树与生成树
- 格式:ppt
- 大小:685.50 KB
- 文档页数:36
在离散数学中,图是一个由点和边组成的抽象数学模型。
其中,树是一种特殊的图,它是一个无环连通图。
在图论中,树扮演了重要的角色,它具有许多有趣的性质和应用。
而生成树则是树的一个特殊子集,它由给定图中的所有顶点和部分边构成。
本文将介绍图的树的基本概念,并探讨生成树的计数方法。
首先,让我们来看看图的树。
树是一种无环连通图,其中任意两个顶点之间存在唯一一条路径。
它具有以下性质:1.n个顶点的树有n-1条边。
这可以通过归纳法证明:当n=1时,结论成立;假设n=k时成立,那么n=k+1时,只需要添加一个顶点和一条边,即可构成n=k+1个顶点的树。
因此,结论成立。
2.连接树上任意两个顶点的边都是桥。
即如果一条边被删除,那么树就会变成两个或更多个不相连的子树。
3.树是一个高度平衡的结构。
对于一个n个顶点的树,任意两个叶子结点之间的路径长度至多相差1。
4.树的任意两个顶点之间有唯一一条路径,路径长度为顶点之间的边数。
接下来,让我们来讨论生成树的计数方法。
生成树是树的一个特殊子集,它是由给定图中的所有顶点和部分边构成。
生成树的计数在图论中具有重要的意义和应用。
对于一个具有n个顶点的连通图来说,其生成树的个数可以通过Cayley公式计算得到。
Cayley公式是由亚瑟·凯利于1889年提出的,它给出了完全图的生成树数目。
据此,我们可以得到生成树的计数公式为:T = n^(n-2),其中T表示生成树的个数。
此外,还有一种常见的计数方法是基于度数矩阵和邻接矩阵的矩阵树定理。
矩阵树定理由高斯于1847年提出,它提供了一种计算图的生成树个数的方法。
根据矩阵树定理,一个无向图G的生成树数目等于该图度数矩阵的任意一个(n-1)阶主子式的行列式的值。
其中,度数矩阵是一个对角矩阵,它的对角线上的元素为各个顶点的度数。
邻接矩阵则是一个关于顶点间连接关系的矩阵,其中1表示相邻顶点之间存在边,0表示不存在边。
除了数学方法,还存在一种基于图的遍历的计数方法,称为Kirchhoff矩阵树定理。
吴裕雄--天⽣⾃然数据结构学习笔记:什么是⽣成树,⽣成树
(⽣成森林)详解
对连通图进⾏遍历,过程中所经过的边和顶点的组合可看做是⼀棵普通树,通常称为⽣成树。
如图1所⽰,图 1a) 是⼀张连通图,图 1b) 是其对应的2种⽣成树。
连通图中,由于任意两顶点之间可能含有多条通路,遍历连通图的⽅式有多种,往往⼀张连通图可能有多种不同的⽣成树与之对应。
连通图中的⽣成树必须满⾜以下2个条件:
包含连通图中所有的顶点;
任意两顶点之间有且仅有⼀条通路;
因此,连通图的⽣成树具有这样的特征,即⽣成树中边的数量 = 顶点数 - 1。
⽣成森林
⽣成树是对应连通图来说,⽽⽣成森林是对应⾮连通图来说的。
我们知道,⾮连通图可分解为多个连通分量,⽽每个连通分量⼜各⾃对应多个⽣成树(⾄少是1棵),因此与整个⾮连通图相对应的,是由多棵⽣成树组成的⽣成森林。
生成树的名词解释生成树(Spanning Tree)是图论中的一个重要概念,用来描述在一个无向连通图中连接所有顶点的极小连通子图。
在一个无向连通图中,如果能够找到一颗包含所有顶点且边数最少的子图,那么这个子图就是该图的生成树。
生成树的概念最早由Otto Schönflies于1885年提出,并且在图论研究和实际应用中得到了广泛的运用。
生成树在电网规划、通信网络设计、计算机网络以及城市交通规划等领域都有着重要的应用价值。
