小
三、解答题
1.的最小值为点(1,1)到直线01=++y x 的距离
而
2d ==,min = 2.解:(1)(5)(2)(6)0x x y y +-+-+=
得22
44170x y x y +-+-=
3.解:圆心显然在线段AB 的垂直平分线6y =上,设圆心为(,6)a ,半径为r ,则
222()(6)x a y r -+-=,得222(1)(106)a r -+-=,而r =
2
2
(13)(1)16,3,5a a a r --+=== 22(3)(6)20x y ∴-+-=。
4.解:设圆心为(3,),t t 半径为3r t =,令d ==
而22222,927,1r d t t t =--==± 22(3)(1)9x y ∴-+-=,或22(3)(1)9x y +++=。