生成树的定义可以用简洁的方式表述:在一个无向连通图中,生成树是保留了原图的所有顶点,但只保留了足够的边来使得这个子图连通,并且不包含任何环的一种连通子图。
换句话说,生成树是一个无向连通图中的极小连通子图,它连接了所有的顶点,并且不存在回路。
生成树具有很多重要的性质和应用。
首先,生成树的边数比原图的顶点数少一个。
这是因为生成树是一个连通子图,而且不包含任何环。
因此,生成树中的边数等于原图的顶点数减去1。
这个性质经常用于生成树的构造和推导。
其次,生成树可以用于表示图中的最小连接网络。
在一个无向连通图中,如果存在多个连通子图,那么通过连接这些子图的最少的边,就可以得到一个生成树。
这个生成树可以看作是一个最小的连通网络,其中所有顶点都能够通过最短路径相互到达。
此外,生成树还可以用于网络设计和优化问题。
在电网规划、通信网络设计和计算机网络中,生成树常常被用于实现信息的传输和路由的优化。
通过构造合适的生成树,可以使得信息的传输路径更加简洁和高效。
生成树有多种构造算法,其中最常用的是Prim算法和Kruskal算法。
Prim算法是一种贪心算法,它从一个任意选定的顶点开始,逐步构建生成树。
具体地,Prim算法每次选择与已有的生成树连接边权值最小的顶点,并将其加入生成树。
重复这个过程,直到生成树包含了所有的顶点。
Kruskal算法是一种基于边的方法,它首先将图中的边按照权值从小到大排序,然后依次将边加入生成树,直到生成树包含了所有的顶点为止。
第二章树教学安排的说明章节题目:§2.1树的特性;§2.2割边与割点,§2.3生成树学时分配:共2课时本章教学目的与要求:会正确表述关于树的一些基本概念(如树、生成树、割边与割点),会用避圈法和破圈法找生成树,会用树的方法描述一些简单的实际问题.课 堂 教 学 方 案课程名称:§2.1树的特性;§2.2割边与割点;§2.3 生成树授课时数:2学时授课类型:理论课教学方法与手段:讲授法教学目的与要求:会正确表述关于树的一些基本概念(如树、生成树、割边与割点),会用避圈法和破圈法找生成树,会用树的方法描述一些简单的实际问题. 教学重点、难点:(1) 理解树的概念以及树的等价命题;(2) 掌握割边与割点的概念;(3) 理解生成树的定义;(4) 掌握找生成树的两种方法——避圈法和破圈法。
教学内容:树是图论中的一个重要概念。
树是一种极为简单而又非常重要的特殊图,它在计算机科学以及其它许多领域都有广泛的应用。
在1847年克希霍夫就用树的理论来研究电网络,1857年凯莱在计算有机化学中222n C H 的同分异构物数目时也用到了树的理论。
各类网络的主干网通常都是树的结构。
本节介绍树的基本知识,其中谈到的图都假定是简单图。
2.1 树的特性定义2.1.1 连通无圈的无向图称为无向树,简称为树(Undirected tree )。
记作T ,树中的悬挂点(或称T 中度数为1的顶点)又称为树叶(leave )(或叶顶点),其它顶点称为树枝(Branch Point 或内点(Inner Point))。
诸连通分支均为树的图称为森林(forest ),树是森林。
例1 图1中(a ),(b )为树,(c )为森林。
图1由于树无环也无重边(否则它有圈),因此树必定是简单图。
树还有等价命题:设T 是一个无向(,)n m 图,则以下关于T 的命题是等价的。
(1) T 是树;(2)T 无圈且1m n =-;(3) T 连通且1m n =-;(4)T 无圈,但增加任一新边,得到且仅得到一个圈。